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Coronary microvascular disease (CMVD) is common in patients with cardiovascular
risk factors and is linked to an elevated risk of adverse cardiovascular events.
Although modern medicine has made significant strides in researching CMVD,
we still lack a comprehensive understanding of its pathophysiological
mechanisms due to its complex and somewhat cryptic etiology. This greatly
impedes the clinical diagnosis and treatment of CMVD. The primary pathological
mechanisms of CMVD are structural abnormalities and/or dysfunction of
coronary microvascular endothelial cells. The development of CMVD may also
involve a variety of inflammatory factors through the endothelial cell injury
pathway. This paper first reviews the correlation between the inflammatory
response and CMVD, then summarizes the possible mechanisms of
inflammatory response in CMVD, and finally categorizes the drugs used to treat
CMVD based on their effect on the inflammatory response. We hope that this
paper draws attention to CMVD and provides novel ideas for potential
therapeutic strategies based on the inflammatory response.
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1 Introduction

The coronary arterial system can be conceptually divided into three compartments with

progressively decreasing diameter and distinct physiology, including the epicardial coronary

arteries (0.5–5.0 mm in diameter), the pre-arterioles (0.1–0.5 mm in diameter) and

intramyocardial arterioles (<0.1 mm in diameter). The pre-arterioles and intramyocardial

arterioles together make up the coronary microcirculation. The pre-arterioles can sense

changes in coronary artery perfusion pressure and/or blood flow and regulate

microcirculatory pressure by vasodilatation and contraction. The intramyocardial arterioles

are the sites of myocardial metabolic exchange, and their blood flow is mainly affected by

metabolites (1). CMVD is a clinical syndrome of acute and chronic myocardial ischemia

caused by abnormalities in the structure and function of coronary arterioles, arterioles, and

capillaries induced by atherosclerotic and non-atherosclerotic pathogenic factors (2).

According to different etiologies, CMVD is classified as CMVD without obstructive
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coronary artery disease, CMVD with obstructive coronary artery

disease, and other types of CMVD (3). CMVD is a multifactorial

disease that is prevalent in cardiovascular diseases such as

obstructive coronary artery disease, myocardial infarction with no

obstructive coronary artery disease, ischemia with non-obstructive

coronary arteries, heart failure with preserved ejection fraction,

diabetic cardiomyopathy, dilated cardiomyopathy, and hypertrophic

cardiomyopathy, and it can affect the pathophysiological

mechanisms and prognosis of specific populations (4). Many

patients with clinical symptoms of myocardial ischemia show

normal or no significant stenosis on coronary angiography, and this

group of patients has a higher prevalence of CMVD, as well as a

significantly higher rate of mortality and adverse cardiovascular

events (5). A meta-analysis (6) that included 56 studies reported a

41% prevalence of CMVD in 14,427 patients with non-obstructive

coronary artery disease who met the inclusion criteria. In the setting

of non-obstructive coronary artery disease, impaired CFR is present

in up to 75% of patients with HFpEF and impaired CFR is a

characteristic of CMVD (7, 8).

CMVD is characterised by highmorbidity, low diagnostic rate and

poor prognosis (9–11). Relevant studies have shown (12) that the

prevalence of CMVD in the myocardial ischemia population is

about 40%–64%, but only about 6.3% of the population has received

timely diagnosis and treatment. Currently, assessment tools for

diagnosing CMVD are divided into invasive coronary microvascular

function testing methods and non-invasive coronary microvascular

function examination methods. Invasive testing methods include

coronary flow reserve (CFR), microvascular resistance reserve

(MRR), index of microcirculatory resistance (IMR), vascular

reactivity test, continuous thermodilution, and bolus thermodilution

(13–18). Non-invasive testing methods include positron emission

tomography (PET), cardiac magnetic resonance imaging (CMR),

and transthoracic doppler echocardiography (TTDE) (1). The main

drugs used in the treatment of CMVD include angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers,

β-blockers, calcium antagonists and calcium channel blockers, etc.

(19). Although there is some clinical efficacy, many patients are still

hospitalized and/or undergo coronary arteriography repeatedly due

to angina pectoris, which seriously affects the quality of life of

patients, and at present, specific targeted drugs related to CMVD are

still lacking. Therefore, it is of great clinical significance to further

deepen the research on CMVD and to understand the pathogenesis

of CMVD for the diagnosis and treatment of CMVD.

