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Right heart failure can be defined as a clinical syndrome consisting of signs and
symptoms of heart failure resulting from right ventricular dysfunction. Function
is normally altered due to three mechanisms: (1) pressure overload (2) volume
overload, or (3) a decrease in contractility due to ischaemia, cardiomyopathy or
arrythmias. Diagnosis is based upon a combination of clinical assessment plus
echocardiographic, laboratory and haemodynamic parameters, and clinical risk
assessment. Treatment includes medical management, mechanical assist
devices and transplantation if recovery is not observed. Distinct attention to
special circumstances such as left ventricular assist device implantation should
be sought. The future is moving towards new therapies, both pharmacological
and device centered. Immediate diagnosis and management of RV failure,
including mechanical circulatory support where needed, alongside a
protocolized approach to weaning is important in successfully managing right
ventricular failure.
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Introduction

Right heart failure (RHF) can be defined as a clinical syndrome consisting of signs and

symptoms of heart failure resulting from right ventricular dysfunction (RVD) (1).

At its core is a progressive syndrome of systemic congestion when the right ventricle

(RV) cannot meet blood flow demands without excessive use of the Frank–Starling

mechanism (2). The function is usually by either pressure or volume overload, although a

direct decrease in contractility can play a role. Whatever the aetiology, RVD is associated

with increased morbidity and mortality.

The prevalence of RVF is often underestimated as it has been historically

underdiagnosed. However, the most common causative etiologies are well documented. It

is observed in 3%–9% of acute heart failure admissions, and the in-hospital mortality of

patients with acute RV failure ranges from 5% to 17% (3). In the special case of RVF

after LVAD implantation, the prevalence ranges from 9% to 40% (4).

Patients are especially vulnerable to RVD if they are more likely to experience sudden

changes in preload (e.g., renal replacement therapy or sepsis) or afterload (e.g., long-term

ventilation or coagulation disorders) (5).

Diagnosis of RV failure is more subtle than overt left ventricular dysfunction and is thus

often delayed, which worsens the prognosis. The combination of clinical risk assessment and
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the use of existing diagnostic methods such as echocardiography,

MRI (Magnetic Resonance Imaging), haemodynamic and

biochemical markers are the key to accurate, early diagnosis and

successful management.

Treating RV failure should be targeted at correcting the

underlying mechanism and therefore revolves around maintaining

adequate perfusion pressure, optimizing the preload and reducing

the afterload with the aim of improving the cardiac output.

Methods for fulfilling these goals include respiratory and

mechanical circulatory support in addition to medical therapy.
History

Up until the second half of the 20th century, the study of the

heart was disproportionally focused on the left ventricle (LV)

with the RV being largely neglected. In the early 1980s, a

growing interest in the study of the pathophysiology of the RV

emerged, leading to the development of new imaging techniques,

different surgical approaches, and an increase in the research of

hemodynamic parameters and study of the ventricular

interdependence (5). The appearance of special haemodynamic

situations, such as the management in the setting of a Heart

Transplantation (HTx) or Left Ventricular Assist Device (LVAD)

implantation, increased the incentive to understand the

pathophysiology of RV failure.

Recent advances in echocardiography and MRI have expanded

the knowledge in the field of the anatomy and physiology of the RV

and has shown how the mechanisms of left and right ventricular

failure are very different. However, despite these advances there
TABLE 1 Causes of right ventricular failure.

Acute RVF
Volume overload

Acute left-sided heart failure

LVAD implantation

Pressure overload

Acute pulmonary embolism

Hematological disorders (e.g., acute chest syndrome in sickle cell disease)

Decreased contractility

Acute myocardial ischemia

Fulminant myocarditis

Pericardial disease (tamponade)

Sepsis (can cause increased venous return and volume overload)

Post-cardiotomy shock

Reduced pericardial compliance

Chronic RHF
Exacerbation of chronic lung disease and/or hypoxia

Chronic pulmonary hypertension (groups 1–5)

Pericardial disease (constrictive pericarditis)

Arrhythmias (supraventricular or ventricular tachycardia)

Congenital heart disease (e.g., atrial or ventricular septal defect, Ebstein’s
anomaly)

Valvulopathies (e.g., tricuspid valve regurgitation, pulmonary valve stenosis)

Cardiomyopathies (e.g., arrhythmogenic right ventricular dysplasia, familial,
idiopathic)

Myocarditis or other inflammatory diseases

Frontiers in Cardiovascular Medicine 02
remain relatively few direct treatment strategies and few

evidence-based interventions available than for its left-sided

counterpart.
Pathophysiology

The normal function of the right ventricle is the result of

interplay between venous return (preload), PA pressures

(afterload), right ventricular myocardial contractility, pericardial

compliance and interventricular dependence (5). As such,

changes to any of these physiological parameters can result in

RV failure.
Acute right ventricular failure

Acute RV failure can therefore be divided based upon the

underlying physiologic mechanism, and these are summarized in

Table 1.

