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Echocardiography-based AI for
detection and quantification of
atrial septal defect
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Objectives: We developed and tested a deep learning (DL) framework applicable
to color Doppler echocardiography for automatic detection and quantification
of atrial septal defects (ASDs).
Background: Color Doppler echocardiography is the most commonly used non-
invasive imaging tool for detection of ASDs. While prior studies have used DL to
detect the presence of ASDs from standard 2D echocardiographic views, no
study has yet reported automatic interpretation of color Doppler videos for
detection and quantification of ASD.
Methods: A total of 821 examinations from two tertiary care hospitals were
collected as the training and external testing dataset. We developed DL models
to automatically process color Doppler echocardiograms, including view
selection, ASD detection and identification of the endpoints of the atrial septum
and of the defect to quantify the size of defect and the residual rim.
Results: The view selection model achieved an average accuracy of 99% in
identifying four standard views required for evaluating ASD. In the external
testing dataset, the ASD detection model achieved an area under the curve
(AUC) of 0.92 with 88% sensitivity and 89% specificity. The final model
automatically measured the size of defect and residual rim, with the mean
biases of 1.9 mm and 2.2 mm, respectively.
Conclusion: We demonstrated the feasibility of using a deep learning model for
automated detection and quantification of ASD from color Doppler
echocardiography. This model has the potential to improve the accuracy and
efficiency of using color Doppler in clinical practice for screening and
quantification of ASDs, that are required for clinical decision making.
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Abbreviations

ASD, Atrial septal defect; AUC, Area under the curve; A4C, Modified apical four-chamber view; CDI, Color
Doppler imaging; CHD, Congenital heart disease; CNN, Convolutional neural networks; DL, Deep learning;
PSAX, Parasternal short-axis view; ROC, Receiver operating characteristic; SC2A, Subxiphoid sagittal view;
SC4C, Subxiphoid four-chamber view; TTE, Transthoracic echocardiography.
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Introduction

It is estimated that in 2017, nearly 1.8 cases per 100 live births

are diagnosed with congenital heart disease (CHD) worldwide (1).

Atrial septal defect (ASD) is the second most common type of

CHD, accounting for approximately 6%–10% of cases (2). Most

patients with ASD are asymptomatic and may be identified as

an incidental finding during routine echocardiographic

examinations. Early detection of appropriately sized defects

known to lead to problems later in life can prompt timely

intervention and improve cardiovascular outcomes, avoiding

substantial disability and mortality (3, 4).

Transthoracic echocardiography (TTE) with Doppler flow

imaging is currently the most widely used noninvasive tool for

detecting the presence of an ASD, especially in children (5). TTE

cannot only be used to detect and quantify the size and shape of

the septal defect, but can also be used to measure the degree and

direction of shunting, changes of the size and function of the

cardiac chambers and detect abnormal pressures and flows

through the pulmonary circulation (6). However, accurate

detection and quantification of ASD features relies on

experienced, highly trained physicians which are in short supply,

especially in rural areas (7). Furthermore, the low prevalence of

disease and variability of image quality, number of acquired

views and interpretation of TTE images causes low sensitivity

and specificity of ASD detection (4), all of which hinder referral

for treatment. Therefore, an effective solution for efficient,

accurate and objective detection and grading of ASDs is critically

needed.

Deep learning (DL) models have been applied for automated

detection and assessment of cardiovascular diseases based on

echocardiographic images and videos. Such models can complete

a variety of tasks such as, image quality assessment, view

classification, boundary segmentation, disease diagnosis and

automatic quantification (8–12). However, there is no prior study

investigating the effectiveness of a DL model for detecting ASD

based on color Doppler images. Accordingly, we developed and

validated a DL model for automated detection and quantification

of ASDs (Figure 1).
Methods

Study population

This study involved algorithm development and initial testing

based on a retrospective data set, and final testing from a

prospective, real-world data set of consecutively acquired

echocardiographic studies. 396 TTE examinations obtained

between July 2020 and April 2021 from Anzhen hospital served

as our training dataset. A total of 425 consecutively obtained

examinations between May 2020 and Dec 2020 from the Chinese

PLA General Hospital were collected as the external testing set,

which including 48 ASD cases and 377 cases without ASD. The

age of all cases in both training and testing datasets was less than
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18. ASD diagnostic criteria were based on the 2015 ASE

guideline (6), as detailed below. The ground truth for the

presences of an ASD was based on the diagnosis present in the

electronic medical record and echocardiographic clinical report

which were provided by experienced echocardiography readers

and reviewed by cardiologists who authorized the final reports.

