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A cost-sensitive deep neural
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for the mortality in acute
myocardial infarction patients
with hypertension on
imbalanced data
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Background and objectives: Hypertension is one of the most serious risk factors
and the leading cause of mortality in patients with cardiovascular diseases (CVDs).
It is necessary to accurately predict the mortality of patients suffering from CVDs
with hypertension. Therefore, this paper proposes a novel cost-sensitive deep
neural network (CSDNN)-based mortality prediction model for out-of-hospital
acute myocardial infarction (AMI) patients with hypertension on imbalanced data.
Methods: The synopsis of our research is as follows. First, the experimental data
is extracted from the Korea Acute Myocardial Infarction Registry-National
Institutes of Health (KAMIR-NIH) and preprocessed with several approaches.
Then the imbalanced experimental dataset is divided into training data (80%)
and test data (20%). After that, we design the proposed CSDNN-based
mortality prediction model, which can solve the skewed class distribution
between the majority and minority classes in the training data. The threshold
moving technique is also employed to enhance the performance of the
proposed model. Finally, we evaluate the performance of the proposed model
using the test data and compare it with other commonly used machine
learning (ML) and data sampling-based ensemble models. Moreover, the
hyperparameters of all models are optimized through random search
strategies with a 5-fold cross-validation approach.
Results and discussion: In the result, the proposed CSDNN model with the
threshold moving technique yielded the best results on imbalanced data.
Additionally, our proposed model outperformed the best ML model and the
classic data sampling-based ensemble model with an AUC of 2.58% and 2.55%
improvement, respectively. It aids in decision-making and offers a precise
mortality prediction for AMI patients with hypertension.

KEYWORDS

acute myocardial infarction, mortality prediction, hypertension, deep learning, cost-

sensitive learning, threshold moving

1 Introduction

Cardiovascular diseases (CVDs) are the main type of noncommunicable diseases (NCDs)

and account for most NCD deaths (1). It caused approximately 17.9 million deaths in 2019,

more than one-third of deaths worldwide (2). Hypertension is one of the primary NCD risk

factors and also one of the most critical risk factors for CVDs, also known as high blood
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pressure (3, 4, 7). It is known as a “silent killer” because the signs and

symptoms usually do not occur until hypertension has reached the

severe stage (5). In 2015, approximately 1 in 4 males and 1 in 5

females worldwide suffered from hypertension (6). Furthermore,

high systolic and diastolic blood pressure is widely known to

increase the mortality risk of CVD patients (8, 9). Hence, this

paper targets the mortality prediction of AMI patients with

hypertension, since many existing research does not mainly focus

on CVD patients with hypertension. Regarding disease risk

prediction and clinical prognosis for cardiovascular diseases

(CVDs) and hypertension, there are generally two main categories

of approaches: traditional regression-based and machine learning

(ML)-based methods. Conventional regression-based methods, such

as the Global Registry of Acute Coronary Events (GRACE) (10),

Systematic Coronary Risk Evaluation (SCORE) (11), Thrombolysis

in Myocardial Infarction (TIMI) (12), and Framingham Risk Scores

(FRS) (13), etc. have been developed for the prediction of CVDs,

whereas Cox proportional-hazards regression, Weibull regression,

etc. have been used for the hypertension prediction a long time

ago (14). However, the conventional regression-based models

consider few risk factors and cannot deal with the missing values

efficiently, which leads to a lower performance for the mortality

prediction of CVD patients. In addition, several ML-based models

using support vector machine (SVM), logistic regression (LR),

decision tree (DT), random forest (RF), adaptive boosting

(AdaBoost), extreme gradient boosting (XGBoost), etc. were also

developed for the prediction of CVDs and hypertension, which is

better than the traditional regression-based models generally

(15–18). Deep learning (DL), one of the stated methods in ML, has

advanced significantly in the previous ten years due to its powerful

computational capacity (19). It has been used in various domains

successfully including healthcare, such as cancer diagnosis (20),

heart disease prediction (21, 22), drug response prediction (23),

medical image analysis (24–26), etc. In DL techniques, the deep

neural network (DNN) is a type of artificial neural network (ANN)

that includes multiple hidden layers for the detection of more

complex non-linear relationships between the input and output

(27). It has shown a strong ability over general ML-based methods

in different research. Hence, the DL-based approach is a better

choice for predicting the seriousness and mortality in CVD

patients with hypertension.

The class imbalance, defined as the skewed class distribution

between the majority and minority classes, is also a common issue

in the datasets from different domains, especially in medical

datasets in which the majority class is the healthy person and the

minority class is the patients. Most of the classifiers get biased

results for the majority class when analyzing imbalanced data and

ignore the minority class data in the highly imbalanced case.

Several approaches such as data-level and algorithm-level methods

can be applied to address this problem (28). In data-level

techniques, various data oversampling and undersampling

methods are applied to reduce imbalance levels (18, 29). However,

data sampling techniques have some potential limitations. First, it

may increase computation costs with unnecessary instances and

obscure some potentially valuable data. Second, the data sampling

method has the serious limitation of biased selection, which leads
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to incorrect conclusions. Third, the distribution of various classes

is also affected by both undersampling and oversampling (30). In

the algorithm-level technique, the cost or weight schema is used to

mitigate the bias towards the majority class in the underlying

classifiers or its output, which is famous as cost-sensitive learning

(31). Compared with data-level techniques, this technique does not

require the alteration of the original data distribution as the

modified algorithms consider the uneven distribution of classes

while training, which results in more accurate performance than

data sampling techniques (32). In addition, a simple and

straightforward method named threshold-moving has also shown

effective results for the class imbalance problem, which moves the

decision threshold in the output to make the high-cost samples

harder to misclassify (33, 34).

Therefore, this paper proposes a cost-sensitive deep neural

network (CSDNN)-based prediction model to forecast the mortality

in out-of-hospital AMI patients with hypertension while using the

threshold moving technique to improve the performance on

imbalanced tabular data. Our research contributions can be

outlined as follows: First, a DL method is proposed with a cost-

sensitive learning technique to generate an accurate model for the

mortality prediction of AMI patients with hypertension. Second, the

proposed method with the threshold moving technique shows the

efficiency of handling the imbalanced data problem. Third, several

classic data sampling-based ensemble models such as balanced

bagging (35), balanced RF (36), EasyEnsemble (37), and RUSBoost

(38) classifiers which have shown good performance on imbalanced

data are utilized to evaluate the performance and robustness of the

proposed CSDNN-based mortality prediction model. Finally, the

wrapper-based feature selection method, which combines Recursive

Feature Elimination (RFE) with a cross-validation strategy for

optimal feature selection to speed up all models, has demonstrated

performance improvement in the proposed and other models.

The rest of the paper is organized as follows: Section 2 provides

an overview of the related work on ML-based disease prediction

and the solution of imbalanced medical data. Section 3

introduces the experimental dataset and methods applied in this

paper. Section 4 presents the experimental results and discussion.

