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Platelet-monocyte aggregates:
molecular mediators of
thromboinflammation
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Platelets, key facilitators of primary hemostasis and thrombosis, have emerged
as crucial cellular mediators of innate immunity and inflammation. Exemplified
by their ability to alter the phenotype and function of monocytes, activated
platelets bind to circulating monocytes to form monocyte-platelet aggregates
(MPA). The platelet-monocyte axis has emerged as a key mechanism
connecting thrombosis and inflammation. MPA are elevated across the
spectrum of inflammatory and autoimmune disorders, including
cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19,
and are positively associated with disease severity. These clinical disorders are
all characterized by an increased risk of thromboembolic complications.
Intriguingly, monocytes in contact with platelets become proinflammatory and
procoagulant, highlighting that this interaction is a central element of
thromboinflammation.
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Introduction

Platelets interact and bind to monocytes by a variety of mechanisms, including

attachment of platelets to monocytes via platelet P-selectin and monocyte PSGL1, the

release of platelet granules containing chemokines and cytokines, and shedding of

platelet-derived microvesicles. These interactions result in the upregulation of monocyte

proinflammatory surface markers (e.g., CD40), migration (CD11b/CD18), and

procoagulant tissue factor (TF), a principal initiator of coagulation. In addition,

monocytes exposed to platelets secrete proinflammatory cytokines (TNF-α, MCP-1, IL-1β)

and exhibit a proinflammatory transcriptome. Furthermore, platelets skew monocyte and

macrophage differentiation towards a proatherosclerotic phenotype.

Our review covers how platelets affect monocytes in inflammatory diseases, and we

present recent findings on potential therapeutic strategies to target the platelet-monocyte

proinflammatory axis in thromboinflammation.
Platelets in hemostasis and thrombosis

Derived from megakaryocytes, platelets are small, anucleate cells circulating in the

blood for seven to ten days. While crucial to hemostasis and thrombosis, an

immunomodulatory effector role for platelets is increasingly apparent (1). Under

physiological conditions, circulating platelets become activated when they come in
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contact with subendothelial collagen following vascular injury.

Exposed collagen attaches to von Willebrand factor (VWF) - a

large globular multimeric glycoprotein - which then unfolds to

a string-like structure. Platelets adhere to tethered VWF via the

glycoprotein (GP) Ib-IX-V receptor complex (2) or directly via

collagen through the GPVI receptor. Interaction of platelets

with collagen and VWF results in platelet activation as shown

by changes in the platelet cytoskeleton and release of cytokines,

chemokines, and growth factors stored in alpha and dense

granules (3). Adenosine diphosphate (ADP) derived from

platelet dense granules and thromboxane A2 (TXA2) produced

by activated platelets out of arachidonic acid, and other

mediators including epinephrine and thrombin generated on

the platelet membrane amplify and maintain the initial platelet

response by recruiting and activating additional platelets.

This ultimately leads to activation of the integrin complex

GPIIb/IIIa, a key receptor for platelet adhesion, aggregation,

and thrombus stabilization (4). As a result, activated platelets

adhere to the vessel wall and form a thrombus, thereby

preventing excessive blood loss at the injury site.

In addition to local platelet activation required for

thrombosis and wound healing, platelets have effector roles in

systemic inflammatory conditions. Platelet activation has been

observed in sepsis (5–9), autoimmune disorders (10–14), and

chronic proinflammatory conditions, including hyperlipidemia

(15–17), atherosclerosis (18–22), and cardiovascular disease

(22–26). Resultantly, patients with these diseases express

elevated levels of circulating proinflammatory cytokines and

chemokines and are also prone to thromboembolic

complications (17, 27–29).
The role of monocytes in
thromboinflammation

Monocytes originate in the bone marrow and constitute a

subpopulation of approximately 10% of all peripheral blood

leukocytes. Monocytes are key mediators of innate immunity.

They phagocytose and present antigens, secrete chemokines and

cytokines, and can terminally differentiate into different

macrophage and dendritic cell subtypes that reside in the

extravascular tissues (30, 31).

