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Introduction: Autophagy refers to the process of breaking down and recycling
damaged or unnecessary components within a cell to maintain cellular
homeostasis. Heart failure (HF) is a severe medical condition that poses a
serious threat to the patient’s life. Autophagy is known to play a pivotal role in
the pathogenesis of HF. However, our understanding of the specific
mechanisms involved remains incomplete. Here, we identify autophagy-
related genes (ARGs) associated with HF, which we believe will contribute to
further comprehending the pathogenesis of HF.
Methods: By searching the GEO (Gene Expression Omnibus) database, we found
the GSE57338 dataset, which was related to HF. ARGs were obtained from the
HADb and HAMdb databases. Annotation of GO and enrichment analysis of
KEGG pathway were carried out on the differentially expressed ARGs (AR-
DEGs). We employed machine learning algorithms to conduct a thorough
screening of significant genes and validated these genes by analyzing external
dataset GSE76701 and conducting mouse models experimentation. At last,
immune infiltration analysis was conducted, target drugs were screened and a
TF regulatory network was constructed.
Results: Through processing the dataset with R language, we obtained a total of
442 DEGs. Additionally, we retrieved 803 ARGs from the database. The
intersection of these two sets resulted in 15 AR-DEGs. Upon performing
functional enrichment analysis, it was discovered that these genes exhibited
significant enrichment in domains related to “regulation of cell growth”,
“icosatetraenoic acid binding”, and “IL-17 signaling pathway”. After screening
and verification, we ultimately identified 4 key genes. Finally, an analysis of
immune infiltration illustrated significant discrepancies in 16 distinct types of
immune cells between the HF and control group and up to 194 potential
drugs and 16 TFs were identified based on the key genes.
Abbreviations

HF, heart failure; GEO, gene expression omnibus; ARGs, autophagy-related genes; DEG, differentially
expressed gene; AR-DEGs, autophagy-related differentially expressed genes; MI, myocardial infarction;
GO, gene ontology; BP, biological processes; MF, molecular function; CC, cellular components; KEGG,
kyoto encyclopedia of genes and genomes; LASSO, least absolute shrinkage and selection operator; RF,
random forest; GSVA, gene set variation analysis; CTD, comparative toxicogenomics database; TF,
transcription factor; ssGSEA, single-sample gene set enrichment analysis; IGF1R, insulin-like growth
factor 1 receptor; NLR, NOD-like receptor; PAMPs, pathogen-associated molecular patterns; DAMPs,
danger-associated molecular patterns; I/R, ischemia/reperfusio.
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Discussion: In this study, TPCN1, MAP2K1, S100A9, and CD38 were considered as
key autophagy-related genes in HF. With these relevant data, further exploration of
the molecular mechanisms of autophagy in HF can be carried out.
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FIGURE 1

Flowchart of the current study.
1 Introduction

Heart failure (HF) is a multifaceted clinical syndrome that

arises from a multitude of factors resulting in anomalous

alterations to the structure and function of the heart. HF can be

caused by a variety of factors, including myocardial infarction

(MI), ischemic heart disease, cardiomyopathy, heart valve disease,

hypertension, and arrhythmias. Myocardial ischemia is a

prevalent contributor to HF and is closely associated with its

high mortality rate (1). According to the 2021 American Heart

Association Statistical Update, around 6 million individuals in

the United States experience HF, representing approximately

1.8% of the entire populace. The incidence of HF is much higher

among the elderly, with a prevalence rate of 4.3% in the 65–70

age group in 2012. It is expected to steadily increase and reach a

prevalence rate of 8.5% by 2030. In addition, the five-year

mortality rate for HF is as high as 50%, indicating a poor

prognosis (2). The heightened incidence, hospitalization, and

mortality rates of HF necessitate a more thorough exploration

and understanding of its pathogenesis. In recent years, increasing

evidences suggest that autophagy appears to be intricately linked

with the development of cardiovascular disease and shows

promise as a viable therapeutic target (3).