Other hemodynamically significant cardiac lesions (such as

tetralogy of fallot and valvular heart disease) were excluded.
Echocardiography

Each echocardiographic study was acquired through standard

methods. Four standard views were suggested by ASE guideline

for detection and quantification of ASDs (6): (1) the modified

apical four-chamber view (A4C); (2) the parasternal short-axis

view (PSAX); (3) the subxiphoid sagittal view (SC2A); and (4)

the subxiphoid four-chamber view (SC4C). These images were

acquired from a diverse array of echocardiography machine

manufacturers and models including Phillips iE-elite and 7C

with transducer S5-1 and X5-1 (Phillips, Andover, MA, USA),

Vivid E95 (General Electric, Fairfield, CT, USA), Mindray M9cv

with transducer SP5-1s (Mindray, Shenzhen, Guangdong, China),

Siemens SC2000 with transducer 4V1c (Siemens, Munich,

Germany). All images were downloaded and stored with a

standard Digital Imaging and Communication in Medicine

(DICOM) format according to the instructions from each

manufacturer.
View selection

We labeled 3,404 images to develop a method to classify 29

standard views, and then selected the 4 views required for

detection and quantification of ASD detailed above. View

selection was performed using a Xception Net neural network

model according to methods that were similar to those described

previously (8, 10, 13).
Segmentation

We selected 792 videos inclusive of the four standard color

Doppler views required for segmentation from among the ASD

cases. However, not every case had all four standard views,

restricted by the limitation of retrospective data and the

improper body position during examination. The atrial septum

and margins of the defects were annotated with the LabelMe

(Figure 2). In the modified apical four-chamber and subxiphoid

four-chamber views, we labelled the atrial septum from

atrioventricular valve to the roof of the atria (boundaries

indicated by the dots in Figure 2). In the parasternal short-axis

view, we labelled the atrial septum from aortic adventitia to the

roof of the atria. In the subxiphoid sagittal view, we labelled the

atrial septum from the bottom to the roof of the atria. We

labelled the defect based on the width of the shunt jet detected
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FIGURE 1

Work flow of the ensemble model. Step 1: raw echocardiographic videos are separated for classification of views (red box). Step 2: disease detection
models use different views to detect the presence of ASD (orange rectangles). Step 3: if ASD is present (denoted by “yes”), metrics associated with
severity of ASD are assessed (blue rectangles). DL, deep learning; ASD, atrial septal defect.

FIGURE 2

Example of manual segmentation. Green dots were manually labeled as the endpoints of atrial septum and defect with the open-source program
LabelMe. (A) Modified apical four-chamber view (A4C). (B) Parasternal short-axis view (PSAX). (C) Subxiphoid sagittal view (SC2A). (D) Subxiphoid four-
chamber view (SC4C).
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on color Doppler flow images and the anechoic area of atrial

septum in each view.
Detection of atrial septal defect

For the ASD detection task, videos were labelled as either ASD

or normal based on the electronic medical record and

echocardiographic clinical report. Each frame was resized to

240 × 320 pixels from 600 × 800 DICOM-formatted images. The

pixel value was normalized to between 0 and 1. No clipping or

interpolation operations were performed on frame numbers;

therefore, the number of frames used for the analysis differed

from video to video. To effectively increase the number of videos

for training, we employed affine transformations including

RandomShift (10%), RandomScale (10%) and RandomRotation

(20°). The batch size was set to 1 because of the difference of

frame number. Finally, we adopted the Adam optimizer with a

weight decay of 1e-5. The learning rate was set to 3e-5. All

models were trained on an Nvidia Tesla P100 GPU.