Increased pulmonary pressures leads to pressure overload,

caused by either primary problems of the pulmonary vasculature

(e.g., pulmonary embolism—PE) or as a result of acute left sided

failure. The structure of the RV makes it poorly adapted to

abrupt increases in upstream pressures and hence in the acute

phase, the right ventricle cannot easily adapt in a homeometric

fashion.

The pulmonary vasculature is high-compliance (i.e., it can

accept large changes in volume) but low pressure. As LaPlace’s

law would suggest, the RV is well suited to these conditions by

being thinner-walled and more compliant than the LV. This

leaves it exquisitely sensitive to increased afterload. A small

increase in afterload can cause a large reduction in stroke volume

without an increase in pressure generation (5).

Therefore, the RV does not cope well with acute increases in

upstream pressures—and RV ejection fraction (RVEF) is

inversely proportional to pulmonary arterial systolic pressure

(PASP), and hence increased afterload, in a manner which is not

replicated for the left ventricle (6). Adjustment of afterload is key

in the management of RV dysfunction.

Increased venous return can cause volume overload,

progressive dilatation and dysfunction. However, in contrast to

the response to pressure overload, the RV can adapt efficiently in

a heterometric manner and hence copes well with volume

overload. Examples of acute RV failure from volume overload

include LVAD implantation or aggressive fluid resuscitation,

especially in high output states such as sepsis.

Sudden reductions in contractility are often caused by

myocardial damage, as seen in RV infarction or myocarditis, or a

more global rhythm disturbance. This leads to reduced stroke

volume and progressive RV dilatation, which can precipitate a

negative spiral into tricuspid regurgitation, further dilatation and

LV impingement due to interventricular dependence (5).

This concept of interventricular dependence is especially

important when assessing the right ventricle. This can take the

form of either systolic or diastolic interaction. In the former, the
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interaction between the left and right sides is due to the contraction

of one ventricle assisting contraction of the other. Due to relative

muscle mass this effect is more pronounced for the RV: up to

40% of RV systolic pressure generation is due to LV contraction

(7). In contrast, diastolic interdependence occurs when the

ventricles compete for filling space. This can occur with non-

dilated cavities when the pericardium is non-compliant, such as

occurs acutely in cardiac tamponade (8) but can also occur when

RV pressure overload leads to diastolic filling disruption in the

LV, as occurs in large pulmonary emboli precipitating low

cardiac output states.

These pathophysiologic mechanisms do not exist in isolation;

rather they frequently co-exist. For example, a large posterior

myocardial infarction can cause acute mitral regurgitation (MR),

increasing pulmonary pressures, as well as reducing myocardial

contractility, and worsen RV function due to interaction between

the left and right ventricles.
Chronic right ventricular failure

The causes of chronic RV failure can be similarly subdivided by

the causative mechanism.

Any conditions causing chronic raised pulmonary pressures

will increase the afterload. This includes primary causes of

pulmonary hypertension as well as chronic left-sided heart

failure. Patients with right heart failure secondary to increased

pulmonary pressures have a poor prognosis (8).

Volume overload as a cause of chronic right heart failure is

often due to shunts, such as congenital heart disease, or right-

sided valvular regurgitation. Chronic right heart failure due to

either pressure or volume overload follows a similar course.

There is initially a compensatory phase that involves hypertrophy

and fibrosis. As the disease progresses there are various

metabolic changes including mitochondrial dysfunction and

fibrosis that leads to progressive RV dysfunction and dilatation (9).

As the RV dilates and becomes dysfunctional, it impinges on

the LV and causes reduced left-sided cardiac output. However, in
FIGURE 1

Correlation between pathophysiological mechanism and diagnostic tools.
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chronic pericardial diseases the reduction in left sided cardiac

output does not require RV dilatation; rather there is a

competition for space within a fixed volume pericardium.

Finally, several cardiomyopathies can lead directly to reduced

RV function by directly affecting contractility, including

arrhythmogenic right ventricular dysplasia (ARVD), dilated

cardiomyopathies and the long-term sequelae of myocarditis.
Diagnosis

Early diagnosis is key in successful management of RV

dysfunction, but it is often delayed or missed, possibly because

the clinical signs can be more subtle than LV dysfunction. It is

necessary to use a combination of clinical, echocardiographic,

laboratory and hemodynamic parameters to accurately recognize

the presence and underlying mechanism of RV failure.