Autophagy is a biological degradation process within cells, which

breaks down cellular components and reuses them. It also serves as a

mechanism for cellular self-protection, enabling the elimination of

pathogens, damaged proteins, organelles, and other items within

cells, thereby maintaining normal cell function (4). Many diseases

are linked to autophagy, including neurodegenerative diseases,

cardiovascular disease, musculoskeletal disorders, lung

diseases, kidney disease, metabolic syndrome, liver disease, cancer,

and so on (5). As research on autophagy in cardiovascular diseases

advances, it has become increasingly evident that this process plays a

crucial role not only in maintaining heart morphology and function,

but also in the development of HF. For example, moderate

autophagy can delay the progression of HF. With ATG5 and ATG7

knockout in animal models, insufficient autophagy leads to

increased hypertrophic cardiomyocytes, which promotes the

deterioration of heart function (6). Overactive autophagy can

accelerate the deterioration of heart function. In the final stage of

HF, damaged organelles, ROS and other harmful factors accumulate

in cardiomyocytes and lead to overactive autophagy, which damages

important organelles and proteins while clearing harmful factors,

thus accelerating the deterioration of heart function (7). At this

point, downregulation of autophagy levels can play a protective role

in the heart. Furthermore, autophagosome clearance is the final

stage of the autophagy process, and inhibition of this function

can lead to the accumulation of autophagosome, which has an
02
adverse impact on the body (8). However, many autophagy-related

genes for HF remain unknown and require further exploration.

In this study, a bioinformatics analysis method based on

transcriptome sequencing was used to discover autophagy-related

genes in HF patients, with the aim of providing fresh

perspectives on the diagnosis and treatment methods. Figure 1

illustrates the workflow for the specific analysis.
2 Materials and methods

2.1 Data source

We downloaded the microarray dataset GSE57338 (mRNA)

and GSE76701 (mRNA) related to heart failure on the Gene

Expression Omnibus (GEO) database. GSE57338 came from

GPL11532 platform [(HuGene-1_1-st) Affymetrix Human Gene

1.1 ST Array] and GSE76701 came from GPL570 platform [(HG-

U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array].

The samples in GSE57338 and GSE76701 were both from human

heart tissue. The GSE57338 dataset included 95 patients with HF
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and 136 normal individuals as controls; the GSE76701 dataset had

4 HF samples and 4 normal samples. After removing duplicate

genes from two autophagy-related gene databases HADb (http://

www.autophagy.lu/index.html) and HAMdb (http://hamdb.scbdd.

com/) (9), 803 autophagy-related genes (ARGs) were acquired in

total (Supplementary File S1).
2.2 Identification of DEGs

To identify differentially expressed genes (DEGs), we

performed differential analysis between the HF and normal

samples in GSE57338 dataset using the R package “limma”

(version 3.54.2) (10). P < 0.05 and |log2 (fold change, FC)| > 0.5

were set as filtration criteria. R package “EnhancedVolcano”

(version 1.16.0) and “pheatmap” (version 1.0.12) were utilized to

visualize the expression of DEGs.
2.3 Identification of AR-DEGs

In order to obtain autophagy-related DEGs (AR-DEGs), we

intersected 803 ARGs with the DEGs detected from the

GSE57338 dataset. We created Venn diagrams using the

Sangerbox tool (http://www.sangerbox.com/) (11) to visualize

the overlap of genes. To demonstrate the expression of AR-DEGs

in GSE57338, we used box plots generated by the R package

“ggpubr” (version 0.6.0). We also performed correlation analysis

of AR-DEGs and visualized the results using the R package

“corrplot” (version 0.92).
2.4 GO and KEGG enrichment analysis

Gene Ontology (GO) enrichment analysis is a common

technique that helps in identifying biological processes (BP),

molecular functions (MF), and cellular components (CC) that are

over-represented in a set of genes of interest. The KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathway analysis can help