The pathogenesis of CMVD is complex and is associated with

hemodynamic changes, oxidative stress, Ca2+ overload, energy

metabolism, inflammatory response, platelet activation, and capillary

thinning (20, 21). Inflammation is considered to be one of the key

drivers of CMVD (22), which can affect the structure and function of

coronary microvessels and thus lead to the development of CMVD

(23–25). Basic and clinical studies have confirmed that inhibiting

the inflammatory response can improve CMVD and delay its

progression (26). Therefore, modulating the inflammatory response is

crucial for the prevention and treatment of CMVD. In this paper, we

systematically summarise the relationship between inflammatory

response and CMVD, the possible mechanism of action of

inflammatory response in CMVD, and the drugs for treating CMVD
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by inhibiting inflammatory response, with a view to providing new

ideas for clinically targeted anti-inflammatory treatment of CMVD.
2 Relationship between inflammatory
response and CMVD

2.1 Changes in inflammatory markers
in CMVD patients

Clinical studies have found a variety of inflammatory markers to

be closely associated with CMVD (27). Serum C-reactive protein

(CRP), as one of the recognized inflammatory markers, is often

used to evaluate the level of inflammation in the body, and

elevated CRP is also closely associated with impaired vascular

endothelial function in CMVD patients (28). Coronary flow

reserve (CFR) is an effective indicator of coronary microcirculation

and myocardial perfusion status, and it is generally accepted that

in the absence of obstructive stenosis of the epicardial coronary

arteries, a decrease in CFR can indirectly indicate the presence of

CMVD (25). By comparing the CFR of CMVD patients with

different levels of CRP to that of healthy individuals, Recio-

Mayoral et al. (29). found that patients with a low level of CRP

(≤3 mg/L) had a lower level of CRP (≤3 mg/L) than healthy

individuals. ≤3 mg/L) in CMVD patients did not differ

significantly from that of healthy individuals (P = 0.29), whereas

the CFR of CMVD patients with high CRP levels was significantly

lower than that of the group with low CRP levels (P = 0.005),

confirming the correlation between inflammation and CMVD and

the dose-dependent effect of CRP on CFR. In addition, Schroder

et al. (30) found 18 biomarkers associated with CFR by analyzing

biomarkers from CMVD patients, of which eight biomarkers

(chemokine C-C motif ligand 16 (CCL16), chemokine CXC ligand

16 (CXCL16), peptidoglycan recognition protein (PGLYRP1), TNF

receptor 1 (TNFR1), growth differentiation factor 15 (GDF15) and

TNF receptor superfamily 10C (TNFRSF10C)) are associated with

the pro-inflammatory pathway IL-1β/TNF-α/IL-6/CRP. In a study

conducted by Suhrs et al. (25), 17 inflammatory markers were

found to be negatively correlated with CFR in blood samples from

CMVD patients, further confirming the strong association between

inflammation and CMVD. In addition (31), a meta-analysis that

included 21 studies involving 7,403 patients showed that patients

with high-sensitivity C-reactive protein (hs-CRP), neutrophil-to-

lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR)

before undergoing PCI had a significantly higher incidence of

no-reflow or slow flow. Pre-coronary angiography CRP/hsCRP

independently predicted no-reflow and slow flow, suggesting that

high-risk patients with higher pre-procedure blood tests for

inflammation-related factors can be identified in advance to

prevent potential reperfusion injury as soon as possible. A study

using proteomic analysis of biomarkers of cardiovascular disease

also confirmed that the IL-1β/TNF-α/IL-6/CRP pro-inflammatory

pathway was significantly associated with women suffering from

angina pectoris combined with CMVD (30). In conclusion, the

inflammatory response is closely related to the development of

CMVD, and this finding suggests that advanced prediction and
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intervention of related inflammatory factors is important clinical

guidance for the prevention and treatment of CMVD.
2.2 Changes in inflammatory response in
animal models of CMVD

In terms of basic research, By modulating inflammation-related

pathways to attenuate the inflammatory response, increase

coronary microvessel density and reduce microthrombosis,

CMVD progression was delayed. By establishing a MIRI mouse

model, Koya found that von Willebrand factor (VWF)-mediated

platelet adhesion to the microvascular endothelium aggravated

the inflammatory response, resulting in impaired microvascular

reflux (32). Li et al. (33) found that ICAM1, an adhesion

molecule that recruits inflammatory cells from myocardial

tissues, was increased in animal models of CMVD and that the

expression of pro-inflammatory factors IL-6 and monocyte

chemotactic protein 1 (MCP-1) was elevated in cardiac myocytes.