Figure 1 shows the relationship between the diagnosis tools

and the pathophysiological mechanisms explained earlier.
Echocardiography

Echocardiography should be the first-line test in the assessment

of acute RV failure because it is fast, non-invasive, and can identify

life-threatening acute pathologies such as tamponade and PE.

There are several parameters that can help with the assessment

of the right ventricle.

Tricuspid annular plane systolic excursion (TAPSE) is the most

used and well-established parameter to evaluate RV systolic

function, however, it only assesses longitudinal contraction,

hence giving us only partial information about the RV function.

For example, TAPSE is not suitable after tricuspid valve

annuloplasty as it leads to an underestimation of RV systolic

function (10). Similarly, using tissue doppler parameters such as

RV S’ also offer only longitudinal assessment.

New echo techniques are shifting from qualitative to

quantitative evaluation (11). The most frequently used
frontiersin.org
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parameters of RV function, size and area are represented in

Figure 2. Both RV strain and 3D RV chamber quantification

have been shown to have strong prognostic capabilities (12).

There has also been a recent focus on using markers of venous

congestion as a surrogate marker of RV function, which is

especially useful in guiding fluid administration in the intensive

care setting (13).

As discussed previously, pressure readings are crucial in

diagnosis of acute RV failure. These include estimating PASP by

utilizing a combination of peak TR velocity, right atrium (RA)

size and inferior vena cava (IVC) dimensions, as well as

pulmonary valve (PV) acceleration time.

Visually, ventricular interdependence and septal bounce are

important clinical signs, especially in the context of pericardial

disease processes.

Once right ventricle dysfunction has been diagnosed,

echocardiography is also the most crucial tool in hunting for the

underlying aetiology, specifically common left heart failure and

valvular abnormalities. But it can also provide valuable

information regarding evolution of the disease and the impact of

treatment.
MRI

As a 3-dimensional, tomographic imaging modality with good

temporal and spatial resolution, MRI does offer advantages over
FIGURE 2

ECHO; echocardiography parameters: TAPSE, tricuspid annular plane systolic
ventricular end-diastolic diameter; IV, interventricular; LV, left ventricle; T
ventricular; FAC, fractional area change; EF, ejection fraction; HD, haem
pressure; PAPI, pulmonary artery pulsatility index; MI, myocardial infarction;
pressure, PA, pulmonary artery; PVR, pulmonary vascular resistance; JVP, jugu
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echocardiography and hence has become the gold standard for

assessing the morphological characteristics of RV function. It is

more accurate than echocardiography in measuring these

parameters, but this is only a marginal improvement because

modern echo is accurate and is more sensitive at assessing

pulmonary pressures. What sets cardiac MRI apart is the ability

to accurately characterize tissue properties (14). Therefore, if the

cause of right heart failure is due to reduced myocardial

contractility, cardiac MRI can differentiate clearly and accurately

between infarction, myopathies such as ARVD (Arrhythmogenic

Right Ventricle Dysplasia), or myocarditis, and hence direct the

treatment accordingly.

Apart from the myocardium, cardiac MRI also gives very

detailed imaging to differentiate between conditions causing

changes to the pre-and after load, such as congenital heart

defects as a cause of pulmonary hypertension (PH), or

chronically thickened pericardium. Velocity-encoded imaging

adds to the structural information to calculate flow through

valves or shunts (15), which can be used prognostically when

assessing PH (16).

Cardiac MRI does require expensive scanning equipment,

dedicated radiographers, is unsuitable for claustrophobic patients

or those who cannot breath-hold adequately, and patients with

older pacemakers (17). However, almost all implanted pacemakers

in the UK and Europe are now MRI compatible, but defibrillators

will require a dedicated cardiac physiologist to deactivate certain

therapies (such as anti-tachycardia therapies) during the scan (18).
excursion; RVEDD, right ventricular end-diastolic diameter; LVEDD, left
R, tricuspid regurgitation; IVC, inferior vena cava; RV, right ventricle/
odynamic parameters; RAP, right atrial pressure; CVP, central venous
LVAD, left ventricular assist device; PWCP, pulmonary capillary wedge
lar venous pressure; MRI, magnetic resonance imaging.
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Therefore, Cardiac MRI offers excellent characterization of

tissue and overall cardiac structure. While MRI can assess flow

through structures, it is best use as a complimentary adjunct to,

rather than a replacement for, echocardiography.
Biomarkers

There are no specific biomarkers for the diagnosis of RV

failure. The levels of frequently used biomarkers, such as B-

Natriuretic Peptide (BNP) or cardiac troponins depend on the

underlying pathology and clinical context in which RV failure is

presented. New biomarkers more specific for the diagnosis of RV

failure are currently under research (19).
Hemodynamic markers

Invasive hemodynamic measurement with a pulmonary artery

(PA) catheter is the most accurate method of assessing right-sided

filling pressures, contractility, and afterload. It provides continuous,

real-time data; however, it should be used for the shortest time

possible.