The ASD detection network architecture was shown in

Figure 3A. The model was based on the ResNet architecture

with modifications (14). First, we used a frame-based max pool

to fuse blood flow information in each frame. Second, we used

Atrous Spatial Pyramid Pooling (ASPP) to increase the visual

field of the convolution feature extractor. ASPP consisted of a

global average pool layer and four convolution layers with

dilation coefficients of 1, 4, 8 and 12 respectively. Third, we used

GroupNorm to replace BatchNorm since the batch size was

1. The loss function was binary cross-entropy. Finally, the model

could provide the ASD probability of each frame in the video.

Therefore, the frame with the highest probability would be

selected as the keyframe of model diagnosis. We have made our

code available at GitHub (15).
Quantification of atrial septal defect

For the quantification tasks, each frame was labelled with 4

points, two of which were the edges of the ASD, and the other

two were the ends of the septum. Each frame was resized to

240 × 320 pixels. The pixel value was normalized to between 0

and 1. For the training stage, we randomly clipped 16

consecutive frames as an input from the video. Because of the

large number of training epochs, we believed that the model had

fully learned the entire information for each training sample. For

validation and testing stage, each video was clipped into multiple

segments. According to the majority voting principle, we made

the prediction from those of segments. Each prediction took into

account all the video information and did not receive the impact

of randomness. We adopted the same affine transformation

described above. In this case, the batch size was set to 2. We

adopted Adam optimizer with a weight decay of 1e-5. The

learning rate was set to 3e-5. All models were trained on an

Nvidia Tesla P100 GPU.
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The quantification network architecture was shown in

Figure 3B. The networks architecture adopted UNet-style design

(16). There were two dilemmas in using deep learning to fulfil

the ASD quantification task.

Firstly, measuring the length of ASD was defined as a

segmentation task, so we also adopted the structure of 3D-UNET

(16). However, the performance was far less than expected.

Segmenting the area of atrial septal defect was not a routine

segmentation task. The common segmentation task assumes a

segmentation boundary in the image, but the atrial septal defect

was a disappearing region. Experienced doctors need to annotate

the region based on sequent images. Therefore, we defined the

task of quantifying ASD as key point detection since each key

point exists in the image. We continued 3D-Unet-style and

applied it to the task of key point detection.

The second point was how to make the neural network

perform similarly to the senior physician. We have made two

improvements: we have added different scales of auxiliary loss so

that the model was from coarse to fine for key point

identification; we found that the temporal convolution was

unsuitable for the ASD key point detection task in

echocardiography and therefore replaced it with a temporal

transformer to overcome the long-range dependence dilemma of

the frame dimension. The dependency dilemma can be described

as follows: the key point detection of unclear video frames

depends on the information obtained from the previous and next

video frames. Such unclear video frames were present in human

pose detection (17), for example, in the form of occlusion or

overlap. However, this occlusion or overlap exists for a short

period of time, usually no more than 3 consecutive frames. In

echocardiography, most of the frames were not clear enough.

Therefore, an experienced sonographer will prioritize the key

points in clear video frames and then identify key points in other

frames that were not clear enough. Convolution was a natural

local attention mechanism and was not global, so using

convolution to extract features will suffer long-range forgetting

dilemma. As a simple example, suppose we use a 3 × 3 × 3

convolution kernel for 3D convolution and we want the features

of frame i to fuse the features of frame j. If ji� jj � 1, then the

features of i and j were ready for fusion in the 1st convolutional

layer. If ji� jj � 3, then the features of i and j need to go to the

3rd convolutional layer before they can be fused with each other.

