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Background: Automatic coronary angiography (CAG) assessment may help in faster

screening and diagnosis of stenosis in patients with atherosclerotic disease. We

aimed to provide an end-to-end workflow that separates cases with normal or mild

stenoses from those with higher stenosis severities to facilitate safety screening of a

large volume of the CAG images.

Methods: A deep learning-based end-to-end workflow was employed as follows: (1)

Candidate frame selection from CAG videograms with Convolutional Neural Network

(CNN) + Long Short Term Memory (LSTM) network, (2) Stenosis classification with

Inception-v3 using 2 or 3 categories (<25%, >25%, and/or total occlusion) with and

without redundancy training, and (3) Stenosis localization with two methods of class

activation map (CAM) and anchor-based feature pyramid network (FPN). Overall

13,744 frames from 230 studies were used for the stenosis classification training

and fourfold cross-validation for image-, artery-, and per-patient-level. For the

stenosis localization training and fourfold cross-validation, 690 images with > 25%

stenosis were used.

Results: Our model achieved an accuracy of 0.85, sensitivity of 0.96, and AUC of

0.86 in per-patient level stenosis classification. Redundancy training was effective to

improve classification performance. Stenosis position localization was adequate with

better quantitative results in anchor-based FPN model, achieving global-sensitivity

for left coronary artery (LCA) and right coronary artery (RCA) of 0.68 and 0.70.

Conclusion: We demonstrated a fully automatic end-to-end deep learning-based

workflow that eliminates the vessel extraction and segmentation step in coronary

artery stenosis classification and localization on CAG images. This tool may be useful

to facilitate safety screening in high-volume centers and in clinical trial settings.

KEYWORDS

stenosis localization, stenosis classification, catheter coronary angiography, end-to-end
workflow, deep learning, redundancy training
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Introduction

Coronary artery disease (CAD) is the leading cause of morbidity
and mortality worldwide (1). X-ray coronary angiography (CAG)
is the current gold standard imaging technique for CAD diagnosis.
Expert CAG interpretation requires considerable “hands-on” training
both visually and cognitively. In clinical practice and also for
quality control purposes in research settings, screening CAG studies
visually to distinguish cases with normal or mild stenosis from those
with higher stenosis severity is a time-consuming process even for
experienced readers. Developing an automatic CAG assessment tool
to exclude normal or mild stenosis cases would facilitate diagnosis
and treatment and enable the screening of large data sets for quality
control purposes.

Recent studies confirmed the feasibility of using deep learning
methods for CAG stenosis detection. Generally, the method consists
of multiple steps. The most widely used vessel-based workflow starts
from the visual or automatic selection of candidate frames (2–4)
or regions (5, 6) from a CAG video. This is followed by the artery
extraction using image segmentation algorithms (7) like center-
tracking (8, 9), model-based (10), or Convolutional Neural Network
(CNN) (11–15). Finally, individual stenotic lesion localization and
classification is performed in two ways: patch-wise (16–18) and
image-wise (2, 3, 6).

However, there are limitations in previous CAG stenosis
classification and detection methods. One of the main drawbacks
is that the vessel shape and characterization (19, 20) were not well
exploited from a multi-view CAG study, causing a relatively low
accuracy in detecting the stenotic lesions, especially in curved or
bifurcation regions in the vascular tree (21, 22). Another limitation
is that there are numerous pre-processing stages (manually or
automatically) in some methods (15, 18, 23), such as detecting
keyframes/region/views from a CAG sequence, or annotating
segmentation for vessels, or preparing patches and labels for training
procedure. The need for extensive human interaction during image
data and training label preparation, in addition to addressing
problems of sampling imbalance during supervised-learning, has led
to algorithms that are commonly evaluated on small datasets prone
to overfitting (7). Clinically speaking, those studies generally aimed
to differentiate significant stenosis from non-significant stenosis in
CAG images while developing a tool to facilitate safety screening of
a large volume of CAG images by separating cases with normal or
mild stenoses from those with higher stenosis severities have not been
targeted (24).

In this study, we propose a fully automatic, deep learning-based
end-to-end CAG stenosis detection method to achieve efficient safety
screening and precise localization of stenoses. Our method consists
of following unique steps that (1) it eliminates the vessel extraction
and segmentation step for supervised learning; (2) the CNN + LSTM
structure is designed for automatic detection of candidate frames
from CAG sequences to improve training efficiency and reduce
overfitting; (3) a multi-view analyzing architecture is established
to train CNNs for different angle-views and generate classification
results in artery-level and patient-level; (4) the redundancy training
strategy is proposed to eliminate the negative effect of background
and unnecessary features in training; and (5) the unsupervised- and
supervised-learning methods are explored to localize the coronary
stenoses in CAG images, which includes an anchor-based feature
pyramid network (FPN).