Another study found that increased release of inflammatory

factors leads to impaired vascular endothelial barrier function

after coronary artery occlusion (34, 35). Qin et al. (36) found

that the expression of inflammation-related factors TNF-α and

IL-1β was increased in an in vitro and in vivo model of CMVD.

In conclusion, inflammatory response plays an important role in

the pathogenesis of CMVD.
3 Mechanisms of CMVD induced by
inflammatory response

The mechanisms by which the inflammatory response causes

CMVD are multifaceted and interrelated. Firstly, activation of

cell adhesion molecules causes inflammatory infiltration. Second,

leukocyte infiltration activates the inflammatory response. In

addition, inflammatory cytokines mediate CMVD development.

Inflammatory response plays an important role in CMVD, and

understanding and intervening in the inflammatory response is

important for the prevention and treatment of CMVD (Figure 1).
3.1 Activation of cell adhesion molecules
causes inflammatory infiltration

In CMVD, activation and adhesion of inflammatory cells to

damaged tissues are key steps in inflammatory infiltration, and cell

adhesion molecules play an important role in this process. Cell

adhesion molecules are present on the surface of cells, and they

can interact with adhesion molecules in other cells or tissues to

promote cell adhesion, migration, and infiltration. Damage to

cardiac tissues after CMVD generates a large number of

pro-inflammatory mediators and cytokines (37, 38), which cause

the activation of cell adhesion molecules, including platelet-

endothelial cell adhesion molecule (P-selectin), intercellular

adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1

(VCAM-1), among others. These activated adhesion molecules act
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reaction between leukocytes and endothelial cells, which becomes

the initial link of inflammatory infiltration. CMVD is one of the

common complications of myocardial ischemia-reperfusion injury

(MIRI). Early in MIRI, the selectin family mediates the initial

adhesion of leukocytes to endothelial cells, and integrins expressed

by activated neutrophils (PMN) enhance the adhesion between the

two, causing the initial adhesion to become a tight adhesion.

PMNs are further activated and infiltrated into ischemic cardiac

tissues through the endothelial cell gap induced by chemokines.

Once PMN infiltrates into the tissue, inflammatory cells release

inflammatory mediators (37, 38), which further exacerbate the

inflammatory response and vascular endothelial damage. In dogs,

ICAM-1 expression increased progressively after MIRI and was

accompanied by PMN infiltration of the damaged myocardium

(34). Li et al. (39) found that the expression of adhesion

molecules, such as VCAM-1 and ICAM-1, could be inhibited by

overexpression of histidine triplex-conjugated nucleotide binding 2

(HINT2), which enhances the endothelial barrier function of the

damaged myocardium and prevents inflammatory responses.

Targeted inhibition of cell adhesion factor expression reduces

leukocyte-endothelial cell interactions, stimulates potent

anti-inflammatory effects, and attenuates vascular inflammatory

responses (40). Thus, activation of cell adhesion molecules is a key

link in causing inflammatory infiltration, leading to the

development of CMVD.
3.2 Leukocyte infiltration activates
inflammatory response, causing coronary
endothelial cell dysfunction

The effect of the inflammatory response on CMVD is mainly

characterized by the recruitment and activation of immune cells

at the site of injury (41), especially monocytes and PMN

infiltration. Monocytes cross the vessel wall into the tissue after

interacting with endothelial cells at the site of injury. After

entering the tissue, monocytes transform into macrophages,

release inflammatory mediators such as cytokines and

chemokines, and activate the inflammatory response. PMN is an

important component of the body’s immune system. Under

normal conditions, vascular endothelial cells and PMN flowing

in the bloodstream repel each other to ensure microvascular

perfusion. After MIRI, intracellular calcium overload and high

production of oxygen free radicals lead to the degradation of cell

membrane phospholipids and an increase in arachidonic acid

metabolites, attracting a large number of PMN to adhere to

the vascular endothelial cells and enter into the tissues. The

endogenous molecules released by these cells are known as the

damage-associated molecular pattern (DAMP) (42); DAMP

triggers an intercellular signaling cascade response through

activation of pattern recognition receptors (PRRs), leading to the

expression of pro-inflammatory cytokines and chemokines,

exacerbating leukocyte infiltration and endothelial cell damage,

leading to coronary endothelial cell dysfunction (43). In addition,

another clinical study found that elevated PMN on admission in
frontiersin.org
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FIGURE 1