If the distance between frame i and frame j was long, the long-

range forgetting dilemma will occur. In order to allow the

features of clear video frames to be efficiently propagated

throughout the whole video, we use the temporal transformer

module. The structure of temporal transformer was shown in

Figure 3C. Firstly, CNN-based extractor extracted the feature

from each frame. In each temporal transformer module, the

feature was transferred to three parts, query (q), key (k) and

value (v). We calculated the correlation between q and k, which

was called self-attention. We had 16 frames (tokens) so that the

correlation map was 16 × 16. This map represented the

correlation between any two frames. Finally, we used the

correlation map processed by softmax as the weight, and sum the

value. For the whole model, we only downsampled in the spatial
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FIGURE 3

Detailed description of model architecture. (A) ASD detection neural network architecture, based on Resnet-18, combined with ASPP to increase visual
field. The output of the model is the probability of ASD between 0 and 1. (B) ASD quantification neural network architecture, combining spatial
convolution and temporal transformer, had three auxiliary outputs and one output from coarse to fine. Each auxiliary output is added to the feature
map as an additional feature. (C) Structure diagram of temproal transformer. Each frame is encoded into a feature token by CNN. Self-attention
could realize the long-distance dependence between frames. q, query; k, key; v, value.

Lin et al. 10.3389/fcvm.2023.985657
dimension, and did not downsample in the temporal dimension so

that for each temporal transformer block, the token number was

always 16.

In addition, we have made the following adjustments:

considering the cost of computation and time, we used the 2D

spatial convolution and temporal transformer to replace the 3D

convolution. Second, we used GroupNorm to replace BatchNorm

since the batch size was small. Video x [ RW�H�F (W means

width, H means height and F means frame) goes through

convolutional layers for feature extraction in W and H spatial

dimensions. Then the W and H dimensions were merged into

token T so feature map can be writen as f [ RW 0�H0�F or

f [ RT�F . The token of each frame was spliced with the

corresponding position code, and then can be used as the input

of the temporal transformer. The self-attention mechanism

follows the design of ViT (18). The model can be divided into 4

stages, each containing a spatial downsampling layer, spatial

convolution layers and a temporal transformer module.

The model provided an index of the “confidence” with which

the septal length was estimated. Confidence was calculated as the

percent of “stable frames” contained in the entire video. A frame

was designated as “stable” if the absolute difference of the AI-

predicted septal length from that of the prior frame divided by

the average length of the 2 frames was less than 0.5. The model
Frontiers in Cardiovascular Medicine 05
only calculated defect size and septal length based on the stable

frames. Specifically, septal length was calculated as the average

value of the lengths on all stable frames. ASD defect size was

calculated the largest value among all stable frames. Accuracy of

measurements of atrial septal lengths and defect sizes were

compared to those made by expert echocardiographers using

Bland & Altman analysis.
Statistical analysis

Analyses were performed using algorithms written in Python

3.6 from the libraries of Numpy, Pandas, and Scikit-learn.

Continuous variables were expressed as mean ± standard

deviation, median and interquartile range, or counts and

percentage, as appropriate. Comparisons of reports and machine

algorithm performances were performed using one-way analysis

of variance (ANOVA), followed by the least significant difference

(LSD) t-test. Results were regarded as statistically significant

when P < 0.05. The models were assessed according to the area

under the receiver operating characteristic (ROC) curves which

plotted sensitivity vs. 1-specificity derived from the model’s

prediction confidence score. All calculations were performed by

using IBM SPSS version 23.0.
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Results

Characteristics of study population

A total of 821 patients with transthoracic echocardiographic

examinations were included. The clinical and echocardiographic

characteristics of included cases were summarized in Table 1. In

the training dataset, patients with ASD had a median age of 3

years (IQR: 1, 10), 34.3% were male, and EF had a mean value

of 70.0 ± 5.0. In the external testing dataset, patients with ASD

had a median age of 1 years (IQR: 0, 9), 52.0% were male, and

ejection fraction (EF) had a mean value of 64.7 ± 5.3.
Model for view selection

As summarized in Supplementary Figure S1, the deep-

learning model identified four standard color Doppler views with

an average accuracy of 0.99, including apical four-chamber view

(0.97), parasternal short-axis view (0.99), subxiphoid frontal view

(0.99) and subxiphoid sagittal view (1.0).
Model for detection of atrial septal defect

For each echo-Doppler video, the ASD detection model

provided a probability level for the presence of an ASD; the

frame with the highest probability was tagged as the keyframe of

the video (examples shown in Supplementary Figure S2). The

ROCs for the detection of an ASD in each of the 4 views for the

external validation dataset were shown in Figure 4. The AUROC

for ASD detection ranged from 0.901 to 0.956 for the individual

views. The final diagnosis was made by the composite classifier

model, which had an AUROC= 0.92. Youden’s Index was used

to evaluate model performance, which yielded sensitivities of

87.8% and specificities of 89.4% (Figure 4 and Table 2).
TABLE 1 Baseline characteristics of the training and testing dataset.