Parameters such as cardiac filling pressures, PA pulsatility

index (PAPi), RV stroke work index (RVSWI), Pulmonary

Vascular Resistance (PVR) and transpulmonary gradient (TPG)

offer prognostic information in patients with RVF (Figure 2).

PAPi, defined as PA pulse pressure/mean right atrial pressure

(mRAP), has shown prognostic value in a variety of patient

cohorts. These include assessment after LVAD insertion,

advanced heart failure populations including patients with

pulmonary arterial hypertension (PAH) and after acute

myocardial infarction (20, 21). Recently it has been shown to be

a predictor of mortality and major adverse cardiovascular events

in a very heterogeneous hospitalized population (22). In the

latter study there did not appear to be a specific cut-off but
FIGURE 3

Definitions and categorisation of PH using invasive haemodynamics. Table re
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rather a graded association of PAPi quartiles and mortality, with

those at the lowest faring worse.

RV stroke work index (RVSWI) is another prognostic

hemodynamic parameter. It is calculated by the following

equation: RVSWI = SVI × (mPA−mRAP) × 0.0136, where stroke

volume index (SVI) is calculated by the [cardiac index/heart

rate] × 1,000 (23, 24). A low RVSWI has been associated with

worse outcomes in several studies (25).

As discussed in the pathophysiology section, afterload is

extremely important in assessing RV failure. However,

pulmonary afterload is not a static process—as the RV contracts,

the compliance of the pulmonary arteries exerts an opposing force.

Hence pulmonary afterload encompasses both a “static”

element (which is the PVR) and a dynamic component (which

includes compliance (PC) and characteristic impedance) (26).

Often, PVR has been used as a proxy for afterload. However, it

only accounts for around 75% of pulmonary afterload (26). PVR is

defined as the difference between mean PA pressure and pulmonary

capillary wedge pressure (PCWP) divided by cardiac output. Some

attempts have been made to find proxy measurements using

echocardiography, such as the Peak TR velocity: LVOT VTI ratio

but are not accurate enough to replace invasive measurements.

PC accounts for around 20% of pulmonary afterload and can

be estimated by the ratio of stroke volume to PA pulse pressure

measured by right heart catheterization (27). Loss of compliance

is associated with factors that occur during worsening of PH

such as elastin and collagen reduction in proximal PAs (28, 29)

and is associated with parameters of RV failure including

hypertrophy and systolic dysfunction (30).

TPG allows the determination of the cause of right heart failure

if it coexists with pulmonary hypertension, where a high TPG

(>12 mmHg) and a low PCWP (<15 mmHg) point to a pre-

capillary cause and the reverse situation (TPG <12 mmHg and

PCWP >15 mmHg) point to a left-sided aetiology. A high TPG

and high PCWP co-exists in combined pre- and post-capillary

PH (Figure 3) (31).
produced from Humbert 2022 (ESC PH guidelines) (31).
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Finally, the concept of RV-PA coupling unifies many of the

points made above. The morphological adaptation of the RV to

increasing pulmonary pressures can only compensate to a certain

point (RV-PA coupling) before the RV can no longer

compensate. Several studies combining invasive haemodynamics

with echocardiographic markers of RV function have shown this

combination to be more predictive than RV function alone (32, 33).
Treatment

The management of RVF depends on the underlying

mechanism, for example thrombolysis if the cause is acute PE.

However, the overall management requires a similarly thorough

diagnostic evaluation and there is considerable overlap between

the therapeutic approaches (Figure 4).

