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Sodium-glucose cotransporter 2
inhibitor dapagliflozin prevents
ejection fraction reduction,
reduces myocardial and renal
NF-κB expression and systemic
pro-inflammatory biomarkers in
models of short-term
doxorubicin cardiotoxicity
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Background: Anthracycline-mediated adverse cardiovascular events are among
the leading causes of morbidity and mortality in patients with cancer. Sodium-
glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic
benefits in patients with/without type 2 diabetes, chronic kidney disease, and
heart failure with reduced and preserved ejection fraction. We hypothesized
that the SGLT2i dapagliflozin administered before and during doxorubicin
(DOXO) therapy could prevent cardiac dysfunction and reduce pro-
inflammatory pathways in preclinical models.
Methods: Cardiomyocytes were exposed to DOXO alone or combined with
dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++

were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy
2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through
selective colorimetric and enzyme-linked immunosorbent assay (ELISA)
methods. Female C57Bl/6 mice were treated for 10 days with a saline solution
or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA.
Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity
C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1β,
IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF)
were quantified. After treatments, immunohistochemical staining of myocardial
and renal p65/NF-kB was performed.
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Results: DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties
in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels,
lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory
intracellular cytokines were also reduced. In preclinical models, DAPA prevented
the reduction of radial and longitudinal strain and ejection fraction after 10 days
of treatment with DOXO. A reduced myocardial expression of NLRP-3 and
MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice.
Systemic levels of IL-1β, IL-6, TNF-α, G-CSF, and GM-CSF were significantly
reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP
were strongly enhanced in the DOXO group; on the other hand, their
expression was reduced in the DAPA-DOXO group. Troponin-T, B-type
natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly
reduced in the DOXO-DAPA group, revealing cardioprotective properties of
SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and
renal NF-kB expression.
Conclusion: The overall picture of the study encourages the use of DAPA in the
primary prevention of cardiomyopathies induced by anthracyclines in patients
with cancer.
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1 Introduction

Anthracyclines are associated with dose-dependent

cardiotoxicity (1). Cancer patients treated with anthracyclines at

400 and 700 mg/m2 are exposed to a 5% and 48% risk of

congestive heart failure, respectively (2). Mechanisms of acute

and chronic anthracycline-mediated adverse events involve

ferroptosis, endothelial damages, apoptosis, fibrosis, and myocardial

inflammation mediated by overexpression of NF-kB mediated

pathways (3, 4). Notably, short-term-induced myocardial damages

of doxorubicin (DOXO) are well reported in clinical scenarios,

resulting in the need for cardioprotective strategies in primary

prevention in patients with cancer (5). A wide spectrum of

cardioprotective drugs is proposed, including sacubitril/valsartan,

beta blockers, and nutraceuticals; however, no effective risk

reductions were seen in these patients (6).

Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) have

beneficial properties, including the improvement of systolic and

diastolic functions (7), increase in calcium homeostasis, reduction

of afterload and oxidative stress, improvement of mitochondrial

functions in cardiomyocytes, and increase in ketone bodies,

resulting in improved energy metabolism of cardiac cells,

reduction of insulin and uric acid levels as well as of epicardial

and visceral fat (8, 9). The most studied SGLT2is are

empagliflozin (EMPA), dapagliflozin (DAPA), canagliflozin

(CANA), and ertugliflozin (ERTU), which differ in their SGLT2

binding avidity, resulting in different clinical outcomes (10).

DAPA is a selective SGLT2i with multiple beneficial properties

in patients with cardiovascular diseases (CVD) (10). In the

DECLARE-TIMI trial, DAPA reduced cardiovascular death and

hospitalization for heart failure in patients with type 2 diabetes

mellitus (T2DM) (11). In the DAPA-HF TRIAL, DAPA reduced

heart failure and death from cardiovascular causes in patients
02
with heart failure and reduced ejection fraction in patients with

and without T2DM (12). In the DEFINE-trial, DAPA improved

heart failure-related health status and reduced natriuretic

peptides in patients with heart failure with reduced ejection

fraction (13). In the DELIVER trial, in patients with heart failure

and preserved ejection fraction, DAPA significantly reduced

cardiovascular death and urgent heart failure visits in patients

with T2DM (14). A very recent trial of cancer patients with

T2DM treated with anthracyclines and gliflozins reduced heart

failure admissions, new cardiomyopathies, arrhythmias, and heat

failure incidence (15).

The aim of the present study was to test, for the first time,

whether DAPA could affect the myocardial and renal NF-κB

expression, systemic levels of 12 cytokines, growth factors,

troponin, and B-type natriuretic peptide NT-pro-BNP in

preclinical models of short-term doxorubicin cardiotoxicity,

preventing ejection fraction reduction.
2 Materials and methods

2.1 Cardioprotective properties of DAPA in
human cardiomyocytes

To evaluate the cytoprotective effects of DAPA in human

cardiomyocytes (AC16 adult human cells; Sigma Aldrich, Milan,

Italy), mitochondrial dehydrogenase activity was quantified

through a modified MTT [3-(4,5-dimethyldiazol-2-yl)-2,5-

diphenyl tetrazolium bromide] method, known as MTS assay,

according to the manufacturer’s instructions (Dojindo Molecular

Technologies Inc., Rockville, MD, USA). Briefly, AC16 cells were

cultured in Dulbecco’s Modified Eagle’s Medium/Nutrient

Mixture F-12 Ham (DME/F-12) supplemented with 10% fetal
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bovine serum (FBS; 10,000 cells/well) at 37°C in a humidified 5%

CO2 atmosphere. After 24 h of appropriate growth, cells were

unexposed (control) or exposed to DOXO (range 0.1–50 µM) or

DAPA (10 or 100 nM) or both in combination for 24 h, in line

with the literature (16). Notably, cellular DAPA doses were

chosen according to the literature (close to the plasma levels of

DAPA after oral administration in adults) (17–20). After

treatment, cells were then washed three times with phosphate

buffered solution (PBS) at pH 7.4 and then incubated with 100 μl

of an MTT solution (0.5 mg/ml in cell culture medium) for 4 h at

37°C. Absorbance readings were acquired at a wavelength of 450

nm with the Tecan Infinite M200 plate-reader (Tecan Life

Sciences Home, Männedorf, Switzerland) using I-control software

(Tecan). Relative cell viability (%) was calculated with the

following formula = [A]test/[A]control × 100, where “[A]test” is the

absorbance of the test sample, and “[A]control” is the absorbance

of the control cells incubated solely in culture medium (21).
2.2 Intracellular Ca++ levels and ATP levels

DOXO-mediated cardiovascular injuries involve high

intracellular calcium levels induced by intracellular Reactive

Oxygen Species (iROS) (22). Intracellular Ca2+ in AC16 cells was

quantified through the fluorescence dye Fluo-3 AM, according to

the manufacturer’s protocol. Cardiomyocytes were untreated

(control) or treated with DOXO at 0.5 µM alone or combined

with DAPA (10 or 100 nM) for 12 h. Notably, the DOXO

concentration used in these experiments (0.5 μM) was chosen

since the plasma concentration of anthracyclines in cancer

patients has been reported to fluctuate in the range of 0.3–1 μM

during infusion (23–25). After incubation, the cells were loaded

with 5 µM Fluo-3 AM at 37°C for 30 min in the dark, and then

washed three times with PBS (pH 7.4) to remove the excess dye.