Finally, Section 5 concludes the overall research.
2 Related work

2.1 Machine learning-based disease
prediction

ML techniques have been used to predict various diseases

popularly. For example, Sherazi et al. (15) developed the ML-based

1-year mortality prognosis model for 8,227 Korean CVD patients,

which showed that the applied ML algorithm improved the

performance by 8% over the traditional GRACE model. Chang

et al. (16) proposed ML-based prediction models for outcomes of

hypertension patients using four classifiers such as DT, SVM, RF,

and XGBoost, where their results showed that the XGBoost

achieved the best prediction performance. Weng et al. (17)

compared ML-based algorithms such as RF, LR, etc. with an
frontiersin.org
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established American Heart Association/American College of

Cardiology (ACC/AHA) algorithm for the risk prediction of CVD

in large-size data with 378,256 patients. The results exhibited that

all ML algorithms improved the prediction performance than the

baseline ACC/AHA algorithm. In addition, DL techniques have

been also widely used in the medical field. Ali et al. (21) proposed

an automatic diagnostic system for heart disease prediction based

on the DNN. They demonstrated that the proposed method

achieved a prediction accuracy of 93.33% and outperformed many

other state-of-the-art ML-based methods such as SVM, RF,

AdaBoost, etc. Das et al. (22) applied several ML and DL

algorithms to detect heart disease using LR, DT, SVM, ANN, etc.

In their result, the ANN achieved the best accuracy and was

superior to other ML-based approaches.
2.2 Solution of imbalanced medical data

Class imbalance often occurs in medical data, where the number

of healthy individuals is greater than the number of patients. Various

techniques can be used to solve this problem. The first method is the

data-level technique. For instance, Zheng et al. (18) applied three

types of data oversampling, undersampling, and hybrid sampling

techniques to handle the class imbalance problem in patients with

CVDs. Their results demonstrated that the proposed ML-based

model using the hybrid data sampling method improved

the accuracy of the final prediction results. Wang et al. (29) used

an adaptive synthetic sampling approach (ADASYN) data

oversampling technique to reduce the influence of class imbalance

and then designed the RF classifier to predict diabetes. As a result,

the method they proposed proved to be effective and superior.

Secondly, the technique can also be used at the algorithm level.

Mienye et al. (30) implemented various cost-sensitive learning

algorithms such as DT, RF, LR, and XGBoost for four medical

datasets. Their results showed the effectiveness of cost-sensitive

learning in predicting imbalanced medical datasets. Qi et al. (31)

proposed a hybrid cost-sensitive ensemble method based on three

public datasets from the UCI machine learning repository for

heart disease prediction. The results demonstrated that the

proposed method could improve the efficiency of diagnosis and

reduce the misclassification cost using the cost-sensitive learning

strategy. Third, the simple threshold moving method can be

applied. Mulugeta et al. (32) used several ML algorithms such as

LR, Naïve Bayes, ANN, RF, etc., with the threshold moving

technique to predict the risk of graft failure on imbalanced kidney

transplant recipients data. The results showed that the data-driven

threshold moving technique improved the prediction result from

imbalanced data compared to the natural threshold of 0.5.
3 Materials and methods

3.1 Experimental framework

The experimental framework for mortality prediction in AMI

patients with hypertension is shown in Figure 1, which mainly
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includes three parts: data extraction and preprocessing, predictive

model generation, and model evaluation. The mortality of AMI

patients is defined as cardiac death and non-cardiac death which

is the target feature of this paper. In the first part, we extract the

experimental data from the Korean Acute Myocardial Infarction

Registry-National Institutes of Health (KAMIR-NIH) dataset (39)

and preprocess the data, such as handling the missing values and

irrelevant features, normalizing the data, and then splitting the

data into training (80%) and test data (20%). In the second part,

the proposed CSDNN-based mortality prediction model and

several compared models are developed using the training data.

Moreover, the hyperparameters are also optimized for each

model to get high performance. In the end, the test data is used

to evaluate the performance of the proposed model for the

mortality prediction of AMI patients with hypertension and also

compared with other prediction models.
3.2 Data extraction and data preprocessing

KAMIR is the first nationwide, prospective, multicenter registry

specially designed to assess patients with AMI (40) in South Korea

which is registered with 52 different Korean university hospitals

and communities. The experiment in this paper is based on the

KAMIR-NIH dataset, which includes 13,104 AMI patients’ records

and 550 features with 2-year follow-ups from November 2011 to

December 2019 (39). First, the experimental data is extracted from

the original dataset for the target, where the total record of 5,602

out-of-hospital AMI patients with hypertension is extracted from

the original 13,104 records and excluded the AMI patients’ records

died at the hospital (Excluded N = 504), failed to follow up for 2

years (Excluded N = 1,411), and without hypertension (Excluded

N = 5,587). A total of 64 features are extracted from the KAMIR-

NIH dataset, where 1 feature is used as the target variable and the

other 63 features are used as the independent variables. The

extracted data includes the demographic characteristics, clinical

findings, medical history, and laboratory findings which refer to

different studies (15, 18, 41, 42), as shown in Table 1. The

experimental dataset has a strong representativeness of out-of-

hospital AMI patients with hypertension and can be used to

design our proposed prediction model for the target.

There are several missing values (e.g., heart rate, systolic blood

pressure, diastolic blood pressure, white blood cells, etc.) in the

dataset. Therefore, different approaches are used to preprocess

the dataset before designing the prediction model, which mainly

includes three parts: missing value imputation, feature selection,

and data normalization.

3.2.1 Missing value imputation
The collected dataset often contains several missing values,

especially in the medical dataset. Firstly, we removed the features

with more than 50% missing values in the dataset since those

features may have a bad influence on the developed prediction

models. Different types of methods have been used to handle the

missing values which can be divided into two groups: statistical

and ML-based techniques. Statistical techniques like mean and
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FIGURE 1

The experimental framework for the prediction of mortality in AMI patients with hypertension.
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mode approaches are the simplest methods to impute the missing

values in the data. The mean approach fills the missing values by

the average value and the mode approach by the value that

appears most often in the feature. The KNN is a representative

supervised learning technique that is the most popular used ML

method to impute the missing values based on the k nearest

observed values (44). It has been shown that this imputation

method is efficient in many types of research (45–47), and also

includes tabular data (46). In this paper, the KNN-based
TABLE 1 The applied features from the KAMIR-NIH dataset.

Type
Categorical (31) Gender, Chest Pain, Dyspnea, Previous Chest Pain, Killip Class, ECG

Dyslipidemia, Previous MI, Previous Angina Pectoris, Previous Heart
Heart Disease, Family History of Early Age Ischemic Heart Disease, M
TIMI Flow of Target Vessel, Initial Diagnosis of STEMI & NSTEMI, U
Hospital, Final Diagnosis of STEMI & NSTEMI, Discharge Type of P

Continuous
(43)

Age, SBP, DBP, Heart Rate, Height, Weight, Abdominal Circumferen
Creatinine, Maximum Creatine Kinase Peek, Maximum Creatine Kina
NTproBNP, BNP, HbA1c, ARU, PRU, LVEF, RWMI, Discharge SBP,

*ECG, denotes electrocardiogram; MI, myocardial infarction; TIMI, thrombolysis in m

elevation myocardial infarction; CAG, coronary angiogram; SBP, systolic blood pres

lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; hs-CRP, C-reactive

B-type natriuretic peptide; HbA1c, glycated hemoglobin; ARU, aspirin reactivity un

regional wall motion index.

Frontiers in Cardiovascular Medicine 04
imputation method is used to handle the missing values that use

the k closest samples to determine the estimated missing value in

the dataset, and k is set to 5.