Based on the expression of surface markers CD14 and CD16,

circulating monocytes are traditionally classified as either classical

(CD14++ CD16−), intermediate (CD14+ CD16+), or nonclassical

(CD14+ CD16++) subpopulations that exhibit different functional

properties (32). While classical monocytes are phagocytic, CD16+

monocytes are often upregulated in systemic infections,

constituting the major cytokine source (33).

The interaction of platelets with monocytes has emerged as a

key mechanism connecting thrombosis and inflammation. In

support of a proinflammatory and procoagulant platelet effector

function, monocyte-platelet aggregates (MPA) are elevated in

multiple thromboinflammatory diseases and correlate with

disease severity (34). To be able to bind to monocytes, platelets

need to become activated (35, 36).
Frontiers in Cardiovascular Medicine 02
Platelet activation during inflammation

Inflammatory mediators such as complement factors (37),

interleukin-6 (IL-6) (38), IL-8 (39), and tumor necrosis factor-

alpha (TNF-α) (40) secreted from activated immune and vascular

cells contribute to platelet activation by enhancing their adhesion

properties to endothelial cells, elevating collagen-induced

aggregation, and enforcing release of TXA2.

Under inflammatory conditions, platelet-activating agonists

such as TXA2, ADP, and thrombin bind to heterotrimeric G

protein-coupled receptors (GPCR) expressed on the platelet

surface. GPCR consist of different transmembrane spanning G

proteins (GS, Gi, Gq, and G12/13) that are associated with platelet

receptors including the ADP receptors P2Y1 (Gq) and P2Y12

(Gi), the thrombin receptors PAR1 (Gq, G12/13) and PAR4 (Gq,

G12/13), and the TXA2 receptor (TP; Gq, G12/13) (41). Upon

ligand binding, GPCR induce receptor-specific interconnected

signaling pathways that lead to platelet alpha and dense granule

release and activation of GPIIb/IIIa (inside-out signaling) (42).
Pathways of platelet-monocyte
interaction in inflammation

Following platelet activation, P-selectin (CD62P) stored in alpha

granules translocates to the platelet surface. Platelet P-selectin binds

to glycoprotein ligand 1 (PSGL1) which is constitutively expressed

on the surface of monocytes. This initial engagement of platelets

with monocytes is strengthened by platelet CD40L binding to

monocyte CD40, platelet GPVI binding to extracellular matrix

metalloprotease inducer (EMMPRIN, CD147) (43) and platelet

GPIb attaching to monocyte CD11b/CD18 (MAC-1) (44).

Fibrinogen-mediated binding of platelet GPIIb/IIIa to MAC-1 has

also been discussed (45) but appears to play only a minor role in

the formation of MPA (46). In addition to platelet and monocyte

receptor binding, platelets attract monocytes via chemokines and

cytokines released from alpha and dense granules, including soluble

CD40L (sCD40L) (47, 48), CXCL4 (platelet factor 4) (49), and

CCL5 (50). Platelet-derived extracellular vesicles (PEV) including

platelet microparticles, microvesicles, and exosomes are tiny

circular fragments shed from the platelet membrane, and have

been shown to regulate monocyte properties (51–53).

Interaction of platelets with monocytes by direct cell-to-cell contact

and platelet-derived mediators facilitates the transition of monocytes to

a proinflammatory and procoagulant phenotype. In the following

sections, we will outline the different mechanisms by which platelets

modify monocytes, and summarize how these mechanisms contribute

to inflammation and thrombosis in the clinical setting (Figure 1).
Activated platelets modify the
phenotype of circulating monocytes

Monocyte subtypes as defined by their expression of surface

markers CD14 and CD16 can be modified by platelet interaction:
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FIGURE 1

Platelets interact with circulating monocytes by direct attachment onto the monocyte surface, by release of alpha and dense granules containing
chemokines and cytokines, and by shedding of microvesicles. Monocytes in turn upregulate inflammation markers on their surface, overexpress
proinflammatory transcripts, secrete chemokines and cytokines, show enhanced migration potential, and differentiate into proinflammatory
macrophages. Created with BioRender.com
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Platelets appear to preferentially bind to CD16-bearing monocytes