Fluo-3 chelated with Ca++ induces fluorescence detected by a

spectrofluorometer (excitation/emission wavelengths 488 and 525

nm, respectively). Instead, intracellular adenosine-5’-triphosphate

(ATP) levels were quantified through ENLITEN® ATP Assay

System (Promega Italia S.r.l, Milan, Italy) according to the

literature (26). Briefly, cardiomyocytes were untreated (control)

or treated for 24 h, as described previously; after treatments, 100

μl of lysis/assay solution provided by the manufacturer was

added to confluent cell cultures in 96-well plates. After the plates

were shaken for 1 min and incubated for 10 min at 23°C,

luminescence was measured in a microplate luminometer

(Thermo Fisher, Milan, Italy). Data were expressed as relative

units (r.u.) according to the literature (27).
2.3 Lipid peroxidation products (MDA and
4-HNA)

Anthracyclines exert cardiotoxic effects through the induction

of ferroptosis, a cell death induced by lipid peroxidation (28).

AC16 cells were grown as described above; subsequently, 5,000

cells/well were seeded in a 24-well plate and allowed to grow for
Frontiers in Cardiovascular Medicine 03
24 h and exposed to DOXO (0.5 µM) or DAPA (10 or 100 nM).

After centrifugation at 800 × g for 5 min, malondialdehyde

(MDA) and 4-hydroxy 2-hexenal (4-HNA) were quantified

though commercial kits with a spectrophotometer according to

the manufacturer’s protocols (Sigma Aldrich, Milan, Italy).
2.4 NLRP-3 and MyD-88 expression

Cardiomyocytes were treated as described in Section 2.2; after

treatment, the cells were harvested and lysed in complete lyses

buffer (50 mM Tris–HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl,

20 mM NaF, 3 mM Na3 VO4, 1 mM PMSF, and protease

inhibitor cocktail). After centrifugation, supernatants were

collected and treated to the quantification of MyD88 [Human

MyD88 ELISA Kit (ab171341); Abcam, Milan, Italy] and NLRP3

[Human NLRP3 ELISA Kit (OKEH03368); Aviva Systems

Biology, San Diego, CA, USA]. For the human MyD88 ELISA,

the sensitivity was <10 pg/ml and the range of detection was

156–10,000 pg/ml; for the human NLRP3 ELISA assay, the

sensitivity was <0.078 ng/ml and the range of detection was

0.156–10 ng/ml (29).
2.5 Intracellular pro-inflammatory
cytokines assay

The expression of pro-inflammatory cytokines, such as IL-6,

IL-8, and IL-1β, was performed through enzyme-linked

immunosorbent assay (ELISA) methods, in line with the

literature (30). Briefly, AC16 cells were treated as described in

Section 2.2 for 12 h; after treatment, the cells were lysed as

described in Section 2.4 and quantification of IL-1β, IL-6, and

IL-8 was performed through selective ELISA kits according to

the manufacturer’s instructions (Sigma Aldrich, Milan, Italy).
2.6 Morphological changes and
mitochondrial activity of cardiomyocytes
exposed to anthracyclines and DAPA
through a Confocal Laser Scanning
Microscope

Morphological changes and mitochondrial activity of human

cardiac cells were studied through a Confocal Laser Scanning

Microscope (EZ-C1-Nikon). Briefly, human cardiac cells were

untreated (control) or treated with DOXO alone or combined

with DAPA for 24 h. After incubation, cardiomyocytes were fixed

in 4% formaldehyde (10 min) and then incubated in 1% BSA/

10% normal goat serum/0.3 M glycine in 0.1% PBS-Tween20 for

1 h to permeabilize the cells and block non-specific protein–

protein interactions. The cardiomyocytes were then incubated

with an anti-Mitochondria antibody (113-1)—BSA and Azide

free (Abcam ab92824, Milan, Italy) 5 µg/ml overnight at ±4°C.

As a secondary antibody (green), a DyLight® 488 goat anti-

mouse IgG (H ± L) (ab96879, Abcam, Milan, Italy) was used at a
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dilution of 1/250 for 1 h. Membrane staining was obtained using

Concanavalin A Tetramethylrhodamine Conjugate (Invitrogen, Life

Technology, Milan, Italy) at a final concentration of 100 µg/ml.

Through a confocal microscope (C1-Nikon) equipped with EZ-C1

software for data acquisition and 60× oil immersion objective,

intracellular mitochondria were imaged through excitation/

emission at 488/518 nm and cell membrane through excitation/

emission at 555/580 nm (31).
2.7 Preclinical model of short-term
doxorubicin cardiotoxicity

In total, 24 female C57Bl/6 mice (aged 6–7 weeks) were

purchased from ENVIGO, San Pietro al Natisone (Italy). The

mice were housed six per cage and maintained on a 12-h light/

dark cycle (lights on at 7.00 a.m.) in a temperature-controlled

room (22°C ± 2°C) and with food and water ad libitum.

Preclinical experimental protocols were in accordance with EU

Directive 2010/63/EU for animal experiments, and Italian D.L.vo

26/2014 law, were approved by the Ministry of Health

(authorization number 1,467/17-PR of the 13-02-2017) and the

institutional ethics committees: by Organismo preposto al

benessere degli animali (OPBA). After 1 week of growth, the

mice were randomized for weight-adjusted treatment. The mice

were divided into four experimental groups (n = 6/group): (i) 100

μl saline solution (Saline); (ii) DOXO at 2.17 mg/kg/day through

intraperitoneal administration (i.p.); (iii) DAPA 10 mg/kg/day

through oral gavage; and (iv) DOXO/DAPA in combination (at

the same concentration of each drug tested alone). Treatments

were performed according to recently published studies with the

aim of assessing the cardioprotective effects of ranolazine (32)

and empagliflozin (33) against DOXO-induced cardiotoxicity for

10 days (34). Low doses of anthracyclines in preclinical models

were used in line with other cardioprotective outcome studies

(35, 36). Moreover, this is a short-term doxorubicin treatment

study that is able to detect echocardiographic changes and

systemic and myocardial inflammation (33, 37) due to acute pro-

inflammatory and cardiotoxicity phenomena induced by DOXO,

in line with other studies by Tocchetti et al. (38) and similar

studies of preclinical models of cardiotoxicity (39–41). The

chosen dose of DAPA (10 mg/kg/day through oral gavage) was

assessed according to several preclinical studies available in the

literature (18, 42–45) as well as other preclinical studies with

other SGLT2is in cardio-oncology, such as empagliflozin (34).
2.8 Transthoracic echocardiography and
blood analysis