3.2.2 Wrapper-based feature selection
The feature selection method is used popularly in the

medical field, and can be used for dimensionality reduction

and the development of more efficient prediction models

(48–50). In this paper, the RFE wrapper-based feature
Features
Use at Admission, ST-change on ECG, Past Medical Diagnoses, Diabetes Mellitus,
Failure, Previous Cerebrovascular Disease, History of Smoking, Family History of
I Symptoms, MI ECG Change, MI Imaging, Pre-TIMI Flow of Target Vessel, Post-
se of Thrombolysis, Thrombolysis Outcome, Use of CAG, CAG Result, ECG Use in
atient, Mortality in 24 Month

ce, WBC, WBC Neutrophil, WBC Lymphocyte, Hemoglobin, Platelet, Glucose,
se MB, Troponin I, Troponin T, Total Cholesterol, Triglyceride, HDL, LDL, hs-CRP,
Discharge DBP, Discharge Heart Rate

yocardial infarction; STEMI, ST-elevation myocardial infarction; NSTEMI, Non-ST

sure; DBP, diastolic blood pressure; WBC, white blood cells; HDL, high-density

protein; NTproBNP, N-terminal prohormone of brain natriuretic peptide; BNP,

its; PRU, platelet reactivity units; LVEF, left ventricular ejection fraction; RWMI,
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selection method is used with a 5-fold cross-validation approach

to select the most important features for our target. Moreover,

the number of selected features can be decided by the

algorithm automatically in the wrapper-based feature selection

method, where the RF algorithm is used as an estimator in the

RFE wrapper-based feature selection method because it has

shown better performance in many domains. This method is

used to provide the same inputs to all prediction models and

improve the final performance.

3.2.3 Data normalization
ML algorithms compare the features in the data to find the

patterns, there is a serious problem for the ML algorithms if the

scale of the features in the data is severely different, especially for

DL algorithms. Data normalization is a useful technique to

normalize the scale of the features to a specific range such as

between 0 and 1 or between −1 and 1, which can improve the

performance as well as training stability of the ML and DL

models (51). In this paper, the min-max normalization is used

since it doesn’t change the distribution of the original dataset.

The calculation process of the method is shown in Equation (1).

xscaled ¼ x � xmin

xmax � xmin
(1)

Where x stands for the set of original values, x scaled the

normalized value, x min the minimum value in x, x max the

maximum value in x.
3.3 Cost-sensitive learning & threshold
moving techniques

Cost-sensitive learning is the subfield of ML that considers the

costs of misclassifications when dealing with classification

problems. It is also a good solution for the class imbalance

problem because it improves the generalization of the minority

class by penalizing errors in that class and pushes the decision

boundary away from these instances (52). It has been used

popularly to address the class imbalance problem in different

research (30, 33, 34, 53, 54). In cost-sensitive learning, the

objective is to minimize the misclassification cost. The cost

matrix of binary classification is shown in Table 2, where we use

1 for positive and 0 for negative.

The instance cost of misclassification is measured by the

Cost (i, j), which corresponds to the misclassification costs of

classifying j into its predicted class i (55). The cost of the correct

classification, Cost (0,0) and Cost (1,1) are zero. To estimate the

cost value of the misclassification, the imbalance ratio (IR) as

shown in Equation (2) is used popularly, which can be calculated
TABLE 2 The cost matrix of binary classification.

Predicted negative Predicted positive
Actual negative Cost (0, 0) Cost (1, 0)

Actual positive Cost (0, 1) Cost (1, 1)
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as the quotient of the number of majority samples by the

number of samples in the minority class. In addition, the

misclassification cost value can also be considered a

hyperparameter in the model. The class_weight is a parameter in

Python language used to learn the cost-sensitive learning for

most of the baseline classification algorithms.

IR ¼ number of majority samples
number of minority samples

(2)

Many ML algorithms are designed to predict the probability of

the class in terms of a default probability threshold of 0.5, which

means that values equal to or exceeding the threshold are

assigned to one class and all other values to another (31).

However, the default threshold may lead to poor performance of

the algorithms if there is a serious class imbalance issue in the

dataset. The threshold moving technique (35) is used to handle

the class imbalance problem which uses the original training data

to train a model and then moves the decision probability

threshold to predict the minority samples more accurately.

Therefore, distinct threshold values are employed and then

evaluated the label based on a selected evaluation matrix. The

threshold that yields the best evaluation matrix will be used

when predicting unseen data in the future.
3.4 Proposed method

DL methods have been applied to different types of data, such as

image data, tabular data, text data, voice data, etc., and have shown

adequate advantages in different domains recently. In this paper, a

CSDNN-based method is proposed with a threshold moving

technique to predict the mortality in out-of-hospital AMI patients

with hypertension on imbalanced tabular data. To develop a more

accurate DL-based model, we split the validation data (10% of the

full data) from the training data, which is used to tune the

hyperparameters and avoid the overfitting problem in the training

process. Then we evaluate the performance of the proposed model

with optimal hyperparameters on the test data (20%).

The architecture of the proposed CSDNN-based mortality

prediction model is shown in Figure 2, which mainly consists of

an input layer, three hidden layers, and an output layer. In the

first part, the selected features from the dataset (e.g., gender, age,

chest pain, etc.) are used as input to the input layer and then

propagated to the subsequent layers. In the second step, three

hidden layers are used with 20, 20, and 15 neurons and are fully

connected, where the optimal hidden neurons are obtained from

the hyperparameter optimization method. In the output layer,

the result is produced for given inputs. To overcome the class

imbalance problem between healthy individuals (majority) and

patients (minority), the cost-sensitive learning technique is

applied to the proposed method with the optimal weight value,

which gives a much higher class_weight value to the patient’s

records. Moreover, the threshold moving technique is used to

improve the performance which moves the decision probability
frontiersin.org
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FIGURE 2

The architecture of the proposed CSDNN-based mortality prediction model with the threshold moving technique on imbalanced data.
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threshold to maximize the prediction performance of the patient’s

class when training the prediction model. To solve this binary

classification problem, the binary cross entropy (56) is used as

the loss function which compares each of the predicted

probabilities to the actual class output and then calculates the

score that penalizes the probabilities based on the distance

between the predicted and the actual values. Additionally, to

minimize the loss and to achieve more accurate outputs in the

neural network training process, the backward propagation

algorithm (57) is used to fine-tune the weights. The whole

process of the neural network computation and the binary cross

entropy can be expressed as Equations (3, 4).

y ¼ w(4)(w4�(w(3)(w3�w(2)(w2�w(1) (w1�x þ b1)þ b2)þ b3)

þ b4) (3)

loss ¼ � 1
N

XN
i¼1

yi � log ( p(yi))þ (1� yi) � log (1� p(yi)) (4)

where x represents the input units from the previous layer, wi

and bi are the weight matrix and bias vector in each layer,

respectively, w(i) is the activation function, N is the number of

samples, p(yi) is the probability of a positive class, and

(1� p(yi)) is the probability of a negative class.

The activation function w(i) is typically a nonlinear function

and plays an important role in determining neuron activation.