Materials and methods

Study population

This research was retrospectively performed on 230 participants
with available data from a “Combined Non-invasive Coronary
Angiography and Myocardial Perfusion Imaging Using 320 Detector
Computed Tomography (CORE320)” study (NCT00934037),1

a prospective, multicenter, international study that assessed the
performance of combined 320-row CTA and myocardial CT
perfusion imaging (CTP) in comparison with the combination of
invasive CAG and single-photon emission computed tomography
myocardial perfusion imaging (SPECT-MPI) for detecting
myocardial perfusion defects and luminal stenosis in patients
with suspected CAD (25, 26). For the stenosis classification, 36
studies out of 230 were excluded from the training due to the low
image quality or contrasting condition. These images, however,
were included for evaluation. The original CORE320 study was
approved by central and local institutional review boards, and
written informed consent was obtained from all participants (25, 26).
Given the retrospective and ancillary nature of the data, the current
study is covered by the original CORE320 study IRB.

Candidate frame selection

The entire study workflow is summarized in Figure 1. All the
CAG studies were saved in the universal DICOM format with a
resolution of 512× 512, 15 fps, typically 60–200 frames per view. The
detailed imaging parameters were summarized in Supplementary
Table 1. Coronary type (left and right coronary artery, LCA, and
RCA) was classified initially by experts in a small subset (19 patients).
This was then leveraged by training an inception-V3 classifier (27)
for automated coronary selection (100% classification accuracy was
obtained). To identify the angle views of the CAG images, DICOM
tags were used. Overall 4 angles for LCA [left anterior oblique
(LAO) Cranial, LAO Caudal, right anterior oblique (RAO) Cranial,
and RAO Caudal] and 3 angles for RCA (LAO, straight RAO, and
shallow LAO/RAO Cranial) were used based on the optimal view
map (OVM) (20).

A CNN + Long Short Term Memory (LSTM) network was
implemented for the candidate frame selection from 19 patients (146
videos in total, and 18,688 frames overall). A candidate frame was
defined as an image with good quality, full contrasting, clear vessel
border, and anatomical significance of stenosis (if it had stenosis)
in a video frame. Inception-v3 was employed as a basic classifier
to recognize full-contrasting frames and non-contrasting frames as
candidates or redundancy frames. Then, the fully connection layer
of inception-v3 was output to a bi-directional LSTM with 32 time-
steps (units), and also concatenated with the output of forward and
backward LSTM units. The concatenation result was connected with
a multi-layer perception (MLP, with one hidden layer) and a binary
activation layer (sigmoid). The detailed structure of inception-v3
and LSTM is provided in Supplementary Figure 1. The inception
model was initialized by ImageNet weights and then pre-trained for
200 epochs with the initial learning rate (LR) of 1e−4 with the loss

1 https://clinicaltrials.gov/ct2/show/NCT00934037
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FIGURE 1

Dataset and algorithm workflow. Three steps of data preparation, stenosis classification, and stenosis positioning were presented. The steps of image and
training label preparation including coronary artery selection, viewing angle selection, and contrasting frame detection were designed in a fully
automatic manner. Stenosis severity classification training was performed on image-level, artery-level, and patient-level. Stenosis positioning was
performed in two methods of CAM-based and anchor-based methods. CAM, class activation map; QCA, quantitative coronary angiography.

function as binary entropy. The LSTM was initialized using Xavier
uniform method for kernels and orthogonal matrix for recurrent
weights, then trained for 100 epochs with LR = 4e−5 with the loss
function of convolutional F1 score. Typically, this strategy selected
5–10 candidate frames per video.

The performance of candidate frame detection was tested with
582 videos from 175 patients using mean error and standard

deviations of beginning contrasting frame (BCF) and ending
contrasting frame (ECF) between ground-truth and prediction.
The acceptance and error rates were also calculated with average
differences of BCF and ECF in a pre-defined range (2), in which
accept rate with the error ≤3 frames and error rate with the
error ≥10 frames. Performance was reported using classification
accuracy, F1, and Kappa.

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2023.944135
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-944135 February 1, 2023 Time: 15:20 # 4

Cong et al. 10.3389/fcvm.2023.944135

FIGURE 2

The architecture of the output of the stenosis classification inception model. A max-pooling layer was added to the output of inception to evaluate the
artery-level stenosis prediction and the patient-level stenosis prediction. LCA, left coronary artery; LAO, left anterior oblique; RAO, right anterior oblique;
RCA, right coronary artery; QCA, quantitative coronary angiography.