researchers to gain insights into the biological functions of a set

of genes and to identify the key pathways or processes that are

involved in a particular biological phenomenon. The R package

“clusterProfiler” (version 4.6.2) (12) was used for GO and KEGG

analyses of AR-DEGs.
2.5 Identification of key genes via machine
learning

To further screen key genes, two machine learning algorithms

—LASSO (the least absolute shrinkage and selection operator) and

RF (random forest)—were adopted. Lasso regression is a type of

regression analysis that performs variable selection and estimates

the coefficients of a linear regression model, while also imposing

a penalty on the size of the coefficients to avoid overfitting. The

LASSO regression method was applied using the “glmnet”
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package (version 4.1.6) (13) in R, with a parameter α set to 1 to

refine the model’s qualities. This enabled the identification of

AR-DEGs and the removal of irrelevant genes from

consideration. RF is a decision-making algorithm that constructs

multiple decision trees and combines their outputs for improved

accuracy in classification and regression tasks (14). The R

package “randomForest” (version 4.7.1.1) was used to perform

RF analysis. Lastly, we identified the key genes by taking the

intersection of the genes obtained through LASSO and RF.
2.6 Validation of key genes by analysing
external dataset

We downloaded the GSE76701 dataset to validate the reliability

of the key genes obtained previously. Wilcoxon rank-sum tests

were performed to determine whether these genes exhibited

differential expression between the HF and control groups. To

visualize the results, we used the R package “ggpubr” to generate

box plots.
2.7 Establishment of animal models

In this study we used male C57BL/6 WT mice aged 6–8 weeks

and weighing 20 ± 2 g for experiments which were approved by the

Animal Ethics Committee of the Air Force Medical University. The

mice were housed in a temperature-controlled chamber (25 ± 2°C)

for a 12-hour light/dark cycle, and provided free access to food and

water. Subsequently, the mice were randomly allocated to either a

HF group or a control group. The mice in control group were

raised under normal diet while the HF group were anesthetized

with isoflurane and implanted with a micro-pump filled with

angiotensin II (Ang II) subcutaneously, which was continuously

infused at a rate of 2 ug/Kg/min for 4 weeks. RT-qPCR was

performed after model establishment in the 4th week. The

present study quantified the expression levels of Anp, Bnp, and

β-Mhc in two distinct sets of samples, with the simultaneous

elevation of all three biomarkers indicating the presence of HF.

In addition, echocardiography was performed in the 4th week.

Left ventricular posterior wall dimension (LVPWd), left

ventricular end diastolic dimension (LVEDD), and left

ventricular end-systolic dimension (LVESD) were measured to

calculate left ventricular ejection fraction (EF) and fractional

shortening (FS). EF≤ 50% is considered indicative of HF.
2.8 Validation of key genes by RT-qPCR

Expression of identified key genes were further validated by

RT-qPCR which was performed using cDNA from the 4-week

time point (HF = 3, normal = 3, C57BL/6 mice left ventricle).

RNA was extracted using the TRIzol® Reagent and reverse

transcription was conducted following the manufacturer’s

protocols (Yeasen Biotechnology, Shanghai, China). To quantify

mRNA expression, the comparative quantification method
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http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
http://hamdb.scbdd.com/
http://hamdb.scbdd.com/
http://www.sangerbox.com/
https://doi.org/10.3389/fcvm.2024.1247079
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Deng et al. 10.3389/fcvm.2024.1247079
(2−ΔΔCT) was employed, with normalization to the housekeeping

gene Gapdh, utilizing the QuantStudioTM 5 system (Applied

Biosystems, United States). Primer sequences used in this study

can be found in Supplementary File S2.
2.9 Immune infiltration analysis

Gene Set Variation Analysis (GSVA) is a computational

approach that leverages tissue gene expression profiles to calculate

the scores of distinct immune cells, facilitating the analysis of

disparities in immune gene sets between HF and normal samples

(15). We also performed correlation analysis between the key

genes and immune cells using the R package “corrplot”.
2.10 Target drug screening

The comparative toxicogenomics database (CTD) helped us to

predict the potential gene target-based drug. CTD could be

accessed by visiting NetworkAnalyst 3.0 platform (https://www.

networkanalyst.ca/NetworkAnalyst/) (16).
2.11 Construction of TF-gene regulatory
network