Without activation functions, the data would move through the

network’s nodes and layers using just linear functions, which are

unable to recognize complicated patterns in the data. Several

types of activation functions are used popularly, such as the

rectified linear unit (ReLU), sigmoid, Tanh, etc (58). The ReLU

is the most popular choice of activation function for hidden
Frontiers in Cardiovascular Medicine 06
layers because it is easy to compute and does not make the

problem of vanishing gradient. In this paper, the ReLU function

is applied in all hidden layers because of its efficiency, and the

sigmoid function is used in the output layer since our target

feature is a binary-valued variable. The mathematical

representations of the ReLU and sigmoid functions are shown in

Equations (5, 6), where x denotes the input value.

w(x) ¼ max{0, x} (5)

w(x) ¼ 1
1þ e�x

(6)

In addition, the Adam optimizer, which is more efficient and

can automatically reduce the learning rate, is used to optimize

the weight with a learning rate of 0.01 (59). The batch size is

given as 32, and the early stopping technique is applied with the

patience of 30 to avoid overfitting and improve the speed of

model development (60).
3.5 Compared methods

Some commonly used ML and ensemble methods such as SVM

(61), LR (62), DT (63), RF (64), AdaBoost (65), and XGBoost (66),

have shown better performance in different domains (5, 14, 15, 41,

54, 67). Therefore, we compared these models with the proposed

CSDNN-based method to estimate the performance of the

original imbalanced data with and without feature selection, cost-

sensitive learning, and threshold moving technique. In addition,

several classic data sampling-based ensemble methods such as

balanced bagging (37), balanced RF (38), EasyEnsemble (68), and

RUSBoost classifiers (69) are also applied with the feature
frontiersin.org
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selection and threshold moving technique to check the robustness

of the proposed method. A brief description of these methods is

as follows.

SVM (61) is a powerful method that seeks to identify an

optimal decision boundary called hyperplane with maximum

margin to classify the data points of both classes distinctly.

Different kernel functions can be used to solve nonlinear

problems. In this study, linear support vector classification

(LinearSVC) (70) is used as an alternative to the traditional SVM

with kernel functions due to its flexibility and speed for large

datasets. LR (62) is a useful analysis method to solve binary

classification problems by using a sigmoid function to squash the

value range between 0 and 1. DT (63) is one of the most

efficient ML algorithms and performs well on large datasets. It

aims to predict the variable’s values by learning from simple

decisions. Several ensemble ML algorithms are also applied in

this experiment. RF (64) is the famous ensemble method that

constructs numerous decision trees by using the DT algorithm as

a base estimator with a bagging approach at training time and

finally outputs the result that most trees select. AdaBoost (65) is

the typical boosting ensemble method that combines multiple

weak estimators to generate the strong estimator by adaptively

assigning the higher weight to misclassified instances and has

shown its effectiveness in producing a more accurate model.

XGBoost (66), the gradient-boosting framework, is used to build

the decision tree-based ensemble. It has shown good

performance and computational speed to handle classification

and regression problems.

Several classic data sampling-based ensemble methods are also

used in the experimental analysis. The balanced bagging method

(37) uses all of the minority samples by undersampling the

majority classes to improve the original bagging algorithm with

skewed class distributions. Balanced RF classifier (38) takes the

bootstrap samples from the minority class for each iteration of

RF and then randomly undersamples the same number of

replacement samples from the majority class to balance the
TABLE 3 Hyperparameter optimization of all machine learning algorithms wi

Algorithm Parameter
LR Penalty {‘l1’, ‘l2’, ‘elastic

Solver {‘newton-cg’, ‘lb

C {1e-5, 1e-4, 1e-3

DT Criterion {‘gini’, ‘entropy’

RF Number of estimators {100, 150, 200,

Criterion {‘gini’, ‘entropy’

XGBoost Number of estimators {100, 150, 200,

eta (learning rate) {0.001, 0.005, 0.

Maximum depth (3, 10)

Gamma {0, 0.1, 0.2, 0.3,

AdaBoost Number of estimators {100, 150, 200,

learning rate {0.001, 0.005, 0.

Balanced Bagging Number of estimators {100, 150, 200,

Balanced RF Number of estimators {100, 150, 200,

EasyEnsemble Number of estimators {100, 150, 200,

RUSBoost Number of estimators {100, 150, 200,

DNN Number of neurons in each layer {2, 3, 5, 7, 10, 1

Learning rate {0.0001, 0.001, 0
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dataset. EasyEnsemble classifier (68) is the ensemble of AdaBoost

estimators which are trained on different balanced bootstrap

samples by using the random undersampling technique to select

the subset from the majority class and all instances from the

minority class. RUSBoost classifier (61) randomly undersamples

the dataset at each iteration to balance the class distribution

while the AdaBoost algorithm is used to improve the

performance using the balanced data.
3.6 Hyperparameter optimization

A range of hyperparameter optimization methods is used

frequently to customize and generate a more accurate

prediction model. For example, random search (71) and grid

search (72) are the simplest and most popular methods for

hyperparameter optimization. In random search, search space is

the bounded set of parameters with randomly chosen values,

whereas the grid search method consists of a set of

hyperparameter values and evaluates every position along the

grid. The key difference between these methods is that only a

few values are tested and chosen randomly in the random

search. The performance of these methods is similar in small

datasets, whereas the random search method is faster than the

grid search method in large datasets. Several other references

(15, 17, 69, 73) have been consulted in determining the

parameters that may have a significant impact on the results of

ML-based methods. In this paper, the random search with

stratified 5-fold cross-validation is used to set the parameters of

our proposed method and other compared methods because of

the efficiency. The parameters and ranges of each algorithm

were selected based on many references and our pre-

experiment, as shown in Table 3. Moreover, to obtain the best

value from all possible values of the class_weight parameter in

our proposed method, the grid search with stratified 5-fold

cross-validation is applied.
th random search approach.

Range
net’, ‘none’}

fgs’, ‘liblinear’, ‘sag’, ‘saga’}

, 1e-2, 1e-1, 1, 10, 100, 150, 200, 250, 300, 350, 400, 450, 500}

}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}

0.4, 0.5)

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,1100, 1200, 1300, 1400, 1500}

3, 15, 17, 19, 20, 25, 27, 30, 35, 40, 50, 55}

.005, 0.01, 0.05, 0.1}
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3.7 Statistical analysis and implementation
environments

To analyze the categorical (i.e., gender, chest pain, etc.) and

continuous (i.e., age, height, weight, etc.) variables in

experimental data, we apply the Chi-square test (74) and

independent t-test (75), respectively. In categorical variables,

frequency and proportion are expressed, while continuous

variables are expressed as mean value and standard deviation.

Moreover, the significance level of p < 0.05 for statistical

significance is used in this experiment.

We implemented all experiments on a Microsoft Windows

server with Intel Xeon CPU E5-2696 v5 @ 4.40 GHz, 512GB

random access memory (RAM), and NVIDIA GeForce GTX

1080 24 GB, and used IBM SPSS Statistics 23 for statistical

analysis, and Python language (Version 3.6) in Jupyter Notebook

(76) with scikit-learn (77), Tensorflow (78), Keras (79),

imbalanced-learn (80) packages, and xgboost library (81), for

data preprocessing and designing the prediction models.
3.8 Performance evaluation measures

Generally, standard performance measures such as accuracy,

recall, precision, etc. are widely adopted for balanced datasets to

estimate the results of the predictive models. However, the use of

common metrics can mislead the results in a dataset with a

skewed distribution. Especially in the medical domain,

diagnosing the patient from general people for timely treatment

can be seriously affected, and die in the worst situations. In

addition, misdiagnosis of general people will cause a lot of

unnecessary treatment costs and waste of medical resources. The

performance of our proposed mortality prediction model will be

evaluated by the balanced accuracy, area under the receiver

operating characteristic curve (AUC), macro-averaged precision,

recall, F1-score, and geometric mean (g-mean), where the macro-

average gives equal weight to each class and compute the metric

individually and then take the average. The mathematical

expressions of the performance measures are shown in Equation

(10–14), where true positive, false positive, true negative, and

false negative in the confusion matrix are expressed as TP, FP,

TN, and FN, respectively.