A non-invasive transthoracic echocardiography through a

Vevo 2,100 high-resolution imaging system (40-MHz

transducer; Visualsonics, Toronto, ON, Canada) was performed

in line with the literature (32, 34, 46). The mice were

anesthetized with tiletamine (0.09 mg/g), zolazepam (0.09 mg/g),

and 0.01% atropine (0.04 ml/g). Later, the animals were sedated
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and placed in a supine position on a temperature-controller

surgical table to maintain a rectal temperature of 37°C and

continual ECG monitoring was obtained via limb electrodes.

Cardiac function was evaluated at basal conditions and at 2 and

10 days of treatment. Left ventricular echocardiography was

assessed in parasternal long-axis views at a frame rate of 233

Hz. Notably, we measured the strain in parasternal views

because the apical view is difficult to perform in small animals

(39); this method was in line with other studies for speck

tracking echocardiography (STE) analyses that were performed

on parasternal long-axis B-mode loops using a VisualSonics

Vevo 2100 system (VisualSonics) (47, 48). Image depth, width,

and gain settings were optimized to improve image quality.

End-systole and end-diastole dimensions were defined as the

phases corresponding to the ECG T wave, and to the R wave,

respectively. M-mode LV internal dimensions, diastolic (LVID,

d) and LV internal dimensions, and systolic (LVID,s)

dimensions were averaged from 3–5 beats. LVID,d and LVID,s

were measured from the LV M-mode at the mid-papillary

muscle level. Fractional shortening percentage (% FS) was

calculated as [(LVID,d− LVID,s)/LVID,d] × 100, and ejection

fraction percentage (% EF) was calculated as [(EDvol − ESvol)/

EDvol] × 100. The strain was expressed as percentage. The

analysis started with acquired B-mode loops and were imported

into the Vevo Strain software. Three consecutive cardiac cycles

were selected, and the endocardium traced. Upon adequate

tracing of the endocardium, an epicardial trace was added. The

ST-based strain allowed for the assessment of strains specific to

six myocardial segments per LV view. Internally, 10 or more

points were measured for each of the six segments, resulting in

a total of 48 data points. Strain and strain rate (SR) are useful

in the detection of regional myocardial function. The strain was

also evaluated on long-axis views as radial and longitudinal.

Radial strain (RS), defined as the percent change in myocardial

wall thickness, is a positive curve reflecting increasing

myocardial thickness during systole and diminishing wall

thickness during diastole and represents myocardial

deformation toward the center of the LV cavity. Longitudinal

strain (LS) detects the percent change in the length of the

ventricle, typically measured from the endocardial wall in the

long-axis view. The myocardial deformation rate, expressed in

1/s, was also calculated. Importantly, during echocardiography,

the heart rate of the mice was carefully monitored and was

similar among all experimental groups, i.e., approximately 500

bmp (range 490–510 bmp), according to the literature (49).

Echocardiographic analyses were performed following the

“Small Animal Echocardiography using the Vevo® 2100

Imaging System” guidelines as well as other previous studies in

models of preclinical cardio-oncology (34, 50–52). The mice

analyzed through echocardiography after 10 days of treatment

with DOXO to measure left ventricular systolic function, heart

rate, and cardiac output were previously described (34, 38, 46)

and in accordance with the recommendations of the American

Society of Echocardiography (53). Blood glucose determination

was performed by puncture of the tail vein before and after

treatments using a glucometer (Model NC).
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2.9 Myocardial NLRP-3 and MyD-88
expression

After treatment, the hearts were fully weighed. Subsequently, a

left ventricular sample was cut, fixed, and embedded in paraffin for

histological studies (on left ventricular histological effects, as

described in Section 2.6). The remaining heart tissue was

homogenized and lysed for quantitative analyses of NLRP-3 and

Myd-88. In detail, the tissue was snap-frozen in dry ice until

tissue homogenization was performed in a proper lysis buffer

(0.1 M PBS, pH 7.4 + 1% Triton X-100 + protease inhibitor

cocktail) and processed using a high-intensity ultrasonic liquid

processor (54, 55). The homogenates were centrifuged at 4°C and

supernatants were used for the NLRP-3 and Myd-88 analyses

through NLRP3 (Mouse NLRP3 ELISA Kit, OKEH05486; Aviva

Systems Biology) and MyD88 (Mouse MyD88 ELISA Kit,

OKEH03397; Aviva Systems Biology).

2.9.1 Systemic troponin-T, BNP, NT-Pro-BNP,
galectin-3, and high-sensitivity C-reactive protein
levels

At the end of the treatment, blood sampling via cardiac puncture

was performed to quantify the biomarkers of cardiotoxicity

[Troponin-T, BNP, N-Terminal Pro-Brain Natriuretic Peptide

(NT-Pro-BNP)] and the biomarkers of systemic inflammation

[galectin-3 and high-sensitivity C-reactive protein (hs-CRP)].

Briefly, mouse troponin-T, BNP, and NT-Pro-BNP were quantified

through the Mouse Troponin-T, cardiac muscle (TNNT2) ELISA

kit (CusaBio, Houston, TX, USA), Mouse BNP ELISA Kit (A77763,

Antibodies Stockholm, Sweden), and Mouse NT-Pro-BNP ELISA

Kit (Abbexa, Cambridge, UK). Galectin-3 was quantified through

the Galectin 3 Mouse ELISA Kit (Thermo Scientific, Milan, Italy)

and hs-CRP was determined through the Mouse hs-CRP ELISA Kit

(Elabscience Biotechnology Co., USA) (55).

2.9.2 Systemic levels of ferroptosis biomarkers and
cytokines

At the end of the treatment, blood sampling via cardiac puncture

was performed to quantify two biomarkers of ferroptosis, products of

lipid peroxidation, MDA, and 4-HNA using commercial kits with a

spectrophotometer according to the manufacturer’s protocols (39)

[MAK085, Sigma Aldrich, Milan, Italy, for MDA; Lipid Peroxidation

(4-HNE) Assay Kit, ab238538, AbCam, Italy]. In total, 12 cytokines

and growth factors (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-

α, IFN-γ, TNF-α, G-CSF, GM-CSF) were quantified through a

mouse cytokine Multiplex Assay kit (pg/ml; Qiagen, USA) (56).