Transcription factors (TF) are proteins that play a crucial role

in regulating gene expression by binding to specific DNA

sequences and controlling the transcription process. The JASPAR

database was used to identify TFs that bind to AR-DEGs in HF

and it could also be accessed by visiting NetworkAnalyst 3.0

platform which can be used to generate an analysis of the

TF-gene regulatory network. Cytoscape software (version 3.9.1)

was utilized for visualization.
FIGURE 2

Identification of DEGs in GSE57338. (A) The volcano plots of DEGs. (B) Hea
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3 Results

3.1 Identification of DEGs

Utilizing the afore-mentioned filtration criteria [P-value <0.05

and | log2 (fold change, FC) | > 0.5], we identified 442 DEGs

from the GSE57338 dataset, consisting of 241 up-regulated genes

and 201 down-regulated genes (Supplementary File S3). The

volcano plots of these DEGs are shown in Figure 2A and heat

map results of the top 50 DEGs are shown in Figure 2B.
3.2 Identification of AR-DEGs

A total of 15 AR-DEGs of HF were obtained by intersecting

241 up-regulated genes and 201 down-regulated genes with 803

ARGs, of which 6 up-regulated (SNCA, PLCE1, MAPK10,

CXCL12, TPCN1, CXCR4) and 9 down-regulated (S1PR3,

MAP2K1, NAMPT, S100A9, CD38, S100A8, CYBB, CCL2,

SPP1), and the Venn diagram is shown in Figure 3A. The

expression of 15 AR-DEGs in the HF group and the normal

group were shown in Figure 3B. In the correlation matrix

analysis, the values of relative coefficients between genes with

P-value <0.05 were marked in Figure 3C.
3.3 Enrichment analysis of AR-DEGs

604 biological process (BP), 17 chromosomal location (CC), 37

molecular function (MF) of GO analysis and 148 KEGG signaling

pathways were obtained by clustering AR-DEGs of HF with R

package “clusterProfiler” (Supplementary Files S4,S5). Figures 4A,B

show the top 5 enriched GO annotation terms and top10 KEGG

pathways, respectively. For BP analysis, the top 3 significantly
t map results of the top 50 DEGs.
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FIGURE 3

Identification of AR-DEGs in GSE57338. (A) Venn diagram of 241 up-regulated DEGs, 201 down-regulated DEGs and 803 ARGs. (B) Boxplot of 15 AR-
DEGs in the HF and normal group. (C) Correlation heatmap of 15 AR-DEGs. The values of relative coefficients between genes with P-value <0.05 were
marked; blue represented positive correlation and red represented negative correlation. The darker the color, the larger the absolute value of the
correlation coefficient, indicating a stronger correlation.
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FIGURE 4

Enrichment analysis of 15 AR-DEGs. (A) Bar chart of Go enrichment results (Top 5). (B) Bubble plot of KEGG enrichment results (TOP10).
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enriched terms are “regulation of cell growth”, “cell growth” and

“inflammatory response”. In terms of the CC ontology, the AR-

DEGs were predominantly localized within the following

subcellular compartments: “vesicle,” “cytoplasmic vesicle,” and

“intracellular vesicle”. MF analysis showed that “icosatetraenoic

acid binding”, “arachidonic acid binding” and “icosanoid binding”

were the most significant items. According to the KEGG analysis,

the signal pathways were mainly enriched in the “IL-17 signaling

pathway”, “AGE-RAGE signaling pathway in diabetic

complications” and “NOD-like receptor signaling pathway”.
3.4 Machine learning screened for key
genes of AR-DEGs in HF

In order to obtain key genes in HF, we utilized the expression

matrices of 15 AR-DEGs to construct the best diagnostic model via

both LASSO regression and RF algorithms. The LASSO regression

algorithm further narrowed down their range and obtained a total

of 10 variables as key AR-DEGs (Figures 5A,B) (Supplementary

File 6). The RF algorithm prioritized the 15 AR-DEGs by

quantifying the importance of each gene (Figures 5C,D)

(Supplementary File S7). We took the top 10 ranked genes based

on their scores and intersected them with the 10 genes obtained

from the Lasso algorithm. This resulted in a final set of 8 genes

(SNCA, MAPK10, CXCL12, TPCN1, S1PR3, MAP2K1, S100A9,

CD38) (Figure 5E).
3.5 Validated by external dataset and
experiment

In the dataset GSE76701, we utilized the Wilcoxon test

methodology to identify high expression of SNCA and TPCN1 in

the HF group, while S1PR3, MAP2K1, S100A9, and CD38
Frontiers in Cardiovascular Medicine 06
showed lower expression. These findings were completely

consistent with the expression trend observed in GSE57338.