1. Medical management

The medical management of RVF encompasses a combination of

pharmacologic and non-pharmacologic treatments to optimize

preload, reduce afterload with the goal of enhancing RV

contractility. Invasive monitoring via a Swan-Ganz catheter gives

critical information to allow timely treatment titration and

escalation (5).
FIGURE 4

ECHO; echocardiography parameters; CT, computered tomography; MRI, ma
artery; RC, right ventricle; LVAD, left ventricular assist device; IV, intravenous;
oxide; PGs, prostaglandins; ECMO, extracorporeal membrane oxygenation; R
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Management of acute RHF

1. Management of specific conditions

The diagnosis of specific conditions allows accurate and tailored

management. The most common specific causes of right heart

failure are:

(i) RV infarction—treated with reperfusion and fluid resuscitation

(ii) Pulmonary Embolus: anticoagulation and, if indicated,

thrombolysis or clot retrieval

(iii) Critically unwell patients: a homogenous group who require

careful volume management with a high output state into a

vasodilated system—can easily result in volume overload—

see “Preload optimization” section below. If ventilated, high

inspiratory pressures increase RV afterload, hence keep

inspiratory pressure as low as feasible.

2. Preload optimization

Although increases in afterload are often the primary cause of RV

failure, preload optimization is the initial target for therapy because

it is fast to initiate treatment, easy to monitor and has clear goal-

directed targets and is effective due to its interaction and effect

on RV afterload.
gnetic resonance imaging, CVC, central venous catheter; PA, pulmonary
MAP, mean arterial pressure; RRT, renal replacement therapy; NO, nitric

VAD, right ventricular assist device.
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Therefore, volume optimization is key, whether the patient

requires volume initially (such as RV infarct) or is volume

overloaded. At a minimum, care should be directed towards

maintaining a central venous pressure of 8–12 mmHg (5).

Historically, the RV was viewed as a passive conduction system

and hence was often managed by increasing volume and right atrial

pressures to increase pulmonary circulation. However, if the RV

begins dilating, especially in the face of increased afterload, wall

stress increases rapidly in such a thin-walled structure. This leads

to further dilatation, reduction in systolic pressure generation,

increased TR and impaired LV filling due to aforementioned

interventricular dependence. Myocardial ischemia, due to both

reduced CO and increased RV wall stress, and congestive

multiorgan failure can ensue (34).

The easiest and most effective method to reduce RV preload is

using a high-dose furosemide infusion to reduce right atrial pressure

to between 8 and 12 mmHg. The response must be rapidly assessed

to allow escalation in therapy or addition of thiazides, which

potentiate loop diuretics. Clearly, regular electrolyte monitoring is

mandatory due to the possibility of rapid shifts. The addition of

carbonic anhydrase inhibitors can improve any alkalosis resulting

from loop and thiazide diuretics (35).

Renal replacement therapy (RRT) is effective at removing

excess fluid. Although commonly initiated in diuretic resistant

patients, there is no clear evidence supporting their use in acute

RV failure. Thus, RRT should not be considered first-line

treatment but started after failure of diuretic therapy. It should

be conducted at a rate that allows an adequate shift of

extravascular to intravascular space (5).

In contrast, intravenous fluids are required in cases of

associated hypovolemia to reach the above-mentioned target, for

example in cases of RV infarction. However, if increased

afterload is the primary cause of RV failure, even if the patient is

volume deplete, this must be performed carefully and in small

increments otherwise decompensation is likely.

3. Afterload reduction

Specific afterload reduction therapies depend on the specific

pathophysiology, such as in pulmonary emboli or increased

ventilation, as discussed previously. In the absence of a specific

reversible cause, pulmonary vasodilators decrease pulmonary

vascular bed resistance leading to a decrease of RV afterload.
TABLE 2 Tailored MCS device for right ventricular failure.

pVA-
ECMO

pRVAD sRVAD Impella
RP

Ongoing CPR ++

Heamodinamically relevant
arrythmias

++

RV distension + inotropic
support

+ + ++

Inotropic support + respiratory
acidosis

+ ++

Perioperative RV failure + + ++

pVA-ECMO, peripheral VA-ECMO; pRVAD, peripheral RVAD; sRVAD, systemic

RVAD.
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Intravenous agents such as milrinone (see below) are effective

at both causing pulmonary vasodilation and increased

contractility, although it causes both pulmonary and systemic

vasodilation and hence can enhance hypotension.

Selective pulmonary vasodilators include inhaled or parenteral

epoprostenol (36, 37) or inhaled nitric oxide. The principal benefit

of inhaled agents is the absence of systemic adverse effects, mainly

hypotension. Nitric oxide administration (5–20 ppm) has showed

to be beneficial in terms of reduction of pulmonary vascular

resistance and increase of RV ejection fraction (38). Oral

phosphodiesterase-5 inhibitors have been used in RVF after

LVAD implantation in some small series (39).

They should not be administered in patients with postcapillary

pulmonary hypertension and RV failure before the left sided

problem (LV dysfunction, valve disease) has been addressed.