2.9.3 IHC staining of NF-kB in left ventricular heart
samples and kidney tissue

Left ventricular heart samples and kidney tissue were fixed in

4% paraformaldehyde for 1 h and then kept at 4°C until paraffin

embedding. Cardiac and kidney paraffin sections (with a

thickness of 4 μm) were hydrated, microwaved for 8–15 min in

10 mM sodium citrate (pH 6.0) for antigen retrieval, and then

probed with a rabbit antibody against murine p65/NF-kB (1:100,
Frontiers in Cardiovascular Medicine 05
ab16502; Ab Cam, Milan, Italy). Immunolabeled sections were

then incubated with goat anti-rabbit second antibody conjugated

to horseradish peroxidase and treated with the EnVision +

diaminobenzidine kit (DAB; Dako, Glostrup, Denmark) using

standard protocols (57). The stained sections were analyzed by

two independent observers, at least five different areas for each

specimen were evaluated, and the mean was assessed. NF-kB

IHC was categorized as positive or negative, as well as an overall

proportion of cells (10%) with positive nuclear staining in the

studied field at a magnification ×100. IHC scoring was based on

the nuclear staining intensity according to the literature as

follows: score 0, no nuclear staining; score 1, weak staining; score

2, moderate staining; and score 3, strong staining (58–60).

2.9.4 Statistical analyses
Continuous data were expressed as mean ± SD. Non-parametric

tests were used both for paired and unpaired comparisons.

A repeated measures ANOVA was used for all baseline to end-of-

study comparisons. A p-value <0.05 was considered significant.
3 Results

3.1 Cytoprotective and anti-inflammatory
effects of DAPA in cardiomyocytes exposed
to anthracyclines

As described in the literature, anthracyclines exert cardiotoxic

effects through lipid peroxidation, high intracellular Ca++ levels,

mitochondrial damage, and myocardial inflammation mediated by

NLRP-3/MyD-88/cytokine pathways (61). In line with the literature,

DAPA showed cytoprotective properties in cardiomyocytes exposed

to DOXO for 24 h (Figure 1A), increasing significantly their cell

viability [i.e., of 20% and 38% for DAPA 10 and 100 nM,

respectively, compared to only DOXO (50 µM) treated cells;

p < 0.001]. Cardiac cells exposed to DOXO drastically reduced

intracellular ATP levels compared to untreated cells (−64% vs.

control; p < 0.001) (Figure 1B); instead, DAPA increased their

content by 11% and 52% compared to DOXO groups (p < 0.001 for

both). Intracellular Ca++ were significantly increased in cardiac cells

exposed to DOXO (3,244.4 ± 203.3 vs. 367.6 ± 153.8 a.u.; p < 0.001)

(Figure 1C); co-incubation with DAPA at 10 and 100 nM drastically

reduced iCa++ levels compared to DOXO (2,123.5 ± 155.5 and

927.8 ± 234.4 vs. 3,244.4 ± 203.3 a.u., respectively; p < 0.001). Lipid

peroxidation products MDA and 4-HNA (Figures 1D,E) were

significantly increased in cardiomyocytes exposed to DOXO

(3.35–2.96 nmol/ml vs. 0.5 nmol/ml; p < 0.001); co-incubation with

DAPA reduced their intracellular levels in a concentration-

dependent manner, demonstrating antioxidant properties (p < 0.001

vs. DOXO groups). Intracellular levels of NLRP-3 and Myd-88,

were also drastically increased after exposure to DOXO (Figures 1F,G)

(∼5.3 and 4.1 times compared to untreated cells; p < 0.001 for

both). Notably, co-incubation with DAPA significantly reduced

their levels (NLRP-3 levels in DAPA 100 nM were comparable to

untreated cells; p < 0.001), indicating anti-inflammatory effects.

Intracellular cytokine levels also changed significantly between
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FIGURE 1

DAPA exerts cardioprotective properties in human cardiomyocytes exposed to DOXO. (A) Cell viability (% of control) of cardiomyocytes exposed to
DOXO (0.1, 1, and 10 µM) alone or combined to DAPA (10 or 100 nM) for 24 h. ATP levels (B) (relative units), intracellular Ca++ content (C) (fluorescence
intensity), MDA (D) and 4-HNA (E) (nmol/ml), NLRP-3 (F) and MyD-88 (G) (fold of control) in human cardiomyocytes unexposed (control) or exposed
for 24 h to DOXO (0.5 µM) alone or combined to DAPA (10 or 100 nM). Pro-inflammatory cytokines (H) (IL-1, IL6, and IL-8, pg of cytokine/mg of
protein) in human cardiomyocytes unexposed (control) or exposed for 24 h to DOXO (0.5 µM) alone or combined to DAPA (10 or 100 nM). One-
way ANOVA. Values are expressed as ±SD. ***P < 0.001; **p < 0.01; *p < 0.05; ns: not significant. Confocal scanning laser microscope (I–L) of
human cardiomyocytes unexposed (I) or exposed to DAPA (J) or DOXO (K) or DOXO-DAPA (L) for 24 h. Green signals: mitochondrial staining;
Red signals: cell membrane. Scale bar: 50 μM.
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groups (Figure 1H); in detail, IL-1β levels in DAPA 10 and 100 nM

compared to the DOXO only group were 121.1 ± 17.7 and

72.2 ± 14.4 pg/mg of protein versus 177.3 ± 12.2, respectively

(p < 0.001 for both); instead, IL-6 levels in DAPA 10 and 100 nM

compared to the DOXO only group were 71.1 ± 13.2 and

48.8 ± 11.8 pg/mg of protein versus 103.3 ± 8.6, respectively

(p < 0.001 for both); IL-8 levels in DAPA 10 and 100 nM,

compared to the DOXO only group were 85.5 ± 14.3 and

42.7 ± 17.2 pg/mg of protein versus 115.2 ± 8.3, respectively

(p < 0.001 for both). These results are in line with other studies on

SGLT2i cardioprotective properties and indicate cytoprotective,

antioxidant, and anti-inflammatory properties of DAPA in human

cardiomyocytes. Confocal images clearly showed morphological

changes in human cardiomyocytes exposed to DOXO (Figure 1K),

with an initial loss of cell–cell interactions and lower fluorescent

signal related to the cell membrane (red signals) compared to

untreated cells (Figure 1I), characteristic of cellular atrophy induced

by anthracyclines. Furthermore, mitochondrial staining (green

signals) was significantly reduced in the DOXO group compared to

the DAPA group (Figure 1J), indicating a loss of the number and

functionality of mitochondria. Notably, co-incubation with DOXO

and DAPA prevents the loss of cardiomyocyte morphology

(Figure 1L) and prevents the reduction of mitochondrial staining,

showing a high and significant green fluorescence compared to only

DOXO exposed cells.
3.2 DAPA did not affect serum glucose in
non-diabetic mice exposed to
anthracyclines