(16, 54). When bound to platelets, classical (CD14++CD16−)

human monocytes upregulate surface CD16 - likely via platelet-

derived transforming growth factor-β (TGF-β) inducing

cyclooxygenase 2 (COX-2) upregulation and prostaglandin E2

synthesis in monocytes (55–57). High levels of antigen

presenting-related molecules and secretion of proinflammatory

cytokines and chemokines characterize these monocyte

populations. In support of a proinflammatory platelet effector

role, intermediate monocytes are expanded in various

inflammatory disorders (34). Several other monocyte activation

markers linked to atherosclerosis and inflammation are higher

expressed on monocytes attached to platelets than monocytes

without adhered platelets, including CD11b/CD18, CD40, PSGL1,

HLA-DR, CD86, CD54, and CCR2 (34, 58).

Findings from several studies support a platelet-mediated

proinflammatory monocyte phenotype (59). For example,

activated platelets adhering to monocytes via the P-selectin

PSGL1 axis in combination with alpha granule-released,

CD40L, CXCL4 and CCL5 induce expression and secretion of

monocyte chemoattractant protein-1 (MCP), IL-8, TNF-α, IL-

1β, and IL-6 (50). Another proinflammatory mediator secreted

by activated platelets is beta (β)-2 microglobulin which has

been shown to induce CD16+ monocytes and augment

monocyte inflammatory cytokine secretion (60, 61). β-2

microglobulin is also a component of the physiologic plasma

compartment. Hence, the composition and interplay of platelet

granule-derived and plasma molecules within the close

monocyte-platelet interaction may shape the monocyte

outcome rather than single molecular mediators. For example,

β2 microglobulin and platelet TGF-β exert their effects on the

same monocyte receptor but through different downstream
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signaling cascades, leading to different (proinflammatory vs.

pro-reparative) monocyte phenotypes (61).

Intriguingly, monocytes attached to platelets have increased TF

expression on their surface (62), resulting in thrombin-mediated

fibrin generation and clot formation (63). Under physiologic

conditions, TF is expressed on monocytes in an encrypted (inactive)

form but can be decrypted (activated) into its procoagulant

isoform upon proinflammatory stimuli (64). Activated platelets

induced rapid TF upregulation on monocytes (65). This is mediated

by platelet-bound P-selectin and does not require de novo protein

synthesis (65) albeit incubation of monocytes with soluble

P-selectin or platelets over several hours has been shown to induce

TF (F3) gene expression (66). Additionally, soluble P-selectin shed

from activated platelets contributes to the formation of

procoagulant MV (67), emphasizing the contribution of platelets to

coagulation activation.

Exposure of circulating monocytes to platelets also affects and

modulates their subsequent differentiation into tissue-resident

macrophages and dendritic cells: For example, platelets - via

direct P-selectin-PSGL1-mediated cell-cell interaction - induced

maturation of monocytes into antigen-presenting dendritic cells

(68). In a murine sepsis model, activated platelets polarized

monocytes toward proinflammatory M1 macrophages (69, 70).

This reprogramming was initiated as soon as platelets attached to

the monocyte surface and could not be altered later on during

the differentiation progress (69). Hence, depending on the

underlying pathogenesis, platelets shape the monocyte effector

function in circulation and define the fate of macrophage

recruitment into extravascular tissues. Platelet-mediated

macrophage polarization plays an important role in chronic

inflammatory diseases such as atherosclerosis and will be

outlined further in the upcoming section.
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In summary, activated platelets are required to accelerate

monocyte-driven inflammation and thrombosis, two tightly

interconnected pathogenic mechanisms that profoundly impact

on cardiovascular disease (CVD) and beyond.
Monocyte-platelet interaction in
atherosclerosis and cardiovascular
disease

Atherosclerosis is the underlying pathology in most cases of CVD

including myocardial infarction (MI), stroke, and peripheral artery

disease (PAD) (71). Atherosclerosis is a chronic non-resolving

inflammatory disease characterized by the formation of lipid-rich

calcified plaques within the arterial wall of large and medium-sized

vessels due to transmigration and accumulation of activated

proinflammatory immune cells consisting of macrophages and

T cells. Rupture or erosion of an unstable atherosclerotic plaque

results in life-threatening thromboembolic events.