Precision ¼ TP
TPþ FP

(7)

Sensitivity ¼ Recall ¼ TP
TPþ FN

(8)

Specificity ¼ TN
TNþ FP

(9)

Precisionmacro ¼ precision1 þ precision2
2

(10)

Recallmacro ¼ Recall1 þ Recall2
2

(11)
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Balanced Accuracy ¼ sensitivity þ specificity
2

¼
TP

TPþ FN
þ TN
TNþ FP

2
(12)

F1� scoremacro ¼ 2� Precisionmacro�Recallmacro

Precisionmacro þ Recallmacro
(13)

G�meanmacro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recallmacro�Specificitymacro

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall1 þ Recall2

2
� Specificity1 þ Specificity2

2

r

(14)
4 Results and discussion

4.1 Baseline characteristics

From the raw dataset, out-of-hospital AMI patients’ data with

hypertension (N = 5,602) was extracted as the experimental dataset

which contained the survived patients of 5,402 (96.43%) and

deceased patients 200 (3.57%) with 2-year follow-ups. Table 4

summarized the baseline characteristics of demographic

information, clinical findings, medical history, and laboratory

findings between the survived and deceased groups, and variables

that were statistically significant between the two groups were

boldfaced. The results showed that males were more likely to

have AMI with hypertension than females. The mean age of the

patients was 66.19 ± 11.68 years, and there was a difference of

about 9 years between the survived group (65.87 ± 11.65) and the

deceased group (74.69 ± 9.03) and was statistically significant

(p≤ 0.001***). In addition, the variables gender, age, weight,

chest pain (typical), dyspnea (yes), heart rate, Killip class, current

smoker (yes), LVEF, RWMI, history of diabetes mellitus,

previous angina pectoris (yes), previous heart failure (yes),

previous cerebrovascular disease (yes), neutrophil, lymphocyte,

hemoglobin, glucose, creatinine, total cholesterol, triglyceride, hs-

CRP, NTproBNP, BNP, and PRU, were statistically significant

with p-value≤ 0.001, as well as height≤ 0.01, previous

myocardial infarction (yes)≤ 0.01, LDL≤ 0.01, previous chest

pain (yes)≤ 0.05, use of CAG≤ 0.05, HbA1c≤ 0.05, ARU≤ 0.05,

respectively. On the other hand, abdominal circumference, SBP,

DBP, ECG (yes), ST_change on ECG (yes), symptoms of MI

(yes), MI ECG change (yes), use of thrombolysis, use of

Echocardiogram, history of dyslipidemia (yes), family history of

heart disease (yes), family history of early age ischemic heart

disease (yes), WBC, platelet, maximum creatine kinase peek,

maximum creatine kinase MB, troponin I, troponin T, and HDL

were least significant with p-value > 0.05.
4.2 Results of prediction models

In this part, we examined the performance of the proposed

CSDNN-based model as well as other famous ML-based models
frontiersin.org
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TABLE 4 The baseline characteristics of survived and deceased groups.

Variable All
(N = 5,602)

Survival
(N = 5,402)

Death
(N = 200)

p-value

Demographic characteristics
Gender 5,602 5,402 (96.43) 200 (3.57) ≤0.001***
Men 3,778 (67.4) 3,669 (67.9) 109 (54.5)

Women 1,824 (32.6) 1,733 (32.1) 91 (45.5)

Age (years) 66.19 ± 11.68 65.87 ± 11.65 74.69 ± 9.03 ≤0.001***
Height (cm) 162.95 ± 11.26 163.03 ± 11.33 160.77 ± 8.99 ≤0.01**

Weight (kg) 65.29 ± 12.42 65.47 ± 12.41 60.304 ± 11.61 ≤0.001***
Abdominal circumference (cm) 88.76 ± 9.03 88.8 ± 9.01 87.88 ± 9.49 0.385

Clinical findings
Chest pain (typical) 4,856 (86.7) 4,773 (87.2) 143 (71.5) ≤0.001***
Dyspnea (yes) 1,342 (24.0) 1,269 (23.5) 73 (36.5) ≤0.001***
Previous chest pain (yes) 1,492 (26.6) 1,454 (26.9) 38 (19.0) ≤0.05*

SBP (mmHg) 133.64 ± 29.12 133.72 ± 29.14 131.45 ± 28.58 0.28

DBP (mmHg) 79.83 ± 17.32 79.86 ± 17.35 78.93 ± 16.66 0.456

Heart rate (bpm) 78.52 ± 19.06 78.3 ± 18.95 84.62 ± 20.97 ≤0.001***
Killip class 5,602 5,402 (96.43) 200 (3.57) ≤0.001***
Ⅰ 4,452 (79.5) 4,344 (80.4) 108 (54.0)

Ⅱ 501 (8.9) 466 (8.6) 35 (17.5)

Ⅲ 418 (7.5) 368 (6.8) 50 (25.0)

Ⅳ 231 (4.1) 224 (4.1) 7 (3.5)

ECG (Yes) 5,589 (99.8) 5,390 (99.8) 199 (99.5) 0.423

ST_change on ECG (yes) 4,319 (77.1) 4,165 (77.1) 154 (77.0) 0.973

Current smoker (yes) 1,698 (30.3) 1,672 (31.0) 26 (13.0) ≤0.001***
Symptoms of MI (yes) 5,490 (98.0) 5,296 (98.0) 194 (97.0) 0.303

MI ECG change (yes) 3,745 (66.9) 3,608 (66.8) 137 (68.5) 0.614

Use of Thrombolysis 46 (0.8) 45 (0.8) 1 (0.5) 0.608

Use of CAG 5,545 (99.0) 5,350 (99.0) 195 (97.5) ≤0.05*

Use of echocardiogram 5,437 (97.1) 5,244 (97.1) 193 (96.5) 0.637

LVEF 52.84 ± 10.95 53.09 ± 10.82 45.93 ± 12.03 ≤0.001***
RWMI 1.4 ± 0.38 1.39 ± 0.38 1.53 ± 0.43 ≤0.001***

Medical history
History of diabetes mellitus (yes) 2,036 (36.3) 1,930 (35.7) 106 (53.0) ≤0.001***
History of dyslipidemia (yes) 821 (14.7) 801 (14.8) 20 (10.0) 0.058

Previous myocardial infarction (yes) 478 (8.5) 449 (8.3) 29 (14.5) ≤0.01**

Previous angina pectoris (yes) 684 (12.2) 645 (11.9) 39 (19.5) ≤0.001***
Previous heart failure (yes) 99 (1.8) 87 (1.6) 12 (6.0) ≤0.001***
Previous cerebrovascular disease (yes) 538 (9.6) 503 (9.3) 35 (17.5) ≤0.001***
Family history of heart disease (yes) 332 (5.9) 324 (6.0) 8 (4.0) 0.234

Family history of early AGE ischemic heart disease (yes) 38 (11.4) 37 (11.4) 1 (12.5) 0.924