Stenosis classification

For the stenosis classification, the quantitative coronary
angiography (QCA) results previously documented per segmental
level in the CORE320 study were utilized as a reference (25, 26, 28).
In the current study, in order to accommodate with our study goals
(separating cases with normal coronary arteries or mild stenoses
from that with higher stenosis severities), coronary stenosis severities
were re-categorized into the per-coronary artery, i.e., per LCA or
RCA, and grouped into three categories of < 25%, 25–99%, and total
occlusion in 3-categories (CAT), or two groups of < 25 and ≥ 25%
in 2-CAT. It is known that there is a mismatch between the coronary
stenosis severity and functional significance. Even the intermediate
stenosis lesion can present functionally significant stenosis by
fractional flow reserve (29, 30). Since we aimed to develop a safety
screening tool for a large volume of the CAG images, we selected a
stenosis threshold with high specificity to correctly separate cases
that does and does not need further functional stenosis assessment.

Different CNN architectures of ResNet-50, ResNet-101,
Inception-v3 and InceptionResNet-v2 were employed for the
image-level stenosis classification training and prediction. And
the inception-v3 was employed finally in image-level, artery- and
patient-level stenosis prediction, since it has a good balance in
transfer timing, parameter size and performance. The training was
performed on 4 models of LCA for each angle view and one model
of RCA combining the three angle views due to the complicated
features of LCA when compared to the RCA (31).

The classification prediction of artery-level and patient-level was
implemented by a multi-view analyzing architecture, as described in
Figure 2. For artery-level prediction, CNN scores from 4, or, 3 angle-
views were combined and fed into a max pooling layer to generate
LCA/RCA classification results, respectively. Similarly, the patient-
level prediction scores were generated by feeding LCA and RCA
scores into another max pooling layer (Figure 2). For the image-
level labeling, 2 or 3-CAT stenosis categories were assigned in each

angle view. For the artery-level labeling, 2-CAT stenosis categories
were assigned in each coronary artery, i.e., in the LCA and the RCA.
Overall 10,872 frames from 194 studies were used for image-level
stenosis classification training and 13,744 frames from 230 studies
were used for the fourfold cross-validation. The distribution of the
cases in the image-, artery-, and patient-levels are summarized in
Table 1. Performance of image-level classification on 3- CAT and
2- CAT with and without redundancy training was reported using
accuracy, sensitivity, F1, Kappa, and area under the curve (AUC).
Performance of artery-level and per-patient level classification was
assessed on the 2-CAT with redundancy training image-level results
and reported using accuracy, sensitivity, and AUC.

Redundancy training

In the image-level stenosis classification training, the redundancy
frames were accessorily added to the training dataset but not in the
validation set. A redundancy frame was defined as a background
frame without any contrasting agent in arteries. Thereafter, the
redundancy categories were comprised of background frames with
the roughly same amount of samples as the target categories in
training dataset. Subsequently, there are 12,351 redundancy frames
combined with 10,872 candidate frames in 3- and 2- CAT image-
level training, namely redundancy training, as the similar methods
used before (3, 32). It is expected that the use of redundancy
frames can hedge against the invalid feature learning and reduce the
train/test overfitting.

Stenosis localization

For the stenosis positioning, two methods were investigated: (1)
class activation map (CAM) (33) based on the back-propagation from
the stenosis classification decision and (2) anchor-based FPN. The
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anchor-based FPN model is developed from RetinaNet (34) and FPNs
(35), using the pre-trained inception-V3 as backbone. The network
structure is demonstrated as Supplementary Figure 2. The 1st, 2nd,
and 3rd feature map in the pyramid were derived from the output
of the concatenate feature before the 1st, 2nd, and 3rd pooling layer,
respectively. The 4th and 5th feature maps were down sampled from
the previous layers. For FPN inputs, 1,588 positioning boxes with a
minimal size of 35 × 35 pixels were annotated by two independent
expert cardiologists. The shapes of anchor were preset by K-Means
clustering method with seven different groups of height and width.
The anchor-based model was trained with Learning Rate = 1e−4

over 500 epochs. Then FPN was built on the feature maps of pre-
trained classification models. The same reader-annotated bounding
boxes were also used for the evaluation of the CAM-based localization
technique. For the positioning training and fourfold evaluation, 690
frames with > 25% stenosis were used (Figure 1).