While low MPA levels of around 5%–20% are a normal

phenomenon observed in healthy populations (54, 72), their rise

is indicative of inflammatory processes and is associated with

atherothrombotic complications: Patients with PAD and CVD

and/or cardiovascular risk factors, including diabetes mellitus

(DM), arterial hypertension and hyperlipidemia exhibit elevated

levels of circulating MPA (36, 47, 54, 73–75). Elevated levels of

MPA in patients with acute MI were further increased in patients

that developed in-hospital adverse events (74).

Circulating monocytes in CVD and other chronic inflammatory

disorders are characterized by elevated expression of CD40, a

member of the TNF receptor superfamily (76). Proinflammatory

cytokines including IFN-γ, IL-1, and TNF-α induce upregulation

of monocyte CD40, and monocytes attached to platelets have

higher CD40 expression on their surface (34, 77). Importantly,

CD40 is a receptor for CD40L which is on the surface of and a

marker for activated platelets (48). CD40L-CD40 interaction does

not only stabilize MPA but also enhances monocyte migration

into the arterial wall (19, 78). CD40-activated macrophages then

secrete inflammatory cytokines and matrix metalloproteinases,

thereby contributing to plaque destabilization and rupture. In a

murine atherosclerosis model, CD40 deficient mice had lower

MPA and platelet-mediated leukocyte-endothelium interactions

resulting in decreased plaque formation (19). In response to CD40

binding, platelet CD40L is shed from activated platelets into the

circulation, which further augments platelet activation (79–81).

Notably, platelet-derived CD40L contributes to P-selectin-mediated

TF upregulation on monocytes (82, 83). TF expressing

macrophages, as well as elevated levels of circulating TF, have

been observed in patients with atherosclerosis (84, 85), metabolic

cardiovascular risk factors (86–88), and in acute coronary

syndrome (89–91).

CXCL4 is one of the most abundant chemokines released from

alpha granules upon platelet activation (92). Importantly, CXCL4

has been detected in human carotid atherosclerotic plaques and

positively correlates with lesion grade and presence of clinical

symptoms (19, 93). The pathogenic role of CXCL4 in
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accelerating atherosclerosis is mediated, in part, by augmenting

the arrest of monocytes on endothelial cells in conjunction with

CCL5 (RANTES) (94).

Platelets not only induce attachment and facilitate

transmigration of monocytes into the subendothelial space (95)

and into atherosclerotic lesions (20) but also shape the subsequent

macrophage phenotype: Monocytes exposed to platelet-derived

CXCL4 differentiate into proinflammatory M4-type macrophages,

which have been suggested as crucial contributors to plaque

rupture in coronary artery disease (96). In vitro studies and

murine models of atherosclerosis demonstrated that oxidized low-

density lipoprotein (oxLDL) generated under chronic

inflammatory conditions promoted platelet-monocyte interaction

with subsequent monocyte extravasation and foam cell formation

(16). Foam cells are lipid-laden macrophages that are a major

constituent of atherosclerotic plaques (97).

Findings from our group confirm that platelets drive

atherogenesis by inducing proinflammatory monocytes and

macrophages: We reported that platelet competent atherogenic

Ldlr−/− mice had increased monocyte surface expression of the

adhesion receptor CD11b and had higher expression of

inflammatory transcripts CCL2, IL6, and CD11b relative to

platelet-depleted mice. Furthermore, in the presence of platelets,

plaque macrophages were skewed towards a proinflammatory

phenotype as defined by upregulation of SOCS3, which promoted

proinflammatory cytokine production of IL-6, IL-1b, and TNF-α

(20). Consistently, SOCS3 mRNA expression of whole blood

correlated with platelet activity and MPA formation in a clinical

dataset of women with MI and in patients with symptomatic

lower extremity atherosclerosis (20).