However, we did not find a significant difference in the

expression of MAPK10 and CXCL12 between HF and control

groups (Figure 6A). In the animal experiment, the relative

mRNA expression levels of Anp, Bnp, and β-Mhc were

significantly higher in the HF group compared to the Normal

group (Figure 6B). Following the calculation of

echocardiographic data, the EF of mice in the HF group was

only around 33%, whereas the normal group exhibited an EF of

approximately 64%. These findings collectively confirmed the

successful construction of the HF model (Figure 6C)

(Supplementary File S8). We found high expression of Tpcn1 in

the HF group, while Map2k1, S100a9, and Cd38 showed lower

expression levels that were consistent with the expression trend

observed previously in GSE57338. However, we observed no

significant difference between HF and normal groups in the

expression of Snca, Mapk10, Cxcl12, and S1pr3 (Figure 6D). The

inconsistency in the expression of these genes across external

datasets and animal experiments may be attributed to the

potential inter-species differences in the pathogenesis of the

corresponding genes. Therefore, further empirical investigation is

imperative to shed more light on this matter. Subsequently, we

intended to conduct further studies centered on the 4

differentially expressed key genes with significance: Tpcn1,

Map2k1, S100a9 and Cd38.
3.6 Immunoinfiltration analysis

In this study, we adopted the ssGSEA (single-sample gene set

enrichment analysis) algorithm to evaluate the level of

immunoinfiltration of these 28 immune cells in samples from HF

and normal groups and the results were visualized in the heat

map (Figure 7A).The faceted boxplot demonstrated that HF
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FIGURE 5

Machine learning screened for key genes of AR-DEs in HF. (A,B) Screening for key genes by LASSO regression model. The number of genes (n= 10)
corresponding to the lowest point of the curve is the most suitable. (C,D) The RF algorithm showed the error in HF and normal group and genes are
ranked based on the importance score. (E) Venn diagram showed 8 key genes were identified via the above two algorithms.
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patients had a higher level of activated CD4 T cell, activated CD8 T

cell, effector memory CD4 T cell and Type 2 T helper cell and a

lower level of activated dendritic cell, central memory CD4 T

cell, central memory CD8 T cell, effector memory CD8 T cell,

gamma delta T cell, immature dendritic cell, macrophage,

MDSC, natural killer T cell, plasmacytoid dendritic cell,

regulatory T cell, T follicular helper cell, type 1 T helper cell, and

type 17 T helper cell (Figure 7B). Figure 8 presents the

correlation relationship between 4 key genes and top 10

differential immune gene sets in the form of a correlation plot.

Here we only display the top five immune cells that show a

positive correlation with each gene, as well as the top five

immune cells that have a negative correlation with each gene.

The complete data is available in Supplementary File S9.
3.7 Screening for gene targeted drugs

The CTD database was used to screen gene targeted drugs

associated with the 4 key genes for HF in the NetworkAnalyst

3.0 platform, and 194 drugs predicted are shown in

Supplementary File S10. Based on the degree of proportionality
Frontiers in Cardiovascular Medicine 07
between gene-chemical associations, the analysis revealed that

Cyclosporine and Estradiol exhibit strong binding to the HF gene.
3.8 Transcription factor (TF)-gene
regulatory network establishment