As reported in other studies, gliflozins did not affect serum

glucose in non-diabetic mice but were able to reduce oxidative-

related products both systemically and in heart tissue (62–64). In

brief, DAPA-treated mice had a blood glucose of 187.6 ± 29.3 mg/dl

vs. 192.8 ± 37.1 mg/dl in untreated mice (no differences were seen

between groups; p = 0.71). No differences in blood glucose were seen

between the DOXO and DOXO-DAPA groups (213.47 ± 41.3 mg/dl
TABLE 1 Cardiovascular parameters of study groups, such as (saline), DOX
(n = 6 for each group).

Cardiovascular parameters Saline DOXO p-valu

Saline vs.
IVS,d-D (mm) 0.61 ± 0.06 0.59 ± 0.04 0.512

LVID,d-D (mm) 2.1 ± 0.34 2.5 ± 0.22 0.036

LVPW,d-D (mm) 0.62 ± 0.09 0.67 ± 0.14 0.478

LV Mass (mg) 50,2 ± 3.4 53.5 ± 2.7 0.09

LVID,s-D (mm) 1.23 ± 0.1 1.79 ± 0.21 0.000

EF (%) 93.4 ± 1,2 78.5 ± 1.5 <0.000

FS (%) 63.2 ± 2.1 47.3 ± 1.8 <0.000

Radial strain (Pk%) 36.3 ± 3.4 14.3 ± 2.6 <0.000

Longitudinal Strain (Pk%) −22.4 ± 2.6 −12.6 ± 3.1 0.000

Heart weight (g) 0.12 ± 1.4 0.19 ± 2.1 0.947

Cardiac function parameters IVS,d-D (mm), LVID,d-D (mm), LVID,s-D (mm), LVPW,d-D

through echocardiography (Vevo/2100). Heart weight among four groups after nec

statistical analysis. Values are expressed as mean ±SD. p-values are shown for differen
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vs. 198.6 ± 32.2 mg/dl, respectively; p = 0.43) These results are in line

with those of other studies (8, 65) confirming that DAPA did not

significantly change blood glucose in non-diabetic mice.
3.3 DAPA improves cardiac function in
DOXO-induced cardiotoxicity

The cardiac function analysis clearly shows the cardiotoxicity of

DOXO even after 10 days of treatment (Table 1). Specifically,

significant reductions in EF (%), FS (%), radial strain (Pk%), and

longitudinal strain (Pk%) were seen compared to the controls

(DOXO vs. Saline; p < 0.001). In addition, a slight but not significant

increase in LV mass was seen (Table 1). Instead, the DAPA group

showed preservation of cardiac function compared to the Saline

group, confirming the cardiac benefits in preclinical models. On the

other hand, the DOXO-DAPA group showed a significant

improvement in EF (%), FS (%), radial strain (Pk%), and longitudinal

strain (Pk%) versus DOXO (DOXO-DAPA vs. DOXO; p < 0.001).

The representative M-mode of long-axis echocardiographic images

(Figure 2) for measurements of the intraventricular septum thickness

in diastole (IVSd) (mm), the thickness of the rear wall of the left

ventricle (LVPWd) (mm), LVIDd (mm), and LVIDs (mm) of mice

clearly indicates that DAPA (Figure 2D) improves cardiac functions

during DOXO therapy compared to the DOXO only group

(Figure 2B). Hearts weighed after necropsy showed a slight increase

in heart weight in the DOXO groups than the Saline and DOXO

groups, probably due to high inflammation and hypertrophy

induced by anthracycline therapy. Notably, DAPA did not

significantly reduce heart weight compared to DOXO alone.
3.4 DAPA reduces NF-kB expression in
myocardial and kidney tissue during
DOXO therapy

Histological analyses were performed to evaluate the anti-

inflammatory effects of DAPA in preclinical models of DOXO
O 2.17 mg/kg/day, DAPA 10 mg/kg/day, and DOXO-DAPA in association

e DAPA DOXO-DAPA p-value

DOXO DOXO vs. DOXO-DAPA
0.63 ± 0.05 0.62 ± 0.07 0.383

1.9 ± 0.25 2.2 ± 0.4 0.138

0.64 ± 0.12 0.63 ± 0.17 0.665

49.4 ± 2.5 52.4 ± 2.1 0.449

2 1.24 ± 0.4 1.33 ± 0.24 0.005

1 94.3 ± 2.1 89.7 ± 1.6 <0.0001

1 64.2 ± 1.5 59.7 ± 1.3 <0.0001

1 38.3 ± 2.3 32.4 ± 3.1 <0.0001

1 −26.2 ± 5.2 −21.4 ± 2.1 0.0007

0.08 ± 1.6 0.13 ± 1.2 0.952

(mm), EF (%), FS (%), LV Mass (mg), LV Vol,d (µl), and LV Vol,s (µl) were analyzed

ropsy (g). Two-way ANOVA with a Bonferroni post-hoc test was performed for

ces between DOXO and Saline as well as DOXO-DAPA vs. DOXO groups.

frontiersin.org

https://doi.org/10.3389/fcvm.2024.1289663
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 2

DAPA attenuated DOXO-induced impairment of cardiac systolic function. Echocardiography was performed on all the mice after 10 days of DOXO
injection. Representative M-mode of long-axis echocardiographic images for measurements of the IVSd (mm), LVPWd (mm), LVIDd (mm), and LVIDs
(mm) of Saline (A), DOXO (B), DAPA (C), and DOXO-DAPA (D) mice.
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cardiotoxicity (Figure 3). In line with the literature (4, 65), DOXO

induces tissue overexpression of p65/NF-kB. It is very interesting to

note that DAPA totally changed the renal and cardiac

inflammatory picture, strikingly reducing the expression of p65/

NF-kB, preserving the tissue microstructure of cardiomyocytes

and kidney (Figure 3). In more detail, from a histological point

of view, the administration of DOXO/DAPA did not show

morphological alterations detectable with hematoxylin and eosin

staining (Figure 3A). Cellular morphology remained essentially

unchanged in terms of nucleus/cytoplasm ratio and volume of

individual sarcomeres. The likely reason could be attributed to

the short duration of anthracycline administration; thus further

studies will be needed to assess any morphological changes upon

long-term administration (as specified in the Discussion section).