Platelets have been shown to also activate dendritic cells (DC)

via the P-selectin-PSGL1 axis, thereby contributing to

atherosclerosis progression in hyperlipidemic mice (98). This is

mediated by toll-like receptor 4 (TLR4) signaling pathways,

leading to enhanced secretion of inflammatory cytokines, T cell

communication, and adhesion and migration properties of

platelet-bearing DC (98).

In addition to physical contact and secretion of granule

contents, platelets can modulate monocyte and macrophage

responses by shedding of PEV into the circulation. There is

evidence that PEV (via P-selectin) adheres to monocytes, thereby

inducing cytokine and TF production, and contributing to

atherothrombosis in CVD (99). Interestingly, P-selectin-positive

and fibrinogen-positive PEV were elevated in patients six months

after acute MI (100). Procoagulant PEV may also contribute to

monocyte-endothelial interaction, thereby promoting

atherosclerosis initiation and progression (101, 102).

Genetic RNA sequencing of platelets from CVD patients allows

the identification of new mediators in MPA formation and

monocyte reprogramming: Platelets from patients with

symptomatic PAD were enriched with myeloid-related protein-14

(MRP-14) mRNA and protein. MRP-14 augmented the

expression of P-selectin, thereby enhancing MPA (21). Elevated

serum levels of MRP14 were found in PAD patients with

incident cardiovascular and limb events, underscoring a clinically

important role for this protein (21).
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Monocyte-platelet interaction in
autoimmune disorders

Patients with autoimmune diseases such as Systemic lupus

erythematosus (SLE) and rheumatoid arthritis (RA) are at higher

risk of developing atherosclerotic and thromboembolic

complications (103, 104). Again, elevated levels of MPA in

patients with vasculitis, rheumatoid arthritis, and SLE highlight

the tight interconnection between inflammation and

atherothrombosis (58, 105–108). Monocytes attached to platelets

exhibited higher levels of proinflammatory CD54, CD16, CD86,

and HLA-DR in SLE patients (58). Additionally, procoagulant

microvesicles shed from activated platelets have been implicated

in inducing proinflammatory monocytes in RA and SLE

(51, 106, 109).

In RA patients, activated platelets attaching to intermediate

CD16+ monocytes contributed to elevated MPA formation and

inflammatory cytokine secretion via CD147 signaling (106). High

platelet activation and platelet-leukocyte aggregation were

associated with enhanced TF-dependent global coagulation

activation in SLE patients (108).
Monocyte-platelet interaction in
infection and inflammation

In addition to a hyperreactive platelet phenotype and a

heightened incidence of thromboembolic complications, elevated

levels of circulating MPA were a prominent clinical finding in

patients with severe COVID-19 (110–113). Platelet-monocyte

interaction in COVID-19 was strongly associated with monocyte

TF expression and global coagulation activation as shown by

elevated fibrinogen and D-dimers (112). Interestingly,

upregulation of P-selectin-dependent monocyte TF expression

could be reproduced when monocytes from healthy donors were

co-cultured with platelets from COVID-19 patients, once more

underlining the proinflammatory effector role for platelets in

COVID-19 (112).
In dengue virus infection, platelets are activated - evidenced by

increased P-selectin and release of CD40L and cytokines- upon

direct contact with the virus. As a consequence, elevated MPA

can accelerate the monocyte inflammatory response (114–116).

In an experimental cerebral malaria model, platelet-derived

CXCL4 drove monocyte cytokine production in Plasmodium

berghei infected mice (117).

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection (118) and is characterized

by platelet activation and platelet-monocyte interaction (119).

Elevated levels of circulating MPA were associated with higher

morbidity and mortality and correlated with thromboembolic

complications in patients with sepsis (120, 121).