Laboratory Findings
WBC (103/mL) 10.05 ± 3.74 10.06 ± 3.74 9.68 ± 3.68 0.155

Neutrophil (%) 66.41 ± 14.6 66.27 ± 14.58 70.29 ± 14.6 ≤0.001***
Lymphocyte (%) 24.59 ± 12.48 24.72 ± 12.44 21.09 ± 12.90 ≤0.001***
Hemoglobin (g/dl) 13.53 ± 2.1 13.60 ± 2.06 11.7 ± 2.37 ≤0.001***
Platelet (mm) 231.99 ± 66.81 232.22 ± 65.8 225.76 ± 89.86 0.179

Glucose (mg/dl) 170.55 ± 78.59 169.81 ± 78.06 190.52 ± 89.61 ≤0.001***
Creatinine (mg/dl) 1.2 ± 1.37 1.16 ± 1.3 2.27 ± 2.42 ≤0.001***
Maximum creatine kinase peek (mg/dl) 835.71 ± 1,434.54 831.74 ± 1,427.16 937.73 ± 1,613.83 0.334

Maximum creatine kinase MB (mg/dl) 96.88 ± 160.07 97.54 ± 161.47 78.96 ± 114.82 0.11

Troponin I (mg/dl) 41.2 ± 104.95 41.07 ± 105.29 44.33 ± 96.01 0.68

Troponin T (mg/dl) 28.71 ± 701.81 29.18 ± 708.73 5.05 ± 5.62 0.892

Total cholesterol (mg/dl) 172.56 ± 43.36 173.04 ± 43.34 159.68 ± 41.94 ≤0.001***
Triglyceride (mg/dl) 133.55 ± 111.22 134.69 ± 112.59 102.88 ± 56.53 ≤0.001***
HDL (mg/dl) 43.01 ± 12.83 43.07 ± 12.74 41.6 ± 14.88 0.124

LDL (mg/dl) 106.04 ± 36.68 106.35 ± 36.66 97.72 ± 36.09 ≤0.01**

hs-CRP (mg/dl) 1.43 ± 6.33 1.27 ± 4.53 6.4 ± 25.27 ≤0.001***
NTproBNP (mg/dl) 2,518.07 ± 6,836.86 2,221.3 ± 6,239.58 9,333.16 ± 13,496.1 ≤0.001***

(Continued)
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TABLE 4 Continued

Variable All
(N = 5,602)

Survival
(N = 5,402)

Death
(N = 200)

p-value

BNP (mg/dl) 348.56 ± 789.73 327.21 ± 755.39 1,360.11 ± 1,492.84 ≤0.001***
HbA1c (%) 6.54 ± 1.42 6.53 ± 1.41 6.81 ± 1.57 ≤0.05*

ARU (units) 458.9 ± 71.05 457.94 ± 71.07 478.4 ± 68.45 ≤0.05*

PRU (units) 207.56 ± 110.75 204.87 ± 110.23 270.59 ± 104.68 ≤0.001***

*SBP, denotes systolic blood pressure; DBP, diastolic blood pressure; ECG, electrocardiogram; MI, myocardial infarction; CAG, coronary angiogram; LVEF, left ventricular

ejection fraction; RWMI, regional wall motion index; WBC, white blood cells; HDL, high-density lipoprotein cholesterol; LDL, low-density Lipoprotein cholesterol; hs-CRP,

C-reactive protein; NTproBNP, N-terminal prohormone of brain natriuretic peptide; BNP, B-type natriuretic peptide; HbA1c, glycated hemoglobin; ARU, aspirin reactivity

units, PRU, platelet reactivity units. The p-value with *, **, and ***denote that each variable is statistically significant as p-value≤ 0.05, <0.01, and <0.001 in survived and

deceased groups, which means there are less than 5%, 1%, and 0.1% as chances of being incorrect, respectively.
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such as SVM, LR, DT, RF, AdaBoost, XGBoost, and classic data

sampling-based ensemble models such as balanced bagging,

balanced RF, EasyEnsemble, and RUSBoost for the mortality

prediction of out of hospital AMI patients with hypertension.

The performance was evaluated using balanced accuracy, AUC,

macro-averaged precision, recall, F1-score, and g-mean.

Tables 5–7 showed the performance comparison results of the

proposed model and other prediction models on the original

imbalanced data with and without feature selection, cost-sensitive

learning, and threshold moving technique. The boldface

expresses the best performance among compared models.

A total of 63 independent features were used to predict the

mortality from the original imbalanced data. Table 5 showed

the results of balanced accuracy, AUC, macro-averaged

precision, recall, F1-score, and g-mean of the proposed model

and other state-of-the-art ML-based models without applying

the feature selection method. It can be divided into three

different cases, (1) without applying cost-sensitive learning and

threshold moving technique, (2) using cost-sensitive learning

but without moving threshold, and (3) using both cost-sensitive
TABLE 5 Performance comparison of the proposed and machine learning-ba

Cost-sensitive learning Threshold moving Model Balanced acc
None None LR 0.5128

SVM 0.5128

DT 0.5935

RF 0.5

XGBoost 0.4982

AdaBoost 0.5457

DNN 0.5609

With cost–sensitive learning
[Class weight = (0:1, 1:27.01)]

None LR 0.7221

SVM 0.7317

DT 0.5095

RF 0.5

XGBoost 0.6866

AdaBoost 0.652

CSDNN 0.7317

With threshold moving LR 0.6354

SVM –

DT 0.5095

RF 0.6631

XGBoost 0.6431

AdaBoost 0.5915

CSDNN 0.7354
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learning and threshold moving technique. Moreover, the

class_weight value of the cost-sensitive learning method applied

in each algorithm was {0:1, 1:27.01}, which meant the class

weight of the minority class was set up to 27.01 calculated by

the IR. As shown in Table 5, it was evident that the issue of

class imbalance affected every model. In the first case, the DT

model got comparatively higher performance among all other

models without using the cost-sensitive learning and threshold

moving technique to solve the class imbalance problem. In the

second case, the CSDNN model and SVM outperformed the

other five models with cost-sensitive learning and without

threshold moving techniques. Moreover, the CSDNN model

showed the highest balanced accuracy of 0.7354, macro-

averaged recall 0.7354, g-mean 0.7354, and AUC 0.7354, in the

third case using both cost-sensitive learning and threshold

moving technique. The class_weight value of {0:1, 1:27.01} was

used in the proposed model and other ML-based prediction

models with the cost-sensitive learning method. The default

probability threshold of all classifiers is 0.5. However, the SVM

prediction model with the threshold moving technique could
sed prediction models without applying feature selection.

uracy Precision Recall F1-score G_mean AUC Threshold
0.983 0.5128 0.5163 0.5128 0.5128 –

0.983 0.5128 0.5163 0.5128 0.5128 –

0.5455 0.5935 0.557 0.5935 0.5935 –

0.4826 0.5 0.4911 0.5 0.5 –

0.4825 0.4982 0.4902 0.4982 0.4982 –

0.6092 0.5457 0.562 0.5457 0.5457 –

0.693 0.5609 0.5887 0.5609 0.5609 –

0.5446 0.7221 0.5325 0.7221 0.7221 –

0.5454 0.7317 0.5317 0.7317 0.7317 –

0.51 0.5095 0.5097 0.5095 0.5095 –

0.4826 0.5 0.4911 0.5 0.5 –

0.5485 0.6866 0.5534 0.6866 0.6866 –

0.5495 0.652 0.5608 0.652 0.652 –

0.5454 0.7317 0.5317 0.7317 0.7317 –

0.6028 0.6354 0.6163 0.6354 0.6354 0.87

– – – – – –

0.51 0.5095 0.5097 0.5095 0.5095 0

0.5634 0.6631 0.5824 0.6631 0.6631 0.092

0.5893 0.6431 0.6082 0.6431 0.6431 0.700

0.6108 0.5915 0.6 0.5915 0.5915 0.504

0.5809 0.7354 0.6074 0.7354 0.7354 0.681
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TABLE 6 Performance comparison of the proposed and machine learning-based prediction models with feature selection.