The pathogenic mechanisms for CMVD. (Illustrations by Figdraw).
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patients with anterior wall acute myocardial infarction was

associated with microvascular injury and a higher rate of long-

term adverse events (44). It was observed through experimental

modelling that PMN aggregation, coagulation cascade and

reactive oxygen radical accumulation caused by coronary

microvascular constriction and endothelial dysfunction can

exacerbate disturbances in microvascular integrity (45). This

further confirms that leukocyte activation is closely related to the

pathogenesis of CMVD.
3.3 Inflammatory cytokines mediate CMVD
development

Inflammatory cytokines are important mediators involved in

the body’s inflammatory response and the pathophysiological

process of CMVD (46), and are mainly produced by vascular

endothelial cells, monocyte-macrophages and vascular smooth

muscle cells. Vascular endothelial cells are not only the target

cells for the action of many cytokines, but also express and
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produce a variety of cytokines, such as TNF-α and IL-1β, upon

stimulation. These cytokines affect lipid uptake and metabolism

by promoting the proliferation of vascular endothelial cells and

smooth muscle cells, leading to the formation of atherosclerosis

and the production of large amounts of IL-6 and IL-8 involved

in the stress response. The repeated proliferation of vascular

endothelial cells and smooth muscle cells and the recurrent

inflammatory response in this process leads to further increases

in inflammatory cytokines such as TNF-α, IL-6, and IL-8, which

in turn cause cellular necrosis, thrombosis, and neointima

formation (47). He et al. (35) summarised that the massive

production of inflammatory cytokines induces a certain degree of

the cytokine storm. Inflammatory response leads to the

continuous accumulation and enhancement of cytokine storm in

the heart, damaged cardiomyocytes and endothelial cells release

large amounts of TNF-α, which in turn promotes the increase of

IL-6, and the two coordinate to promote the onset of the

immune response, and the associated antibodies are produced in

large quantities and deposited in the endothelium of the vessels

in the form of immune complexes to form thrombi. If excessive
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inflammatory cytokines accumulate in the heart, it can lead to a

large-scale inflammatory cascade, resulting in cardiac

insufficiency and seriously affecting the prognosis (33). The

inflammatory cytokine interleukin (IL)-6 is an important

mediator of the inflammatory process in coronary artery disease,

and may also contribute to the I/R injury in MI. Levels of IL-6

increase substantially after MI and are associated with poor

short-term outcomes. In a randomized, double-blind, placebo-

controlled trial, the ASSAIL-MI trial (27), patients with ST-

segment elevation myocardial infarction (STEMI) who had their

inflammatory response attenuated by tocilizumab, a potent agent

that blocks IL-6 signaling, experienced a greater than 50%

reduction in CRP levels, a lesser extent of microvascular

obstruction, and a reduction in the extent of I/R injury. In

summary, inflammatory cytokines play an important role in the

development of CMVD due to their functions of mediating,

regulating, and participating in inflammatory and immune

responses. Controlling the production and action of

inflammatory cytokines may become a new strategy for the

treatment of CMVD.
4 Delaying the development of CMVD
by modulating the inflammatory
response

Modulation of the inflammatory response can attenuate vascular

endothelial injury and delay the development of CMVD.