While the majority of studies clearly show a proinflammatory

role for MPA, platelets exhibited anti-inflammatory properties on

the macrophage phenotype in a murine endotoxemia model of

severe septic shock (122). These seemingly divergent findings

indicate that the effector role of platelets is complex and depends
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on the underlying clinical disease and severity. More studies are

warranted to delineate and better understand the divergent

functions of MPA.
Interaction of platelets with
neutrophils and lymphocytes

In addition to monocyte-platelet interaction, formation of

neutrophil-platelet aggregates (NPA) represents another

intercellular connection linking thrombosis and inflammation.

Similar to MPA, elevated circulating NPA have been observed in

CVD (123), PAD (124), in COVID-19 (125), and have been

linked to an enhanced risk of deep venous thrombosis (126).

Platelets – via the P-selectin-PSGL1 axis – activate and induce

neutrophils to release neutrophil-extracellular traps (NETs) into

circulation (127). NETs consist of DNA, histones, and

neutrophile-derived enzymes, most importantly myeloperoxidase,

and constitute the most crucial platelet-mediated effect on

neutrophils to promote thrombosis in inflammation (128). Since

NPA and MPA are found to be simultaneously elevated in

proinflammatory conditions (129), activated platelet induce a

prothrombogenic state via both leukocyte subpopulations by

enhancing their respective inflammatory response in vivo. In

contrast, while the magnitude of circulating lymphocyte-platelet

aggregates does not change in inflammatory, thrombotic, and

atherosclerotic diseases, platelet-lymphocyte interaction has been

delineated to exert a specific role in cancer: For example,

platelets attenuated T cell activity in cancer patients ex vivo

(130), and promoted tumor progression via suppression of CD8

T cells in murine cancer models (131).

In summary, platelets differentially modulate leukocyte activity

in response to the underlying disease, with MPA and NPA being

important contributors in thromboinflammatory diseases.
Can platelet inhibitors prevent MPA
formation?

Targeting MPA has come into focus as an interesting therapeutic

strategy. Interrupting the P-selectin-PSGL1-axis offers therapeutic

potential in preventing (athero)thrombosis as shown in preclinical

models (132–134). Importantly, since P-selectin is also present on

activated endothelial cells (135), using an anti-P-selectin antibody

allows to attenuate microvascular inflammation in addition to

preventing proinflammatory platelet-monocyte interaction.

However, the synthetic P-selectin inhibitor PSI-697 failed to

decrease MPA in healthy smokers (136). So far, among P-selectin

inhibitors, only crizanlizumab was approved in 2019 (137) and

received a conditional marketing authorization by the European

Medicines Agency (EMA) in 2020 (138) for the prevention of

pain crises in sickle cell disease. In this clinical setting,

crizanlizumab is used to prevent sickle erythrocytes to adhere to

and activate P-selectin expressing endothelial cells (139). Due to

unpublished results of the STAND trial, fate is currently unclear

(140).
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Recently, a phase 2 clinical trial investigated the effects of

crizanlizumab on patients hospitalized with moderate COVID-19

which is associated with endothelial dysfunction and vascular

inflammation. Here, crizanlizumab therapy was associated with

significantly decreased plasma levels of prothrombin fragments

and thrombin-antithrombin complexes, both laboratory markers

for coagulation activation (141). Subsequently, the effectiveness

of crizanlizumab in preventing adverse clinical outcomes in

hospitalized COVID-19 patients is being investigated in a large

international phase 4 randomized clinical trial (142).

While PSGL1 and P-selectin inhibitors directly interfere with

platelet-monocyte interaction as well as with leukocyte and

erythrocyte attachment onto endothelial cells, most therapeutics

that are in clinical use block platelet signaling pathways

upstream of the release of alpha granule contents like

P-selectin. Targeting the ADP-activated P2Y12 pathway

effectively reduces MPA in several clinical studies: In patients

with acute MI, atherosclerotic vascular disease, and

cardiovascular risk factors including diabetes mellitus, intake of

P2Y12 inhibitor therapy was associated with MPA reduction

in vivo and ex vivo (73, 75, 143, 144). Importantly, the P2Y12

inhibitor ticagrelor resulted in reduced MPA and dampened

myocardial inflammation (as shown by increased FGD-uptake

and lower cardiac ejection fraction) in acute MI patients (75).