Training dataset Testing dataset

ASD Control ASD Control
N 198 198 48 377

Age (years) 3 (1,10) 3 (1,6) 1 (0,9) 5 (1,13)

Male patients (%) 68 (34.3) 105 (53.0) 25 (52.0) 238 (63.1)

Height (cm) 112.6 ± 34.8 107.4 ± 28.3 88.6 ± 35.5 125.2 ± 35.2

Weight (kg) 26.9 ± 21.3 22.2 ± 14.7 16.5 ± 20.5 30.0 ± 22.5

Echo parameters
LV EF (%) 70.0 ± 5.0 70.0 ± 5.3 64.7 ± 5.3 65.6 ± 3.5

LV EDD (mm) 30.8 ± 7.4 34.6 ± 6.8 23.4 ± 9.8 33.4 ± 8.4

LV ESD (mm) 19.1 ± 6.5 21.0 ± 4.6 14.5 ± 6.9 20.7 ± 5.8

LA AD (mm) 21.8 ± 7.3 21.0 ± 5.0 16.4 ± 7.2 22.1 ± 5.6

E/A 1.7 ± 1.5 1.7 ± 0.5 1.6 ± 0.5 1.7 ± 0.5

ASD, atrial septal defect; LVEF, left ventricular ejection fraction; LV EDD, left

ventricular end-diastolic dimension; LV ESD, left ventricular end-systolic

dimension; LA AD, left atrial anteroposterior dimension.
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Model for quantification of atrial septal
defect

Examples of segmentation model outputs were shown in the

still image of Figure 5. As shown, the blue dots show where the

DL model identified the ends of the atrial septum, while the

orange dots show the model-identified edges of the ASD.

Examples of frame-by-frame segmentation throughout entire

videos, along with the model-derived measurements of the defect

size and rim lengths compared to those measured by the expert

physicians were shown in the videos provided in with online

supplement material. These videos show results obtained from

different echocardiographic views and different image qualities.

As detailed in Methods, the model provided an index of the

“confidence” with which the septal length was estimated.

Examples of results with different confidence levels were shown

in Figure 6. The quantification model had greater performance

in videos with higher confidence values; the relationships

between the absolute difference between AI- and expert-

determined septal length and ASD lengths as a function of the

confidence values were shown in Supplementary Figure S3.

Results of the Bland & Altman analysis comparing values

provided by the AI algorithm and experts’ measurements were

summarized in Figure 7. The mean bias for the measurement of

defect size and septum length were 1.9 and 2.2 mm. We also

recruited three experts to measure defect size and septum length

in the test dataset. As shown in Supplementary Figure S4, the

mean biases of defect size were respectively 1.5 mm, 2.3 mm,

0.3 mm, and the mean biases of septum length were respectively

0.8 mm, 2.1 mm, 1.2 mm. Despite the fact that inter-expert

variability was lower than the AI model bias, the difference was

insignificant. Therefore, we believed that the bias of algorithm is

comparable to that encountered in current clinical practice.

Applying these automatic measurements to the indications and

contraindications detailed in the 2015 ASE guidelines, we used the

model to predict whether a given patient should be referred for

transcatheter intervention (6). The results of the prediction were
FIGURE 4

The performance of ASD detection model in the external dataset. The
performance of composite classifier model (red curve) had an AUROC
of 0.92. Abbreviations as in Figure 1.
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TABLE 2 Model performance for ASD detection in different views.

AUC Sensitivity Specificity
Composite 0.921 87.8% 89.4%

A4C 0.901 85.0% 84.4%

PSAX 0.952 95.7% 91.9%

SC2A 0.952 91.3% 83.8%

SC4C 0.956 92.5% 92.3%

Abbreviations as in Figure 1.