Cost-sensitive learning Threshold moving Model Balanced accuracy Precision Recall F1-score G_mean AUC Threshold
With cost-sensitive learning
[Class weight = (0:1, 1:27.01)]

None LR 0.7167 0.5291 0.7167 0.4089 0.7167 0.7167 –

SVM 0.7164 0.5389 0.7164 0.5126 0.7164 0.7164 –

DT 0.5072 0.5067 0.5072 0.5069 0.5072 0.5072 –

RF 0.5 0.4826 0.5 0.4911 0.5 0.5 –

XGBoost 0.6802 0.5439 0.6802 0.5437 0.6802 0.6802 –

AdaBoost 0.7409 0.5503 0.7409 0.5442 0.7409 0.7409 –

CSDNN 0.7415 0.5562 0.7415 0.5603 0.7415 0.7415 –

With threshold moving LR 0.674 0.565 0.674 0.5846 0.674 0.674 0.504

SVM – – – – – – –

DT 0.5072 0.5067 0.5072 0.5069 0.5072 0.5072 0

RF 0.715 0.557 0.715 0.567 0.715 0.715 0.071

XGBoost 0.6125 0.6002 0.6125 0.6059 0.6125 0.6125 0.752

AdaBoost 0.6877 0.5577 0.6877 0.572 0.6877 0.6877 0.505

CSDNN 0.7634 0.559 0.7634 0.5623 0.7634 0.7634 0.489
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not be applied since the LinearSVC classifier cannot predict the

class probability of the samples.

After applying the RFE wrapper-based feature selection with a

5-fold cross-validation approach on the extracted experimental

data, 27 optimal features were selected to predict the mortality in

out-of-hospital AMI patients with hypertension. The optimal

feature set consisted of age, heart rate, height, weight, abdominal

circumference, WBC, neutrophil, lymphocyte, hemoglobin,

platelet, glucose, creatinine, maximum creatine kinase peek,

maximum creatine kinase MB, troponin I, troponin T, total

cholesterol, HDL, LDL, hs-CRP, NTproBNP, BNP, ARU, PRU,

LVEF, RWMI, and discharge heart rate. In Table 6, the

performances of the proposed CSDNN-based model and other

compared models with the optimal features were shown in two

different cases. For instance, (1) using cost-sensitive learning but

without moving threshold, (2) using both cost-sensitive learning

and threshold moving techniques. The results demonstrated that

the proposed model achieved the highest performance in both

cases. The class_weight value of {0:1, 1:27.01} was also used for

the cost-sensitive learning.
TABLE 7 Performance comparison of the proposed and classic data sampling

Cost-Sensitive
Learning

Threshold
moving

Model Balan
accu

None None Balanced Bagging (36) 0.72

Balanced RF (37) 0.71

EasyEnsemble (38) 0.74

RUSBoost (68) 0.61

With cost-sensitive
learning
[Class weight = (0:1,
1:27.01)]

CSDNN 0.74

None With threshold
moving

Balanced Bagging (36) 0.72

Balanced RF (37) 0.66

Easy
Ensemble (38)

0.58

RUSBoost (68) 0.54

With cost-sensitive
learning
[Class weight = (0:1,
1:27.01)]

CSDNN 0.76
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We also compared the performance of the proposed and classic

data sampling-based ensemble prediction models. The performance

comparison results of the proposed CSDNN model and classic data

sampling-based ensemble models were shown in Table 7, which also

included two cases, (1) without threshold moving, and (2) with

threshold moving. The results indicated that the proposed CSDNN

model obtained better performance than all data sampling-based

ensemble prediction models in both cases.

To develop a more accurate prediction model and search for

the best value of the class weight parameter, we applied the grid-

search with 3-fold cross-validation for our proposed CSDNN

method to obtain the best AUC score. The result of the AUC

score for different class weight values was shown in Figure 3,

which demonstrated that the optimal class weight value was {0:1,

1:22.3} for the minority class. To clearly understand the

proposed method, Table 8 compared the performance difference

of the proposed model with and without feature selection, cost-

sensitive learning, and threshold moving technique. There were

two kinds of cases of the threshold moving technique, with the

default class weight value of {0:1, 1:27.01} or the optimal
-based ensemble prediction models with feature selection.

ced
racy

Precision Recall F1-
score

G_mean AUC Threshold

31 0.5498 0.7231 0.548 0.7231 0.7231 –

12 0.5348 0.7112 0.4947 0.7112 0.7112 –

12 0.5367 0.7412 0.4817 0.7412 0.7412 –

52 0.5212 0.6152 0.4886 0.6152 0.6152 –

15 0.5562 0.7415 0.5603 0.7415 0.7415 –

46 0.5573 0.7246 0.5661 0.7246 0.7246 0.534

35 0.5641 0.6635 0.5834 0.6635 0.6635 0.685

37 0.6605 0.5837 0.6083 0.5837 0.5837 0.548

84 0.5484 0.5484 0.5484 0.5484 0.5484 0.514

34 0.559 0.7634 0.5623 0.7634 0.7634 0.489
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class weight value of {0:1, 1:22.3} for the minority class,

respectively. The results showed that after we applied the optimal

class weight value as {0:1, 1:22.3} to our dataset, the performance

of our proposed CSDNN model was increased with the balanced

accuracy of 0.7667, macro-averaged precision 0.5613, recall

0.7667, F1-score 0.5675, g-mean 0.7667, and AUC 0.7667.

Additionally, the performance comparison of ROC curves on

the proposed CSDNN model, state-of-the-art ML models, and

classic data sampling-based ensemble models were also shown in

Figure 4. Figures 4A–C showed the ROC curve comparisons

between the CSDNN model and state-of-the-art ML classifiers on

the three cases without applying the feature selection method on

the original dataset, and Figures 4E–G showed the ROC curve

comparisons between the CSDNN model, ML classifiers, and

classic data sampling-based ensemble models on prescribed four

cases with optimal features. As a result, ROC curves comparison

in Figure 4A showed that the DT model obtained the best AUC

of 0.5935 without feature selection, cost-sensitive learning, and

threshold moving technique. In Figure 4B, the proposed model

and SVM model exhibited the highest AUC of 0.7317 than other

ML models, and the proposed model got a better AUC of 0.7354

than the other four models using the threshold moving

technique as shown in Figure 4C. Figures 4D–G showed the
FIGURE 3

Result of the AUC score over different class weight values in the proposed

Frontiers in Cardiovascular Medicine 12
ROC curves comparison of the proposed model with other

models using the optimal features. In Figures 4D, F the proposed

CSDNN model showed the best AUC of 0.7415 without moving

the threshold, which was higher than the other models.

Figures 4E, G demonstrated that the proposed model achieved

the best AUC of 0.7667 with the optimal class weight value.

Additionally, Figure 5 demonstrated the ROC curve and

precision-recall curve of the proposed model with the highest

performance with feature selection, cost-sensitive learning, and

threshold moving.