Increasing transpulmonary flow in patients with elevated left

atrial pressure may induce pulmonary oedema.

4. RV contractility enhancement

Regardless of the underlying cause of acute RHF, the endpoint is

increased wall stress and reduced myocardial contractility due to

both direct (such as overstretched myocytes) and indirect

mechanisms (including reduced perfusion and reduction in LV

function/output).

Inotropic agents, such as dobutamine or milrinone, that

increase myocardial contractility and RV cardiac output are the

two most frequently used. Milrinone has a more potent

pulmonary and systemic vasodilator effect than dobutamine and

is less likely to induce reflex tachycardia (40). As a result,

systemic hypotension is a frequent adverse effect of milrinone

requiring concomitant vasoconstrictors. Of note, milrinone is

cleared almost entirely by the kidneys and therefore renal

function must be carefully monitored during use and the

milrinone dose adjusted accordingly.

The shorter half-life of dobutamine and its mild vasodilator

effect may be consequently preferable in some patients.

Exceptions to starting these would include situations where RV

failure has been caused by myocardial ischemia and arrhythmia,

which may be exacerbated by inotrope use.

Levosimendan infusion also increases RV contractile function

and data support the use of this drug in treating RVF of various

etiologies (41). Noradrenaline primarily targets the α1 receptor,

causing vasoconstriction with limited β1 receptor stimulation and

cardiac inotropy. However, the β1 effects on contractility have

been shown to improve pulmonary artery/RV coupling in animal

models of RV dysfunction (42) hence could be an attractive

agent to use in conjunction with an inotropic agent.

Management of chronic RV failure

The management of chronic right heart failure follows similar

principles to those applied in acute RV failure.

1. Volume management

Diuresis is the mainstay of RHF treatment, using a combination of

diuretics (24). The aim of treatment is to reduce congestion and RV

volume overload whilst maintaining enough preload to support

adequate cardiac output. Regular renal function monitoring is
frontiersin.org

https://doi.org/10.3389/fcvm.2023.998382
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Monteagudo-Vela et al. 10.3389/fcvm.2023.998382
mandatory as excessive volume depletion can lead to pre-renal

failure.

2. Afterload management

The causes of increased afterload are heterogenous, and treatment

must be directed accordingly. For example, if left sided heart failure

with reduced ejection fraction is the cause of pulmonary

hypertension and right sided heart failure, optimal guideline-

based management including use of beta-blockers, ACE-

inhibitors, mineralcorticoid antagonists, ARNis and SGLT-2

inhibitor is indicated (24).

In situations of pulmonary hypertension, the management

should treat the specific underlying pathology. Describing the

treatment of each subclass of pulmonary hypertension is a

subspecialist area and is beyond the scope of this review. Group

I PAH are the most complex to manage, and their treatment

often constitutes a combination of diuretics, home oxygen (if

arterial pO2 < 8 kPa), calcium channel blockers, phosphodiesterase

type 5 inhibitors (e.g., sildenafil), prostacyclin analogues (e.g.,

Eproprostenol) and endotheline receptor antagonists (e.g.,

Bosentan, Ambisentan).

In Group IV patients suffering from chronic thromboembolic

disease, lifelong anticoagulation followed by consideration of

pulmonary endarterectomy by a specialist centre may be

indicated. Despite their profound therapeutic differences, all these

treatment approaches have the same goal, reducing RV afterload.

Similarly, RVF in patients with congenital heart disease,

including repaired tetralogy of Fallot, is common but again

beyond the scope of this review. Once diagnosed with right heart

failure in this context, immediate support should be sought from

a specialist adult congenital heart disease team.

2. Devices

When optimal medical therapy has not been effective, mechanical

circulatory support (MCS) may be beneficial. There are several

options that differ in the intensity and duration of support

offered, the intended approach of implantation and the need for

oxygenation. Current literature is limited to only small

prospective randomized trials (43).

(a) SHORT TERM SUPPORT. Considerations involved in

choosing the most appropriate device depending on the

clinical situation are shown in Table 2.

(i) Extracorporeal membrane oxygenation (ECMO): The first

decision to make is deciding between using veno-venous

(VV) ECMO and venoarterial (VA) ECMO. VV ECMO only

oxygenates and returns blood to the venous system.