Instead, quantitative NF-kB staining indicates a high score (±3)

of nuclear NF-kB staining in myocardial tissue in the DOXO

group, indicating a pro-inflammatory effect induced by

anthracycline therapy (Figure 3B); notably, the DOXO-DAPA

group showed a significant reduction of nuclear NF-kB staining

score compared to the DOXO group with no high score (±3)

and only weak (±1) and moderate (±2) staining seen, confirming

DAPA-related myocardial anti-inflammatory properties in these

preclinical models (Figure 3B). A renal tissue analysis was

performed as an internal control, considering that SGLT2is have

mainly been used as antidiabetic drugs acting on the proximal

convoluted tubule of the kidney (expressing SGLT-2), where they

block the reabsorption of glucose and sodium, favoring the
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urinary excretion of glucose (7, 8), Subsequent studies have also

demonstrated the expression of SGLT2 in cardiac tissues,

broadening their clinical spectrum of action in the prevention of

cardiovascular diseases (33, 34).
3.5 DAPA attenuates systemic inflammation
induced by DOXO

DOXO induces systemic inflammation in cancer patients

(66, 67). We investigated the systemic anti-inflammatory effects

of DAPA during DOXO therapy. In line with literature, DOXO

increased serum Galectin-3, IL-1, and hs-CRP levels compared to

the Saline group. DAPA is able to reduce hs-CRP, IL-1, and

Galectin-3 significantly, indicating systemic anti-inflammatory

effects (Figure 4).
3.6 DAPA reduces troponin-T, BNP, and
NT-pro-BNP during DOXO therapy

In preclinical models, it has been observed that DOXO

treatment can lead to an increase in troponin and BNP,

Troponin-T, and NT-pro-BNP levels (68–70). In line with the

literature, short-term DOXO therapy increased the systemic

levels of cardiotoxicity biomarkers compared to saline

(Table 2). DAPA treatment did not significantly change the
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FIGURE 3

(A) Myocardial (up) and kidney (down) p65/NF-kB expression in mice treated with saline solution (saline), DAPA 10 mg/kg/day, DOXO 2.17 mg/kg/day.
or DAPA associated to DOXO (n= 6 for each group). Scale bar: 5 µm; (B) Absolute frequencies of NF-KB IHC nuclear intensity in myocardial and renal
tissues of mice treated with saline solution (Saline), DAPA 10 mg/kg/day, DOXO 2.17 mg/kg/day, or DAPA associated to DOXO. NF-kB IHC was
categorized as positive or negative, as well as an overall proportion of cells (10%) with positive nuclear staining in the studied field at ×100
magnification. IHC scoring was based on the nuclear staining intensity, as follows: score 0, no nuclear staining; score 1, weak staining; score 2,
moderate staining; score 3, strong staining.
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troponin and natriuretic peptide levels compared to saline,

confirming no cardiac adverse events. Interestingly, in the

DOXO-DAPA group, a significant reduction in Troponin-T

(0.21 ± 0.05 vs. 0.46 ± 0.06; p < 0.001); BNP (128.6 ± 16.4

vs. 182.3 ± 42.1; p < 0.001); and NT-pro-BNP (1,112.7 ± 68.3

vs. 1,432.3 ± 72.1; p < 0.001) was seen, showing the

cardioprotective properties of DAPA.
Frontiers in Cardiovascular Medicine 09
3.7 DAPA attenuates myocardial NLRP3 and
MyD-88 expression in DOXO-induced
cardiotoxicity

In recent years, there has been growing interest in

understanding the involvement of NLRP3 inflammasome and

MyD-88 activation in various pathological conditions, including
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FIGURE 4

DAPA reduced systemic levels of galectin-3 (ng/ml), hs-CRP (pg/ml), and IL-1 (pg/ml) during treatment with DOXO. Mice were treated with saline
solution (control), DOXO 2.17 mg/kg/day, DAPA 10 mg/kg/day, and DOXO-DAPA in association (n= 6 for each group). One-way ANOVA. Values
are expressed as mean ±SD. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.

TABLE 2 Biomarkers of cardiotoxicity, troponin-T (ng/ml), BNP (pg/ml), NT-pro-BNP (pg/ml) quantified after 10 days of treatment with saline solution
(control) DOXO 2.17 mg/kg/day, DAPA 10 mg/kg/day, and DOXO-DAPA in association (n = 6 for each group).

Biomarkers Saline DOXO p-value DAPA DOXO-DAPA p-value

Saline vs. DOXO DOXO vs. DOXO-DAPA
Troponin-T (ng/ml) 0.19 ± 0.03 0.46 ± 0.06 <0.001 0.16 ± 0.04 0.21 ± 0.05 <0.001

BNP (pg/ml) 124.6 ± 34 182.3 ± 42.1 0.024 113.4 ± 21.3 128.6 ± 16.4 0.015

NT-pro-BNP (pg/ml) 1,085.4 ± 62.1 1,432.3 ± 72.1 <0.001 1,012.5 ± 57.5 1,112.7 ± 68.3 <0.001

One-way ANOVA; Values are expressed as mean±SD. p-values are shown for differences between Saline and DOXO or DOXO and DOXO-DAP groups.
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cardiotoxicity induced by DOXO (71, 72). In line with the

literature, DOXO therapy increased the myocardial levels of

NLRP3 and MyD-88 compared to saline (Figure 5). A significant

reduction of NLRP3 and MyD-88 were seen in the DOXO-

DAPA group versus the DOXO group, demonstrating the anti-

inflammatory effects of DAPA during DOXO therapy.
3.8 DAPA reduces myocardial ferroptosis
and pro-inflammatory cytokines and
chemokines in mice exposed to
anthracyclines

Emerging evidence suggests that NLRP3 inflammasome

activation can induce or contribute to ferroptosis in preclinical

models through the induction of cytokines able to damage

mitochondria (73, 74). Lipid peroxidation products (MDA and

4-HNA) can serve as markers of ferroptosis (75, 76). During

ferroptosis, the peroxidation of polyunsaturated fatty acids

(PUFAs) in cellular membranes generates reactive lipid species,

such as MDA and 4-HNA (77). As shown in Figure 5,

myocardial levels of MDA and 4-HNA were strongly enhanced
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in the DOXO group compared to saline (p < 0.001). DAPA

significantly reduced lipid peroxidation without DOXO and

combined with DOXO, demonstrating the antioxidant and

preventive properties of ferroptosis in myocardial tissues.

Moreover, a pro-inflammatory cytokine profile was seen in the

DOXO group (Figure 5). Instead, DAPA totally reversed the

inflammatory picture induced by DOXO, reducing IL-1, IL6,

TNF-a, and IL-17 levels.
4 Discussion

Dapagliflozin is a SGLT2i primarily used for the management

of type 2 diabetes mellitus (78); however, its use has expanded to

the field of cardiology due to its cardiovascular benefits (79).