Moreover, P2Y12 blockade reduced monocyte TF expression

(145, 146) and attenuated circulating levels of IL-8, TNF-α, and

CCL2 in an experimental human model of systemic

inflammation (147). In patients with acute coronary syndrome,

the P2Y12 inhibitor clopidogrel diminished circulating levels of

proinflammatory TNF-α and C-reactive protein (144). Of note,

pneumonia patients had significantly reduced plasma IL-6

under ticagrelor compared to patients taking placebo and

needed less supplemental oxygen (148). In contrast, in non-

critically ill patients with COVID-19, P2Y12 blockade in

addition to heparin compared to heparin alone did not result in

increased odds of improvement in organ support-free days

(142) and – equally to COX-1 inhibitors - only had a low

likelihood of improving the number of organ support-free days

in critically-ill COVID-19 patients when compared to patients

without platelet inhibitors (149). Accordingly, depending on the

underlying inflammatory condition, the effects of platelet

inhibitors on defined clinical outcomes may vary.

COX-1 inhibition with aspirin did not lower MPA assessed

in vitro and following 1-week of low-dose aspirin in healthy

volunteers ex vivo (54). This might be due to aspirin not directly

interfering with GPCR signaling-induced alpha degranulation

and P-selectin expression. While aspirin therapy was insufficient

to decrease MPA in acute stroke patients, it attenuated MPA ex

vivo when whole blood from healthy volunteers was stimulated

with thrombin receptor activator peptide 6 (TRAP-6) (150).

Different outcomes of MPA under aspirin seem to depend on

the measurement methods. Aspirin did not reduce mortality

linked to sepsis in healthy elderly patients (151). Importantly, in

a murine model of severe bacteremia, aspirin even enhanced

inflammation and was associated with higher mortality (122),

indicating a potential detrimental effect in severe sepsis.
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Clinical data on the effect of PAR1 inhibitors on platelet-

monocyte interaction are scarce. PAR1 inhibition attenuated MPA

formation in whole blood stimulated with the TXA2 analog U-

46619, and consequently, monocyte attached to platelets had less

surface expression of CD40 and TF (129). In another in-vitro

analysis, incubation of whole blood from healthy donors with

PAR1 inhibitors prevented TRAP-6 - but not PAR4 - or collagen-

related peptide (CRP)-induced MPA formation, emphasizing that

the efficacy of platelet inhibitors is dependent on the activation

pathway (152). There is conflicting data on the effect of GPIIb/

IIIa inhibitors on MPA with some studies even showing

paradoxically elevated MPA levels under eptifibatide (153, 154).

In addition to blocking cell surface receptors, platelet activation

can also be targeted by intracellular inhibition of phosphodiesterases

(PDE). As a result, intracellular levels of cyclic adenosine

monophosphate (cAMP) and/or cyclic guanosine monophosphate

(cGMP) accumulate, which eventually disrupts the rearrangement

of the actin cytoskeleton required for platelet activation and

granule release (155). While the PDE inhibitor dipyridamole did

not attenuate thrombin- or collagen-stimulated monocyte-platelet

aggregates in vitro (156), patients under combined treatment with

aspirin and dipyridamole following a transitory ischemic attack

(TIA) had lower MPA when exhibiting dipyridamole

responsiveness in a platelet function test in contrast to patients

that were identified as dipyridamole non-responders (157).

Platelet GPIb and its ligand MAC-1 on leukocytes are newer

potentially therapeutic targets (158). Interestingly, inhibiting this

interaction resulted in impaired thrombus formation and delayed

thrombosis in murine models (158). In a phase I study on healthy

volunteers, GPIb-binding anfibatide, a snaclet (snake C-type

lectins) purified from snake venom, showed antithrombotic

efficacy without affecting haemostasis (159). Clinical trials are

anticipated to investigate the clinical efficacy of GPIb and MAC-1

inhibitors in attenuating thrombosis linked to inflammation.