Using the JASPAR TF binding site database, we constructed a

TF-gene regulatory network which included 20 nodes (4 seed genes

and 16 transcription factors) and 19 edges based on 4 key genes in

the NetworkAnalyst 3.0 platform. Among them, MAP2K1 and

TPCN1 are each regulated by 6 TFs, whereas CD38 is regulated

by 5 TFs and S100A9 by 2. The TF-gene regulatory network is

visualized in Figure 9 and more detailed information can be

obtained by referencing Supplementary File S11.
4 Discussion

HF constitutes the advanced phase of various cardiovascular

disorders, such as cardiomyocyte injury and death, fibrosis and

hypertrophy, inflammation reactions, neuroendocrine imbalance,
frontiersin.org
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FIGURE 6

Further validation of expression of 8 key genes. (A) Validation by dataset GSE76701. (B) The expression levels of Anp, Bnp, and β-Mhc in HF and normal
sample. (C) Representative echocardiographic images taken 28d post-Ang II. (D) Validation of expression of key genes between samples from HF and
normal mice (n= 3 per group) by RT-qPCR. *P < 0.05.
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etc. The management of HF predominantly involves symptomatic

and neuroendocrine therapeutic approaches. Among them,

neuroendocrine therapies, such as ACEI/ARB, β-blockers and

aldosterone receptor antagonists, have been scientifically

demonstrated to improve the prognosis of HF patients. However,

the 5-year survival rate for HF patients remains suboptimal (17).

Exploration of new intervention targets, pathways, and treatment

methods for HF is necessary.

In the development of HF, autophagy dysfunction can lead to

cardiomyocyte apoptosis, inflammatory response, and metabolic

disorder, thus promoting the progression of HF. Currently, there

is increasing research on the mechanism of HF and autophagy.

Research has shown that in elderly mice, the insulin-like growth

factor 1 receptor (IGF1R) can inhibit autophagic flux in the

heart, leading to an increase in hypertrophic cardiomyocytes and

hindering the recovery of heart function. However, low IGF1R

activity can consistently improve aging heart function and

myocardial bioenergetics in an autophagy-dependent manner.

The IGF1R exhibits higher signal activity in HF of humans (18).

In I/R injury, during ischemia, insufficient nutrient supply to

myocardial cells can activate autophagy through AMPK, thereby

maintaining energy production and promoting survival of

myocardial cells during ischemia. However, prolonged ischemia

can also suppress autophagic flux (19). During the reperfusion

phase, autophagy flux can be restored, while the recovery of

oxygen results in a noteworthy rise in the generation of ROS

which also stimulates autophagy flux in cardiomyocytes and

reduces cardiomyocytes loss and acute I/R injury (20). Every coin
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has two sides, the increase of ROS can also lead to an increase in

BECLIN 1 expression, which will activate autophagic flux. This

activation of autophagic flux is harmful and can lead to an

increase in I/R injury (19). In pressure overload-induced HF,

autophagy flux is also increased, and its role is both beneficial

and harmful. When stressed, increased autophagy flux can

exacerbate the production of myocardial fibrosis, leading to

myocardial hypertrophy (21). On the contrary, there are studies

proving that autophagy serves as an adaptive response to stress

overload, during which AMPK or metformin can enhance

autophagic response, thereby reducing myocardial hypertrophy

(22). The above mechanisms elucidate that autophagy is a

complicated process that exhibits notable dynamism. The

regulation of autophagy, either up or down, is largely contingent

upon the environmental factors that tissue cells encounter. The

degree of adjustment can also lead to different outcomes, which

poses many challenges for related research.

Our analysis commences at the level of gene, offering potential

insights for subsequent research endeavors. Based on the

GSE57338 dataset and 803 ARGs, we employed the R package

“limma” to screen for differentially expressed genes and

ultimately identified 4 key genes via a series of algorithms and

subsequent verification processes.