Dapagliflozin has shown efficacy in reducing the risk of

cardiovascular events and improving heart failure outcomes (80).

Here are some of the key uses of dapagliflozin in cardiology:

recent cardiovascular outcomes trials have demonstrated that

DAPA can reduce the risk of major adverse cardiovascular events

(MACE) in patients with established cardiovascular disease (81).

These events include heart attack, stroke, and cardiovascular-
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FIGURE 5

NLRP3 and MyD-88 expression (pg/mg of protein) in myocardial tissues of mice treated with saline solution (control), DOXO 2.17 mg/kg/day, DAPA
10 mg/kg/day, and DOXO-DAPA in association (n= 6 for each group). One-way ANOVA. Values are expressed as mean ±SD. ***p < 0.001; **p < 0.01;
*p < 0.05; ns, not significant.
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related death. Dapagliflozin has been shown to provide

cardiovascular protection in high-risk patients, including those

with a history of heart disease (82).

Moreover, DAPA is able to reduce heart failure hospitalizations

and improves outcomes in patients with heart failure, both with

reduced ejection fraction (HFrEF) and preserved ejection fraction

(HFpEF) through the reduction of fluid, thus improving cardiac

function (83). Notably, DAPA has also demonstrated benefits in

preserving kidney function and reducing the risk of kidney

disease progression in patients with or without diabetes (83, 84).

This can be particularly relevant in patients with cardiovascular

disease who may have concomitant renal toxicities. In brief,

DAPA helps lower blood glucose levels by inhibiting SGLT2,

which reduces glucose reabsorption in the kidneys and increases

urinary glucose excretion; therefore, by improving glycemic

control, it can have additional indirect benefits on cardiovascular

health (85, 86). While DAPA is primarily indicated for the

management of diabetes, some recent studies suggests that

SGLT2is may exerts anticancer effects and could potentially be

used as an adjunct therapy for certain types of tumors, including

breast and liver tumors (87). Briefly, one of the proposed

mechanisms of action for dapagliflozin in cancer is its ability to

reduce glucose availability to cancer cells; considering cancer cells

often exhibit increased glucose uptake compared to normal cells

(depending on the type and biology of tumors), the inhibition of

glucose reabsorption in the kidneys of DAPA could potentially

deprive cancer cells of a key energy source (88, 89). In addition,

DAPA induces euglycemic diabetic ketoacidosis (DKA), which
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has been shown to selectively inhibit the growth of some cancer

cells, such as triple negative breast cancer and hormone-

responsive breast cancer (90, 91). However, only cellular and

preclinical studies are available and further research is needed to

establish its clinical significance.

Anthracyclines are a class of chemotherapy drugs commonly

used in the treatment of various types of cancer, including breast

cancer, lymphoma, and leukemia (92). While anthracyclines have

shown effectiveness in fighting cancer, they exert significant dose-

related cardiotoxicity (93). Recent studies have examined the

potential benefits of using SGLT2is in patients who have received

anthracycline-based chemotherapy (94). These studies have shown

promising results regarding the cardiac outcomes of such patients.

A recent study investigated the effects of EMPA on cardiac

function in patients with breast cancer treated with

anthracyclines (95). The study found that EMPA improved LVEF

and reduced biomarkers of heart failure. In addition, EMPA is

able to reduce the incidence of heart failure and cardiovascular

death in these patients. Another recent study evaluated the

cardioprotective effects of DAPA in patients with breast cancer

receiving anthracycline-based chemotherapy (15, 96). Briefly, the

authors concluded that DAPA preserved LVEF and reduced

markers of cardiac injury compared to placebo. In that case,

DAPA was also associated with a lower risk of heart failure and

cardiovascular events.

These findings suggest that SGLT2is may have cardioprotective

effects in patients treated with anthracyclines. The actual known

mechanisms of SGLT2is related to cardioprotective agents
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FIGURE 6

Schematic representation of DAPA-related cytoprotective properties in cardiomyocytes. SGLT2i reduces both glucose and sodium intake leading to
intracellular hyponatremia in the cardiomyocyte. Lower Na+ levels leads to a reduced function of sodium-calcium exchanger, resulting in low levels of
intracellular calcium. Preserving excess intracellular calcium improves the mitochondrial functions of cardiomyocyte, optimizing ATP production.
Furthermore, DAPA has antioxidant effects, counteracting lipid peroxidation and the intracellular concentration of iROS, reducing ferroptosis and
the consequent release of cardiac troponins. Moreover, DAPA reduces the expression of MyD-88 and NLRP3 in the cardiomyocyte, counteracting
the synthesis of pro-inflammatory and cardiotoxic cytokines through NF-kB pathways.
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involve the reduction of oxidative stress and promotion of sodium

and water extraction, leading to reduced cardiac strain (97). From a

cellular point of view, in line with the literature, our results on

human cardiomyocytes demonstrated that SGLT2i DAPA exerts

its cytoprotective and anti-inflammatory properties through the

reduction of intracellular Ca++ levels, which are able to improve

mitochondrial function in cardiomyocytes (98); moreover, DAPA

is able to reduce iROS content and lipid peroxidation in cardiac

cells, thus preventing ferroptosis. DAPA also exerts anti-

inflammatory properties in cardiomyocytes through the reduction

of NLRP-3 and Myd-88 pathways, resulting in reduced NF-kB

levels and pro-inflammatory cytokines, such as IL-1β, IL-6, and

IL-8 (Figure 6) (99). Interestingly, very recent findings indicate

potential immune-regulating properties of SGLT2i, such as

canagliflozin or empagliflozin; in line with these studies, in

activated human peripheral blood mononuclear cells (hPBMC)

only, a significant reduction of IL-2 secretion was seen in DAPA-

exposed immune cells (Supplementary Figure S1), indicating

potential immune effects of SGLT2i. These properties should be

more detailed and could be of great interest in finding new

immune-modulating agents in autoimmune patients or for the

prevention and treatment of myocarditis, vasculitis, and

endothelitis induced by viruses or immune checkpoint inhibitors

(ICIs) in cancer patients (100).
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Moreover, in this study, for the first time, the different

beneficial effects of DAPA were analyzed in preclinical models of

anthracycline-induced cardiotoxicity. In line with other studies,

DAPA demonstrated both systemic and cardio-renal anti-

inflammatory effects. Recently, Gongora et al. (15) performed a

retrospective study to test the preventive properties of cardiac

dysfunctions and overall safety of SGLT2i in more than 3,000

cancer patients with T2DM treated with anthracyclines. The

primary cardiac outcome was a composite of cardiac events

[heart failure incidence, heart failure admissions, new

cardiomyopathy (>10% decline in ejection fraction to <53%) and

clinically significant arrhythmias]; the primary safety outcome

was overall mortality. There were 20 cardiac events over a

median follow-up period of 1.5 years. The incidence of cardiac

events was lower among case patients in comparison to control

participants (3% vs. 20%; p = 0.025). Patients treated with

SGLT2is patients also experienced lower overall mortality when

compared with control participants (9% vs. 43%; p < 0.001) and a

lower composite of sepsis and neutropenic fever (16% vs. 40%;

p = 0.013). This study demonstrated, for the first time, the

abilities of SGLT2i in the prevention of cardiac dysfunctions in

cancer patients with no relevant toxicities (15). Another more

recent observational study (96) concluded that dapagliflozin is

well-tolerated and associated with high compliance in patients
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FIGURE 7