Therefore, its use is limited to isolated RV failure due to

acute hypoxemic respiratory failure. In contrast, venoarterial

(VA) ECMO is the preferred option in situations of primary

RV injury or RV failure with concomitant LV failure. VA

ECMO supports the RV indirectly by reducing preload,

reducing RV wall tension, and providing oxygenated blood

to the coronary circulation (44). ECMO is especially useful

when cardiopulmonary resuscitation is ongoing because it is

relatively straightforward to insert peripherally, provides

respiratory support and unloads the pulmonary field.
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(ii) PROTEK DUO: This cannula-within-a-cannula device allows

for percutaneous, single venous access at the right internal

jugular vein. The double-lumen cannula consists of a 29 Fr

outer cannula and a 16 Fr inner cannula with a length of

46 cm allowing for right atrium drainage. The inlet is

positioned in the RA-SVC junction and the return in the

pulmonary artery. It can be used with or without an

oxygenator in case of respiratory failure (45) and it is

connected to an extracorporeal centrifugal pump. It is easy

to both position and explant and allows patient mobilisation

due to the jugular insertion.

(iii) IMPELLA RP: (Abiomed Inc., Danvers, MA) is a minimally

invasive percutaneous microaxial pump used to tackle RV

failure. It is used after left ventricular assist device

implantation, postcardiotomy or acute RV failure post

myocardial infarction (46) with FDA approval in 2017 for

up to 14 days. Complications include bleeding at the

insertion point and haemolysis or arrhythmias. These are

usually due to malpositioning or insufficient support. The

Impella RP was first evaluated in the RECOVER RIGHT

study showing an improvement in survival and reducing

morbidity in patients with RVF following LVAD

implantation (43). The post-approval study (PAS) (47) low

survival rates (28.6%) in comparison to those in the

premarket clinical studies (73.3%) triggered an alert letter

released by the Food and Drug Administration (FDA) (48).

However, when further analyzing these results, the issue

seemed to be frequent off-label Impella RP use, including

inappropriate patient selection in the PAS study. The PAS

subgroup that would have not qualified for the premarket

studies included patients likely to be in cardiogenic shock

for more than 48 h, those who had a cardiac arrest, or

suffered from a pre-Impella neurological event. This was

acknowledged in a more recent FDA update (49).

(iv) Extracorporeal magnetically levitated radial pump:

Levitronix® CentriMag® (Levitronix LLC; Waltham, Mass)

is a magnetically levitated centrifugal-flow pump designed

for temporary extracorporeal support. It can also work with

or without an oxygenator. It provides longer support than

the devices above mentioned. It is easy to implant and has

low risk of thrombosis, reduces pulmonary congestion, and

allows for early mobilization. However, its implantation and

explant usually require open surgery.

(b) LONG TERM SUPPORT: There are limited options for long-

term RV support and evidence is lacking. Devices implanted

surgically such as HeartWare or HeartMate 3, Berlin Heart

or extracorporeal magnetically levitated radial pump

(Levitronix) require invasive surgery for both implantation

and explantation.

(i) RVAD: In June 3, 2021, Medtronic announced the withdrawal

of the HeartWare Ventricular Assist Device (HVAD) from the

global market (50). Current data estimates that there are

4,000–5,000 patients on HVAD support in the community,

either as bridge for transplantation or destination therapy.

The Heartmate 3 (HM3) (Abbott Park, IL) has been recently

approved by the FDA for adult heart failure (51). These
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devices have been used to support chronically impaired RVs

but were originally designed for left ventricular failure. The

result is that the haemodynamics were designed for a high

pressure, low-compliance system and the devices are not

necessarily optimized for RV support. Thus, these devices

are used off-label and should be reserved for cases where the

RV is less likely to recover in the short term, and longer

support periods are required. Of note, the timing of RVAD

implantation plays a major role in the survival post RVF (52).

(ii) Total Artificial Heart (TAH): it is a biventricular pump that

replaces both native cardiac ventricles and all cardiac valves.

The SynCardia Total Artificial Heart (TAH, SynCardia

Systems, Tucson, AZ) is the only biventricular cardiac

replacement approved for bridge to transplantation by the

FDA and which carries the European Union CE mark (53).

3. Heart transplantation

Heart transplantation can be considered in cases of advanced

refractory chronic heart failure in those situations in which

optimized medical treatment, or any other management options

have failed.

Exclusion of all reversible causes and assessment of all

comorbidities must be established before transplantation can be

contemplated.

There are not many situations in which HTx is needed due to

pure RV failure. These can be summarized into arrhythmogenic

right ventricular cardiomyopathy and extensive ischemia of the

right territory.