Lin et al. 10.3389/fcvm.2023.985657
compared with the recommendations provided by an expert

physician, who applied his own manual measurements to the

guideline recommendations. The accuracy of model to predict

the expert’s conclusion was 85.4% (Supplementary Table S1).
Discussion

Echocardiography is the primary method for confirming the

diagnosis of an ASD, for defining its anatomic and physiological

characteristics and for deciding upon the need for and approach

to treatment. However, accurate interpretation of

echocardiograms for each of these purposes is in many respects

subjective and time-consuming, requiring highly skilled clinicians

which are not readily available in all hospitals. With the

advantages of objectivity, efficiency, accuracy and consistency,

deep learning (DL) models have been shown to be helpful in

interpreting medical images in many fields of medicine (19–21),

including echocardiography (8–12). However, ours is the first

study to employed DL model for accurate detection and

quantification of ASD through automated interpretation of color

Doppler videos.

As in most DL models applied to echocardiography, the first

step in our pipeline was echocardiographic view classification

(22–24). However, newly introduced in our study is a
FIGURE 5

The output of quantification model in different views. The first row, one exampl
and SC4C view; orange and blue dots are the endpoints of defect and septum
the variation of defect and septum in the video. Abbreviations as in Figure 1.
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classification model that includes color Doppler views. This

model automatically selected the guideline-recommended

echocardiographic views required for the detection and

quantification of ASD with a high degree of accuracy.

The next step was implementation of a DL model to detect the

presence of an ASD based on interpretation of the color Doppler

views. This model also proved to be accurate, with high levels of

sensitivity and specificity for disease detection. Similar degrees of

detection accuracy were reproduced in all four echo-Doppler

views examined and the AUC of the composite classifier model

reached to 0.92. In addition, to address the “black box” problem

and improve the interpretability, our model also automatically

identified the key frame which can be provided to the clinician

as a reference for final diagnosis and manual verification.

Accordingly, the model has the potential to be used as a

screening tool to aid doctors in identifying patients with an ASD,

particularly in geographies where access to expert clinicians is

limited.

Following view selection and disease detection, the final step

was automated quantification of ASD size and the length of the

residual rim; these are critical for determining the need for, and

choice of treatment: transcatheter intervention or cardiothoracic

surgery. To make these measurements, the quantification model

automatically located the endpoints of the atrial septum and of

the defect. In order to ensure the stability and reliability of

automated quantification, the model generated an index of

“confidence” with which the septal length was estimated.

Naturally, the quantification model had greater performance in

videos with higher confidence values. The performance of the

algorithm was assessed by the bias of measurement of defect size

and septum length, which provided a quantitative index of the

degree of concordance between the DL model and expert

physicians. Values of bias achieved by the model were low.

Because the model explicitly detected and displayed the location

of endpoints of the septum and defect, physicians can readily
e test image of patients with ASD is shown respectively in A4C, PSAX, SC2A
predicted by DL model. The second row, corresponding curves showing
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FIGURE 6

The output of quantification model with different confidence levels. The first row, one example test image of A4C view is shown respectively with the
confidence of 0.9, 0.7, 0.5 and 0.3. The second row, corresponding curves showing the variation of defect and septum in the video.
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verify the accuracy of the DL algorithm on a case-by-case basis. All

these features are illustrated in the videos provided on the online

supplemental material.

Finally, we note that whereas the metrics of defect and rim size

are helpful for deciding between use of a transcatheter or surgical

intervention, such decisions are not made based on these metrics

alone. According to society guidelines (6) such decisions should

be made based on additional metrics and other imaging

approaches, such as transesophageal echocardiography and three-

dimensional imaging. While this tool has potential utility in

areas where access to expert physicians is limited, the method

was trained and validated on images acquired by experts. So its

translation to resource-limited environments might require

additional adaptations to give real-time feedback on image

quality if datasets are acquired by individuals with limited

specialization in echocardiography of congenital defects.
FIGURE 7

Comparisons of quantitative metrics derived from the deep learning (DL) algori
compare automated and manual measurements for septum length and defec