MDA and 4-HNA (A,B) systemic levels, and systemic cytokines (C) in mice treated with saline solution (control), DOXO 2.17 mg/kg/day, DAPA 10 mg/
kg/day, and DOXO-DAPA in association (n= 6 for each group). One-way ANOVA. Values are expressed as mean ±SD.
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with advanced, inoperable pancreatic ductal adenocarcinoma,

significantly reducing some cancer-associated biomarkers (96).

Systemic inflammation, also known as systemic inflammatory

response syndrome (SIRS), can occur in cancer patients treated

with doxorubicin (101). Cancer patients treated with DOXO

experienced high levels of CRP, erythrocyte sedimentation rate,

IL-6, and IL-1β that may contribute to additional complications,

including organ dysfunction or failure (102, 103). DAPA

significantly reduced the biomarkers of inflammation and of

heart failure, including troponins and NT-pro-BNP, confirming

systemic anti-inflammatory and cardioprotective properties.

Myocardial analysis showed that DAPA reduced NLRP3 and

Myd-88 expression in heart tissue. NLRP3 inflammasome

and Myd-88 activation have been implicated in several diseases,

including cancer and cardiomyopathies (Figure 7). Both induce

cardiomyocyte death and exacerbate myocardial injury by
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promoting inflammation and fibrosis through IL-1β and IL-18,

which activates macrophages and immune cells in heart tissue (104).

Moreover, activation of NF-κB has been implicated in the

inflammatory response and development of cardiac injuries

(105); DOXO increases myocardial reactive oxygen species that

can activate NF-κB signaling. Once activated, NF-κB translocates

into the nucleus and promotes the expression of various

pro-inflammatory genes, including cytokines, chemokines, and

adhesion molecules involved in heart failure and fibrosis (106).

Overall, NF-κB activation plays a significant role in doxorubicin-

induced cardiotoxicity by mediating the inflammatory response

and modulating cell survival pathways (107). To the best of our

knowledge, this is the earliest evidence that DAPA is able to

suppress NF-Kb expression in myocardial and renal tissue

through IHC methods in preclinical models of DOXO

cardiotoxicity. The overall picture of the study (Figure 8)
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FIGURE 8

Schematic representation of DAPA-mediated cardioprotective and anti-inflammatory effect in preclinical models. Short-term DOXO therapy reduced
systolic cardiac function; increased systemic hs-CRP, IL-6, IL-1β, IL-17, and TNF-α levels; and increased myocardial and kidney NF-kB expression.
DAPA attenuated DOXO-induced phenotype through inhibition of NLRP-3 and Myd-88 pathway, resulting in preservation of cardiac function and
reduced systemic levels of hs-CRP, IL-6, IL-1β, IL-17, and TNF-α.
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summarizes the potential systemic and cardio-renal benefits of

DAPA in preclinical models of cardio-oncology.

The present study has some limitations. First, this is a

preliminary indication that DAPA could prevent cardiac

dysfunctions and decrease biomarkers of cardiotoxicity in

preclinical models of short-term-induced cardiomyopathies;

however, a detailed mechanistic study of DAPA-related

cardioprotection should be carried out, through the use of

selective inhibitors of intracellular pathways potentially involved

in beneficial properties of DAPA (i.e., through the use of NLRP-

3 and MyD-88 selective inhibitors). Second, DOXO-induced

cardiotoxicity also occurs many years after chemotherapy (108),

especially in young women with breast cancer. Therefore, the

long-term effects of DAPA in preclinical models exposed to

anthracyclines should be performed; however, acute, short-term,
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cardiac, and endothelial biochemical changes are frequently seen

in these patients and are clinically relevant. On the other hand,

we studied the early effects of DAPA on the myocardial

metabolism of preclinical models without assessing insulin levels,

homeostatic model assessment (HOMA)-index, and ketogenic

bodies (SGLT2is increase acetate and butyrate systemic levels that

could affect myocardial metabolism) (109). Moreover, this study

focalized the cardiovascular benefits only in female preclinical

models, in line with other similar studies in cardio-oncology (34,

37–39). Anthracycline-induced cardiotoxicity is frequently seen

in female breast cancer patients; therefore, a preclinical female

model to mimic the clinical condition that we frequently observe

in cardio-oncology was used, i.e., women with breast cancer

treated with anthracyclines who develop cardiomyopathies.

However, subsequent studies will be performed also in male
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mouse models to evaluate the impact of sex difference (110) in

DAPA cardioprotection.

Currently, there is a need for cardioprotective strategies in

cancer patients treated with doxorubicin, considering its relevant

cardiotoxicity (111). The cardiovascular benefits (e.g., HHF and

cardiovascular death) of SGLT2is are different and the

mechanisms are partially elucidated. Recent clinical evidence of

SGLT2is in cancer patients with T2DM indicate that gliflozins

could reduce cardiovascular mortality, MACE, and

hospitalization for heart failure. The data in the present study

recommend the use of DAPA in the primary prevention of

anthracycline-induced cardiotoxicities in cancer patients without

diabetes, consequently reducing the discontinuation of therapies,

hospitalizations for cardiovascular diseases, and the index of

relevant cardiotoxic events.

The present study highlights the mechanisms of DAPA-

mediated cardio-renal benefits in preclinical models of

anthracycline toxicity. We provide new insight into the

cardiovascular benefits of DAPA, as our data show that DAPA

induced an anti-inflammatory systemic phenotype during DOXO

therapy, reducing NF-kB expression in myocardial and kidney

tissue. The overall picture of the study encourages the use of

DAPA in non-diabetic cancer patients treated with anthracyclines

to prevent adverse cardiac events. Further studies are warranted

to investigate interconnected pathophysiological mechanisms of

DAPA-induced cardioprotection.
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