Summarising and exploring intervention methods based on

suppressing the inflammatory response may provide new strategies

for the treatment of CMVD. Current methods of modulating the

inflammatory response mainly include anti-atherosclerotic drugs,

anti-myocardial ischemia and angina drugs and natural medicine.
4.1 Drug interventions

4.1.1 Anti-atherosclerotic drugs
CMVD can present as diverse phenotypes in relation to

atherosclerosis (AS). CMVD can occur without atherosclerosis,

with non-obstructive atherosclerosis and with obstructive

atherosclerosis (48). Understanding the mechanisms involved in

microvascular impairment prior, during and after AS is important

for risk assessment and choice of treatment. Most of the clinical

CVD risk factors in CMVD patients are closely related to AS (49),

e.g., the traditional risk factors for AS, smoking, hypertension,

hyperlipidemia, and diabetes mellitus, may promote the

development of CMVD. Primary prevention of AS by controlling

risk factors may help to alleviate CMVD and angina symptoms. In

obstructive atherosclerosis, plaque rupture and erosion occurs

spontaneously or during percutaneous coronary intervention (PCI)

after myocardial infarction. At some residual blood flow, the

atherothrombotic debris is washed into the coronary

microcirculation, causing physical obstruction, vasoconstriction,

inflammation and microvascular dysfunction (50). Statins,

antiplatelet agents, angiotensin-converting enzyme inhibitors
Frontiers in Cardiovascular Medicine 05
(ACEIs) or receptor blockers (ARBs) are anti-atherosclerotic drugs

(51). The anti-inflammatory effects of statins have been confirmed

in experimental and clinical settings, and their inhibition of

inflammatory responses not only plays a positive role in

atherosclerosis, but also affects the expression of cytokines, such as

TNF-α, IL-1, and IL-6, by reducing the adhesion and activation of

inflammatory cells, and then repairing the endothelial damage of

coronary microvessels, effectively improving myocardial ischemia

and CMVD (52, 53). Aspirin is a widely used antiplatelet drug

in clinical practice, and it also has anti-inflammatory effects.

Aspirin reduces the expression of several inflammatory markers in

cardiovascular disease (CVD), such as hs-CRP, IL-6, MCP-1,

M-CSF, and TNF-α (54). In addition, aspirin inhibits the

activation of NLRP3 inflammasome in a dose-dependent manner,

restores endothelial barrier and permeability, and improves

microvascular endothelial dysfunction (55).

4.1.2 Anti-myocardial ischemia and angina drugs
Traditional antimyocardial ischemia and angina drugs, including

beta-blockers, nitrates, calcium channel blockers (CCBs), nicorandil,

ivabradine, ranolazine, and others. Among them, metoprolol is a

commonly used β-blocker, which improves cardiac impairment in

CMVD and reduces myocardial infarct size to improve

microcirculation.In basic research (56), metoprolol has been found

to have anti-inflammatory effects, inhibiting the expression of

inflammatory cytokines such as IL-1β, IL-6 and tumor necrosis

factor-α (TNF-α), inhibiting neutrophil migration and penetration,

thereby alleviating MIRI (57). Diltiazem is a representative drug of

CCBs, which plays a significant role in inhibiting inflammatory

response in MIRI, and is often used as an active control drug in

basic research on MIRI and inflammatory response (58).

Nicorandil can attenuate the inflammatory response after PCI in

patients with coronary heart disease (59), significantly reduce hs-

CRP levels, and treat CMVD by inhibiting the expression of

inflammatory factors. Ivabradine weakens the gene expression of

inflammatory mediators, specifically TNFα, IL-7, IL-84β, and

multiple inflammatory cell nuclei, in an animal model of

ventricular remodeling. Furthermore, it provides a safeguard

against ventricular remodeling and adverse cardiovascular events

that arise after CMVD by limiting inflammatory responses (3).

Ranolazine is a well-described antianginal drug, its main

pharmacological effects include inhibition of Na+, reduction of

adhesion molecules, and pro-inflammatory cytokine expression,

which reduces the adhesion of leukocyte activation to endothelial

cells (60). In a randomized, double-blind, placebo-controlled,

crossover, mechanistic trial (61), Merz et al. found that late

sodium current inhibition with ranolazine may beneficially

improve angina and myocardial perfusion reserve index in

CMVD population with more severe CMVD.

4.1.3 Natural medicine
Studies have shown that natural drugs can regulate CMVD in

different ways, among which inflammation is an important

intervention. Gastrodian is a natural medicine that has been used

in traditional Chinese medicine for centuries to treat

cardiovascular and cerebrovascular diseases, and gastrodin is its
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effective monomeric component. Sun et al. found that gastrodin can

reduce inflammatory cell infiltration and inprove CMVD by

inhibiting the NLRP3/caspase-1 signaling pathway (62).