The confusion matrices of the proposed CSDNN model using

the optimal features with and without moving the threshold were

shown in Figure 6, where Figure 6A showed the confusion

matrix and normalized confusion matrix of the proposed model

without shifting the threshold and Figure 6B with moving the

threshold. The figure shows the predicted class labels on the x-

axis and the actual class labels on the y-axis, as well as 0 and 1

representing the survived and deceased patients, respectively. In

the confusion matrix, the higher value for (0, 0) and (1, 1)

indicates the more accurate prediction model for mortality in

out-of-hospital AMI patients with hypertension. As a result,

Figure 6A showed that the proposed CSDNN model without

adjusting the threshold could predict 84% of the survived (N = 911)
model.
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TABLE 8 Performance evaluation of the proposed models.

Feature
selection

Cost-sensitive
learning

Class_
weight

Threshold moving Model Balanced
accuracy

Precision Recall F1-
score

G_mean AUC

None None None None DNN 0.5609 0.693 0.5609 0.5887 0.5609 0.5609

With cost-sensitive
learning

{0:1, 1:27.01} None CSDNN 0.7317 0.5454 0.7317 0.5317 0.7317 0.7317

{0:1, 1:27.01} With threshold moving CSDNN 0.7354 0.5809 0.7354 0.6074 0.7354 0.7354

With feature
selection

{0:1, 1:27.01} None CSDNN 0.7415 0.5562 0.7415 0.5603 0.7415 0.7415

{0:1, 1:27.01} With threshold moving CSDNN 0.7634 0.559 0.7634 0.5623 0.7634 0.7634

{0:1, 1:22.3} CSDNN 0.7667 0.5613 0.7667 0.5675 0.7667 0.7667
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and 64% deceased (N = 25) patients accurately from the total

population. The proposed model with moving the threshold was

able to accurately predict 84% of the survived (N = 910) and 69%

deceased (N = 27) patients as shown in Figure 6B, which was

much higher than the result without applying the threshold

moving technique.
FIGURE 4

Comparison of the ROC curves of (A) proposed model and other ML models
(B) proposed model and others with cost-sensitive learning; (C) proposed m
proposed model and others with feature selection and cost-sensitive lea
models with feature selection, cost-sensitive learning, and threshold mo
models with feature selection but without threshold moving; (G) proposed
selection and threshold moving.

Frontiers in Cardiovascular Medicine 13
4.3 Discussions

The mortality of CVD is continuously increasing every year

globally and is strongly influenced by hypertension (3, 7). Early

detection and management of people at risk before their

symptoms appear is important. DL approaches have shown high
without feature selection, cost-sensitive learning, and threshold moving;
odel and others with cost-sensitive learning and threshold moving; (D)

rning; (E) proposed model and classic data sampling-based ensemble
ving; (F) proposed model and classic data sampling-based ensemble
model and classic data sampling-based ensemble models with feature
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FIGURE 5

The ROC curve and precision-recall curve of the proposed model with feature selection, cost-sensitive learning, and threshold moving.

FIGURE 6

Confusion matrices and normalized confusion matrices of the proposed CSDNN model with the feature selection. (A) without threshold moving; (B)
with threshold moving.
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performance in different domains, including healthcare (20–26), etc.

Therefore, this paper was motivated to propose an accurate mortality

prediction model for out-of-hospital Korean AMI patients with

hypertension. In the experiment, the real-world AMI patients’

dataset named KAMIR-NIH was used with 2-year follow-ups.

Since the experimental data was imbalanced, the cost-sensitive

learning technique was performed in the proposed method. The

effectiveness of the proposed model was proved by comparing it

with other state-of-the-art ML and classic data sampling-based

ensemble models. The results showed that the proposed CSDNN

model could achieve better performance than all compared models.

The cost-sensitive learning method could also improve the

performance in most compared models such as LR, SVM, XGBoost,

AdaBoost, etc. It also indicated that the cost-sensitive learning

technique was a good solution to solve the class imbalance problem

in the experimental data, which is supported by (30). In addition,

optimizing the class weight value could also increase the final

decision performance of the proposed model, and this result is

consistent with a previous study (82). Figures 4E, G demonstrated

that the proposed model achieved the best AUC of 0.7667 with the

optimal class weight value, which increased the AUC by 2.58% than

the best performance of the state-of-the-art ML model AdaBoost

and the AUC by 2.55% than the highest performance of the classic

data sampling-based ensemble model EasyEnsemble for the

mortality prediction of out of hospital AMI patients with hypertension.

Moreover, the performance of the proposed method was also

improved by using the probability threshold moving technique.

The results showed that the performance increased by about 3.5%

of the proposed CSDNN model from the AUC of 0.7317–0.7667.

It demonstrated the effectiveness of the threshold moving

technique for the class imbalance problem, which is consistent

with (35). However, the DT model with the cost-sensitive learning,

and with and without shifting the threshold showed lower

performance using the original features as well as the optimal

extracted features. The reason for this is that the DT algorithm

was proposed to predict the class correctly instead of the

probability estimation (55). Additionally, the efficiency of

developing the proposed model and other compared models was

increased by using the RFE wrapper-based feature selection

method, and the performances of the proposed model and many

compared models such as LR, AdaBoost, etc. were also improved.

The automatically selected 27 optimal features have been used as

important risk factors related to the prediction of CVD patients in

different studies (18, 41). The outcome can be a point of reference

for various considerations by clinical experts for CVD prediction.

Several classic data sampling-based ensemble methods such as

balanced bagging, balanced RF, EasyEnsemble, and RUSBoost

were developed for the classification of imbalanced data. The

proposed model which integrated the DNN, cost-sensitive

learning, and threshold moving technique achieved better

prediction performance than those methods. The current research

established that it was also best practice to think about integrating

various techniques for better prediction improvements. Finally, the

proposed CSDNN model can be used as an aided diagnosis

system for decision support in the mortality prediction of out-of-

hospital AMI patients with hypertension.
Frontiers in Cardiovascular Medicine 15
However, there are several potential limitations in this paper. First,

the result of this paper may not be suitable for patients from other

populations due to the use of the Korean AMI dataset. Second, the

proposed prediction model may not provide good performance for

in-hospital patients or patients with short-term follow-ups since the

experimental dataset used in this research was with 2-year follow-

ups. Third, the experimental dataset was insufficient for the DL

models since the DL models are data-hungry, and we could not

collect more data. Moreover, the DL model was opaque even though

it showed better results than other models.
5 Conclusion

In this paper, a CSDNN-based mortality prediction model was

proposed for out-of-hospital Korean AMI patients with

hypertension based on the real-world KAMIR-NIH dataset with 2-

year follow-ups on imbalanced data. It was worthwhile to apply the

cost-sensitive learning technique to overcome the imbalanced data

problem and use the threshold moving technique to enhance the

performance while using the feature selection method to increase

efficiency. The results of our experiment showed that the proposed

model outperformed other ML-based models and classic data

sampling-based ensemble models with an AUC of 2.58% and 2.55%

improvement over the best state-of-the-art ML model and the

classic data sampling-based ensemble model, respectively. It is also

expected that the results of this research will be useful for the

decision-making of mortality prediction in AMI patients with

hypertension. In the future, it is expected to collect more datasets

from different countries to design an accurate and explainable

mortality prediction model for multiple races.
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