TPCN1 (Two Pore Segment Channel 1) is a gene that encodes

for a protein called two-pore channel 1. This protein belongs to the

family of two-pore channels, which are ion channels found within

the endolysosomal system of cells (23). TPCN1 is very important in

regulating calcium ion homeostasis and lysosomal function, and
frontiersin.org
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FIGURE 7

ssGSEA algorithm used to assess the level of immune infiltration between the HF and normal group in GSE57338. (A) Heat map results of the 28 kinds
of immune cells in each sample. (B) Facet boxplot results of the 28 kinds of immune cells in the HF and normal group.
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FIGURE 8

Correlation plot for 4 key genes and the top 10 immune gene sets. (A) TPCN1. (B) MAP2K1. (C) S100A9. (D) CD38.
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has been linked to various physiological processes such as

autophagy, apoptosis, and viral infection. The presence of TPC1

and TPC2 is critical to maintaining proper levels of basal and

induced autophagy in cardiomyocytes. On the contrary, the lack

of these proteins can lead to a decrease in cell viability under

stressful conditions (24). Studies on the mechanism of TPCN1 in

HF are not in-depth, but its effect on cardiomyocytes and its

relationship with autophagy can furnish different directions on

exploring HF.

The gene MAP2K1, responsible for encoding the MAP kinase

kinase protein, belongs to the category of dual specificity protein

kinases. This protein actively participates in the phosphorylation

cascade of the mitogen-activated protein (MAP) kinase pathway.

MAP kinases are integral to numerous cellular processes

including cell proliferation, differentiation, survival, and

apoptosis. MAP2K1 is also known as MEK1. In the signaling

hierarchy of a cardiac myocyte, the MEK1-ERK1/2 pathway is

likely to hold a central regulatory position (25). In a myocardial

ischemia-reperfusion model, the activation of ERK1/2 has been

found to reduce apoptosis caused by reperfusion injury,
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indicating that the MAP2K1 signaling pathway may provide

cardioprotective effects (26). Furthermore, the Raf/MEK/ERK

pathway is capable of regulating the expression levels of LC3B

and SQSTM1/p62 within cells, which act as important markers

for autophagy within cells (27).

S100A9 (S100 calcium binding protein A9) encodes for a

protein called S100A9 or Calgranulin B which is expressed by

various cells of the immune system and is involved in a range of

biological processes, including chemotaxis, antimicrobial activity,

and cell signaling. The translocation of S100A9 to the nucleus

allows for the regulation of MDSC differentiation by IL-10

secreted by macrophages, thereby achieving the role of protecting

against HF (28). In addition, S100A9 can directly induce

autophagy and apoptosis (29, 30).

CD38 (CD38 molecule) encodes for a non-lineage-restricted,

type II transmembrane glycoprotein and it also functions as an

enzymatic ectoenzyme. CD38 knockout mice were observed to

have a protective effect on the heart when subjected to ischemic/

reperfusion injury. This protective mechanism operates through

the activation of the antioxidative stress pathway mediated by
frontiersin.org
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FIGURE 9

The TF-gene regulatory network consisted of 4 key genes, 16
transcription factors and 19 edges. The degree of correlation
between TFs and genes were reflected by the depth of the color.
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SIRT1/FOXOs. CD38 also serves as a crucial factor in cardiac

hypertrophy by inhibiting SIRT3 expression and activating the

Ca2+-NFAT signaling pathway (31). Research has shown that

overexpression of CD38 can downregulate the expression of Rab7

and its adaptor protein, pleckstrin homology domain-containing

protein family member 1 (PLEKHM1). The loss of Rab7/

PLEKHM1 impairs autophagosome-lysosome fusion, which leads

to a blockade of autophagy flux and results in heart dysfunction

under H/I conditions. These findings indicate that targeted

inhibition of CD38 overexpression could be a promising

therapeutic strategy (32).

Moreover, we performed enrichment analysis on 15 AR-DEGs.