In conclusion, targeting platelet-monocyte interactions is likely

to be beneficial to various inflammatory diseases. Among platelet

inhibitors, directly targeting platelet P-selectin or preventing its

release from alpha granules by upstream blockade of P2Y12 have

been shown to be the most potent strategies to attenuate MPA.

Further clinical studies would be welcome to evaluate the

effectiveness of antiplatelet therapy-mediated MPA decrease on

clinical outcomes within the different inflammatory diseases.

Potential therapies targeting MPA are summarized in

(Figure 2).
Measurement of monocyte-platelet
interactions

Measuring monocyte-platelet aggregates in whole blood by

flow cytometry is a straightforward and commonly used method

to assess ex vivo markers of thromboinflammation in clinical

studies. However, since there is no clear consensus on the best

methodological approach, various preanalytical variables such as

blood drawing (venous puncture or access via central venous

catheter), sample handling (e.g., temperature, transportation,
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FIGURE 2

Schematic overview of potential therapeutic targets to prevent monocyte-platelet interactions. Depicted are G protein-coupled receptors (GPCR) associated
with platelet receptors P2Y12 and PAR1 as well as GPIIb/IIIa receptors on the platelet surface, and cyclooxygenase-1 (COX-1)-mediated production of
platelet-activating thromboxane A2. Following platelet activation, many interconnected pathways result in intracellular calcium increase, activation of
GPIIb/IIIa, and release of alpha and dense granule contents. P-selectin (released from alpha granules) translocates to the platelet surface and binds to P-
selectin glycoprotein ligand-1 (PSGL1) on the monocyte surface, resulting in monocyte-platelet aggregates (MPA). In turn, monocytes become
proinflammatory and procoagulant. *has received a conditional marketing authorization by the European Medicines Agency in 2020. Figure created with
BioRender.com

FIGURE 3

Visual summary on the role of MPA in cardiovascular disease. Plasma levels of circulating monocyte-platelet aggregates are increased in inflammatory
diseases. Platelet-induced proinflammatory monocytes secrete inflammatory cytokines and chemokines (1), attach to and activate endothelial cells
(2), show enhanced transendothelial migration potential (3), and differentiate into proinflammatory macrophages that contribute to the progression of
atherosclerosis. Figure created with BioRender.com
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storage), and processing (centrifugation configuration) may lead to

incongruent results (72, 160). When interpreting MPA data, it is

therefore important to know the experimental set-up and

techniques applied for analysis. The following cornerstones need

to be considered when measuring MPA by flow cytometry: To

avoid any artificial platelet activation, blood collection should

always be performed by direct venous puncture without a

tourniquet and after an initial discard. The type of anticoagulant

(e.g., heparin, EDTA, or sodium citrate) in the collection tube

may affect the magnitude of monocyte-platelet aggregate levels

(160). Following staining with monocyte and platelet antibodies,

blood can be fixed, lysed and stored at 4°C for up to 24 h (160).

Monocytes are identified by forward and side scatter properties

and by CD14 (and CD16) expression. For platelet labeling,

antibodies binding to constitutively expressed platelet surface

glycoproteins, e.g., CD41, CD42a, CD42b, or CD61, can be used.

MPA are quantified as the percentage of monocytes positive of a

platelet marker within the gated monocyte population.

Alternatively, multispectral imaging flow cytometry combining

flow cytometry and imaging data provides additional information

on platelet binding to individual monocytes (161).
Conclusions

Accumulating evidence demonstrates that activated platelets

induce a proinflammatory monocyte phenotype, affecting the

inflammatory response in acute and chronic inflammation.

Mediated by direct platelet-monocyte interactions and platelet-

derived cytokines, chemokines, and shedding of procoagulant

extracellular vesicles. As a consequence, monocytes release

inflammatory cytokines into circulation, become procoagulant,

and differentiate into proatherogenic macrophages (Figure 3).

Targeting platelet effector cell properties – and hence monocyte-

driven inflammation and coagulation – appears to be a

promising strategy in inflammatory settings beyond CVD.
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