Frontiers in Cardiovascular Medicine 08
Related work

Recent studies have shown remarkable performance of deep

learning models in diagnosing ASDs (25–28). Wang et al.

proposed an end-to-end framework which automatically analyzed

multi-view echocardiograms and selected keyframes for disease

diagnosis. As a result, the framework differentiated ASD, VSD

and normal cases with an accuracy of 92.1% (25). Rima et al.

used fetal screening ultrasound to train a DL model for these

tasks, including view selection, segmentation and complex

congenital heart disease detection. In the test of 4,108 fetal

sonograms, the model achieved an AUC of 0.99 in distinguishing

normal from abnormal hearts, which was comparable to expert

clinicians’ performance (26). Zhao et al. developed a variant of

U-Net architecture to segment the structure of the atrial septum

in magnetic resonance images of pre- and post-occlusion ASD
thm and physician based on bland and altman analysis. Bland-Altman plots
t size in A4C, PSAX, SC2A and SC4C view. Abbreviations as in Figure 1.
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patients, with mean Dice index of 0.81 (27). Mori et al. proposed a

DL model that used electrocardiograms (ECGs) to detect the

presence of ASDs. This model outperformed 12 pediatric

cardiologists in diagnosing ASD from ECG interpretations, with

an accuracy of 0.89 (28). However, ours is the first study to detect

the presence of an ASD based on multiple color Doppler views

and to automatically identify the margins of the atrial septum and

the margins of the ASD in order to provide quantitative

measurements of ASD size and rim size. These represent

significant advances since quantification of these anatomic features

of an ASD are critical for determining treatment. Specifically,

according to the 2015 ASE guideline (6), echocardiography

provides important information for deciding on whether or not to

treat an ASD and whether the defect is most suitably treated by

transcatheter or surgical techniques. In this regard, studies have

shown that ASD diameter measured directly at surgery is most

accurately estimated by color flow Doppler echocardiography,

while significant errors can arise if measurements are estimated

from standard 2D echocardiograms alone (29).
Limitations

The results of our study need to be considered within the

context of several limitations. First, all of the images were

acquired by transthoracic echocardiography (TTE) rather than

transesophageal echocardiography (TEE), as most of the included

population were children who cannot tolerate TEE examination.

Additionally, patients did not undergo cardiac computed

tomography or magnetic resonance imaging, which can provide

more detail information of ASD anatomy. Second, the training

and testing dataset is based on images obtained from children.

Despite the low prevalence, the algorithm performed very well to

identify and quantify the sizes of these ASDs. This indicates that

the absolute size of the heart does not influence accuracy of the

model since the images are ultimately scaled to the same pixel

dimensions with adequate special resolution. Third, limited by

the retrospective nature, the study included a relatively small

number of patients. Although our model achieved good

performance in the external test set, testing of the model in a

prospective multi-center cohort is warranted. Finally, the “black

box” problem of our DL algorithm poses an inherent

impediment to acceptance into clinical practice because of the

opaqueness on how diagnoses are made. To overcome this

limitation, we implemented an algorithm which provided

keyframe selected by the DL model and identified the endpoints

of defect and the septum on the images. This is intended to

promote physician confidence in the model-based diagnoses and

measurements. Even then, it is emphasized that the algorithm is

intended to assistant, not replace, physician decision making.
Conclusion

We developed and validated a novel deep learning model

applicable to color Doppler echocardiography for automatic
Frontiers in Cardiovascular Medicine 09
detection and quantification of atrial septal defect and rim sizes.

This model has the potential to improve the accuracy and

efficiency of color Doppler echocardiographic screening and

quantification of ASDs.
Perspectives

Competency in patient care and procedural
skills

Echocardiography is the most commonly used non-invasive

imaging tool for detection and quantification of atrial septal

defects. Manual evaluations of echocardiographic videos required

highly skilled clinical experts and is a time-consuming process.
Translational outlook

Algorithms based on deep learning approaches have the

potential to automate and increase efficiency of the clinical

workflow for detecting atrial septal defects and measuring the

size of defect and the residual rim.
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