Although outcomes after isolated heart transplantation are in

general exceptional [around 90% survival to 1 year (54)], studies

report that the presence of RVAD support before heart

transplantation is associated with a relative mortality hazard of

3.03 after transplantation (55). Moreover, preoperative

pulmonary hypertension and postoperative RV dysfunction are

associated with increased mortality (56).

4. Special circumstances: LVAD implantation

RV failure is one of the most encountered complications after

durable left ventricular assist device (LVAD). More than 30% of

patients experience acute RVF (57), which is the leading cause of

premature morbidity and mortality (58).

In the 2-year large MOMENTUM cohort, the prevalence of RV

failure was 34% in HeartMate 3 recipients; however, RVAD use was

low at 4.1% (59).

The mechanism is based on the sudden increase of preload to

the RV after the initiation of the LVAD. The interventricular

septum shifts to the left due to the RV dilatation and the

effective unloading of the LV caused by a working LVAD causes

a detrimental effect on RV contraction (60).

These increases in RV preload after LVAD insertion, though

subtle, can also unmask previously subclinical RV dysfunction (61).

Patients on ventilatory support or continuous renal

replacement therapy (CRRT) are at high risk for post-LVAD

RVF, similarly to patients with slightly increased INR, high NT-

proBNP or leukocytosis. High CVP, low RVSWI, an enlarged
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right ventricle with concomitant low RV strain also identifies

patients at higher risk (52).

Post LVAD RFV is a challenging complication with high rates

of morbidity and mortality. A minimally invasive approach to

LVAD implantation, such as bilateral thoracotomy might play a

role in protecting from RV failure (62, 63). This can be due to

reductions in blood loss, and preservation of RV geometry due

to the fact that the pericardium is not opened completely.
Future development

The current management of RVF remains suboptimal and

leaves much room for improvement. New therapies, both

pharmacological and device-centered, should be sought.

It remains of paramount importance to recognize RVF early,

understand the underlying etiology and manage appropriately

without delays.

Molecular imaging is a developing method based on the

existence of specific tracers that bind to molecules of interest.

The potential of this method relies in combining targeted

molecular imaging with quantification (64). Presently, there is no

data showing predictive value for heart failure after MI (65).

Moreover, research is focussing on specific biomarkers [e.g.,

inflammatory biomarkers (66)] for RV failure, as well as novel

hemodynamic indexes.

In a recent study by Wu et al., high-dose dapagliflozin (DAPA)

treatment attenuated RV structural remodeling, improved RV

function, increased the conduction velocity, restored the

expression of key Ca2+ handling proteins, increased the threshold

for Ca2+ and action potential duration alternans, decreased

susceptibility to spatially discordant action potential duration

(APD) alternans and spontaneous Ca2+ events, promoted cellular

Ca2+ handling, and reduced VA vulnerability in PAH-induced

RHF rats. Low-dose DAPA treatment also showed

antiarrhythmic effects in hearts with pulmonary hypertension-

induced RHF (67).

Despite the great advances in MCS in the last decades,

biventricular failure remains a challenge for physicians.

Moreover, timing the implantation of the devices remains one of

the most important targets in order to achieve good outcomes.

Delays in the diagnosis and device implantation is associated

with high rates of mortality mostly due to multiorgan

dysfunction. Likewise, durable devices specific for the treatment

of RVF with applicability to broader patient populations is

urgently needed. A recent multicentre study advocates

concomitant implantation of MCS for the RV at the time of

LVAD implantation, associating it with improved 1-year survival

and increased chances of RV support weaning compared to

postoperative insertion (68).
Conclusions

Whereas the right ventricle was once neglected and viewed as a

passive player in the circulation, this is not the case anymore, and
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there has been an increased focus on the diagnosis and treatment of

right heart disease over the last two decades. Research has focused on

its unique structure and function and has led to the development of

both medical and device therapies tackling preload, afterload and

myocardial contractility. As with all conditions, the key to the

successful management of acute right heart failure is prompt

diagnosis to allow timely treatment initiation.

The rapid development of short term MCS over the last decade

has certainly facilitated the treatment of RVF. The evolution

towards low profile-high output pumps allows the percutaneous

treatment of right ventricular failure when medical management

does not suffice. These include the minimally invasive

percutaneously delivered devices like Impella RP, ECMO and

Protek Duo.

Long-term devices and heart transplantation should be

reserved for those patients whose RV is unlikely to recover or are

likely to require longer support. MCS related mortality is limited

to bleeding and device complications, whereas the main

morbidity and mortality driver of untreated right heart failure is

multiorgan dysfunction (69). Therefore, this gives hope that as

devices, implantation techniques and weaning protocols improve

over time, mortality will surely follow suit.
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