The results showed that significantly enriched GO terms were

“regulation of cell growth”, “inflammatory response”, and

“regulation of transport”, and signal pathways, such as “IL-17

signaling pathway”, “NOD-like receptor signaling pathway” and

so on. Autophagy serves as a mechanism for clearing out

dysfunctional or unnecessary materials within the cell and

recycling them for energy production and the maintenance of

cellular homeostasis, so it is essential in regulating cell growth

and coping with various stresses such as starvation, infection,

and inflammation (33). IL-17 (Interleukin-17) plays a vital role

in regulating cardiac disorders. The concentration of IL-17 in the

blood plasma was determined to be significantly elevated

amongst individuals with HF in comparison to those without the

condition. A negative correlation was found between the IL-17

levels and cardiac ejection fraction as well as fractional

shortening. An increase in IL-17 disrupts calcium handling and

cardiac remodeling via the NF-κB pathway, leading to impaired

cardiac function. Inhibiting the IL-17 signaling pathway may

become a potential treatment method for heart failure (34). In
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addition, IL-17 triggers autophagy by activating the ERK1/2-

Beclin-1-p62 pathway, while suppresses through the BCL2-

Beclin-1 and PI3K-GSK3β pathways. Conversely, autophagy

suppresses IL-17 production by activating p38 MAPK signaling

(35). The NOD-like receptor (NLR) signaling pathway is an

essential factor within the innate immune system that detects

and responds to microbial infection and cellular damage. NLRs

are a group of endogenous cytosolic sensors responsible for

detecting pathogen-related molecular patterns (PAMPs) and

danger-associated molecular patterns (DAMPs). When activated,

these receptors trigger a signaling cascade that ultimately leads to

the secretion of pro-inflammatory cytokines, chemokines, and

antimicrobial peptides (36). Many literatures indicated the NLR

signaling pathway exerted a strong effect in the heart (37, 38).

The vital role of the NLR pathway and its binding autophagy-

related pathways in the pathological development of HF has been

extensively studied (39, 40). These studies have offered insights

that can be used to delve into the mechanistic aspects of

autophagy-related HF.

Utilizing single-sample GSEA (ssGSEA), we investigated the

extent of immune infiltration present in each sample according

to a total of 28 immune cell types. Various T cells, including

activated CD4 T cells, activated CD8 T cells, effector memory

CD4 T cells, and Type 2 T helper cells, are positively correlated

with the progression of HF, providing insight into the role of

immune genes in the disease.

In addition, we constructed TF-gene regulatory networks and

predicted target drugs, such as Cyclosporine and Estradiol based

on 4 key genes of HF, which further expanded the scope of

research and offered valuable insights for the development of

novel drugs and precise clinical targeting therapies for HF.

This study is reliant on publicly accessible transcriptome

information from the database, as well as the acquisition of

autophagy-related genes from the same source. As the

investigation into the autophagy phenomenon deepens, our

understanding of the pathogenic mechanisms associated with

autophagy increases, and new genes with autophagy regulatory

functions are gradually being uncovered. However, due to the

delay in updating the autophagy gene database, it is challenging

to comprehensively include all autophagy-related genes in this

study. Consequently, it is inevitable that an increasing number of

positive genes will be overlooked over time, presenting a

significant limitation that warrants further exploration in future

research endeavors. In this study, animal modeling was

employed, and subsequently, tissue specimens were extracted for

gene testing. While the obtained results partially align with the

validation findings from external datasets, it is undeniable that

species variations can exert an influence on the ultimate

outcomes. This constitutes another noteworthy limitation of this

study. For future investigations, the collection of blood samples

from HF patients for testing could be considered. This approach

not only offers convenience in implementation and eliminates

species differences but also holds potential for significant clinical

translational implications. In addition, integrating the findings of

this investigation with single-cell sequencing and advancements

in multi-omics research is imperative. In future research
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endeavors, a more in-depth analysis should be conducted on the

molecular mechanisms of the 4 pivotal genes. This analysis will

be utilized to explore the diagnostic and prognostic potential of

these genes, as well as enhance our comprehension of

autophagy-related mechanisms involved in HF.
5 Conclusion

15 autophagy-related genes exhibiting differential expression in

myocardial samples of patients with HF were ascertained using the

GEO database. Furthermore, validation by the external dataset

GSE76701 and mouse HF models underscored the importance of

4 key genes, namely Tpcn1, Map2k1, S100a9 and Cd38, in the

pathogenesis and advancement of HF. The present findings

suggest that the identified genes have potential utility as

biomarkers or therapeutic targets for individuals with HF.
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