Ligustrazine, also known as Tetramethylpyrazine, is an alkaloid

monomer first extracted from Chuanxiong Rhizoma (Ligusticum

chuanxiong Hort.), a Chinese herb for activating circulation and

removing stasis. Gao et al. found that ligustrazine exerts anti-

inflammatory effects to prevent CMD via suppressing miR-34a-5p

and promoting Sirt1 (63). Salvia miltiorrhiza is the most commonly

used natural drug in clinical treatment of CMVD. It has significant

anti-inflammatory effects. It can increase coronary blood flow,

improve microcirculation and protect vascular endothelial function

by inhibiting inflammation (64). Xu et al. (65) reported that the

protective effect of baicalein on the heart is realized through its

anti-inflammatory effect. Astragaloside IV (AS-IV) is one of the

main components of the aqueous extract of Radix Astragali. Zheng

et al. (66), through a meta-analysis, summarized that AS-IV

alleviates the microvascular damage of MIRI by reducing NF-ĸB
and TNF-α inhibiting inflammation. Many studies have confirmed

that AS-IV has a significant protective effect on the heart (67–69),

and the mechanism of its treatment of CMVD may be closely

related to its anti-inflammatory effect.
5 Summary and prospect

Inflammation plays an important role in the occurrence and

development of CMVD. Endothelial cell damage and

inflammatory reaction interact with each other, resulting in

inflammatory infiltration and injury of heart tissue. Therefore,

understanding the correlation between inflammation and CMVD

can provide a new direction for the prevention and treatment of

CMVD. Current studies have shown that improving the

treatment of CMVD by inhibiting inflammatory response may be

an effective strategy. Targeted therapy for inflammatory

mediators and cell adhesion molecules has shown certain

efficacy. Further research and exploration is required to

determine the relationship between inflammation and CMVD.

Conducting more basic and clinical research related to CMVD

can offer additional evidence-based support and guidance for its

diagnosis and treatment. Simultaneously, an inflammation-

inhibiting CMVD diagnosis and treatment system can provide

the basis for personalized treatment. In conclusion, researching

the relationship between CMVD and inflammation to find new

therapeutic targets and develop drugs can enhance the prognosis

and quality of life for affected patients.
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Glossary
ACEIs Angiotensin-converting enzyme inhibitors

ARBs Angiotensin receptor blockers

AS-IV Astragaloside IV

AS Atherosclerosis

CCBs Calcium channel blockers

CCL16 Chemokine C-C motif ligand 16

CFR Coronary Flow Reserve

CMR Cardiac magnetic resonance imaging

CMVD Coronary microvascular disease

CRP C-reactive protein

CVD Cardiovascular disease

CXCL16 Chemokine CXC ligand 16

DAMP Damage-associated molecular patterns

GDF15 Growth differentiation factor 15

HFpEF Heart failure with preserved ejection fraction

HINT2 Histidine triplex-conjugated nucleotide binding 2

hsCRP High-sensitivity C-reactive protein

ICAM-1 Intercellular adhesion molecule-1

IL-1β Interleukin- 1β

IL-6 Interleukin- 6

IMR Index of microcirculatory resistance

MCP-1 Mononuclear chemotactic protein 1

(continued)

Continued

M-CSF Macrophage colony-stimulating factor

MIRI Myocardial ischemia reperfusion injury

MRR Microvascular resistance reserve

NF-ĸB Nuclear factor kappa-B

NLR Neutrophil-to-lymphocyte ratio

NLRP3 NOD-like receptor thermal protein domain associated protein 3

PCI Percutaneous coronary intervention

PET Positron emission tomography

PGLYRP1 Peptidoglycan recognizing protein

PLR Platelet-to-lymphocyte ratio

PMN Neutrophils

PRRs Pattern recognition receptors

P-selectin Platelet-endothelial cell adhesion molecule

STEMI ST-segment elevation myocardial infarction

TNF-α Tumor necrosis factor-α

TNFR1 TNF receptor 1

TNFRSF10C TNF receptor superfamily 10C

TTDE Transthoracic doppler echocardiography

VCAM-1 Vascular adhesion molecule-1

vWF von Willebrand Factor
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