The performances of the two stenosis localization methods were
assessed by the metrics of global-sensitivity, per-stenosis-sensitivity
(Sens_s), per-stenosis-specificity (Spec_s), and mean square error
(MSE). Global-sensitivity was defined as the recall of localization
for the most significant stenosis in the images, which is similar to
AR∧(max = 1) in COCO benchmark (21). Sens_s and Spec_s were
defined as the recall rate of all stenosis localizations in the images.
MSE was assessed in 512 × 512 images for the CAM-based model
and the anchor-based models. Due to the lower resolution, metrics for
the CAM-based model were calculated with Intersection over Union
(IoU) > 0.2 in the CAM-based model whereas IoU > 0.5 for the
anchor-based model.

TABLE 2 Clinical characteristics of the study participants.

Characteristic Included (n = 230)

Age (years) 62 (55, 69)

Age ≥ 60 years 134 (58%)

Male sex 160 (70%)

Race

White 103 (45%)

Black 18 (8%)

Asian 105 (46%)

Other 4 (2%)

Body mass index (BMI, kg/m2) 26 (24, 29)

Obesity (BMI ≥ 30 kg/m2) 51 (22%)

Hypertension 188 (82%)

Diabetes mellitus 80 (35%)

Dyslipidemia 159 (71%)

Current smoker 35 (16%)

Family history of CAD 88 (41%)

Diamond-forrester risk score

Low 4 (2%)

Intermediate 164 (71%)

High 62 (27%)

Previous cerebrovascular accident 9 (4%)

A total of 230 individuals were included in our analysis. The median age was 62 years (IQR 55,
69), 70% were men, 45% were white, 82% had hypertension, 71% had dyslipidemia, 16% were
current smokers, and 27% had a high pretest probability of obstructive coronary artery disease.
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Statistical analysis

All the statistical evaluation was performed in Python (version
3.6; Python Software Foundation, Wilmington, Del).2 In this study,
the calculation for diagnostic performance was based on a per-patient
approach, including image-level severity classification. Accuracy, f1-
score, and Cohen’s Kappa were calculated for image-level stenosis
classification; receiver operating characteristic (ROC) analysis and
areas under the curves (AUC) were used to further evaluate
the image-/artery-/patient-level diagnostic performance. Stenosis
positioning was evaluated by sensitivity, specificity, and MSE as
described above. The CNN, LSTM, CAM, and anchor-based models
were performed on TensorFlow (version 2.4.0), Python (version
3.6), and the Ubuntu system (version 20.04). All metrics were
computed using Scikit-learn, version 0.19.1. Continuous variables
that were normally distributed were summarized and reported as
means± standard deviations.

Results

Patient characteristics

The study participants’ characteristics are given in Table 2. A total
of 230 individuals were included in our analysis. The median age
was 62 years (IQR 55, 69), 70% were men, 45% were white, 82% had
hypertension, 71% had dyslipidemia, 16% were current smokers, and
27% had a high pretest probability of obstructive CAD.

Candidate frame selection

The automatic model achieved a mean error of 2.05 and 2.27 in
BCF and ECF detection, respectively. The acceptance and error rates
were 83% and 5.0%. A common feature of misclassified cases was a
relatively short contrast duration in the video (typically < 5 frames
with adequate vessel-to-background contrast). The network did not
adequately handle this type of condition because the training dataset
had very few instances of short-duration contrasting frames.

Stenosis classification

The stenosis classification results in 3-CAT and 2-CAT with and
without redundancy training models are summarized in Table 3 and
Figure 3. In brief, the image-level classification performance was
better in 2-CAT than 3-CAT for the LCA while not significantly
different for the RCA. The redundancy training improved the AUC
values for both 2-CAT and 3-CAT, as well as the accuracy, F1-score,
and kappa score in 2-CAT. Based on the better performance in 2-
CAT as well as our aim to separate normal coronary/mild stenoses
from higher severity of stenosis, 2-CAT evaluation was performed
for artery-level (LCA and RCA) and patient-level classification. The
accuracies were 0.83, 0.81, 0.85, the sensitivities were 0.94, 0.90, and
0.96 and AUCs were 0.87, 0.88, and 0.86 at the artery-level; LCA and
RCA, and at the per-patient level, respectively. A representative image

2 https://www.python.org
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FIGURE 3

Performance of coronary stenosis classifications in image, coronary artery, and patient levels. (A,B) ROC curves of image-level classification on 3-CAT
and 2-CAT with and without redundancy training on LCA and RCA. (C,D) ROC curves of coronary artery level classification on LCA and RCA. (E) ROC
curve of patient-level classification. The AUC values are summarized in Table 3. RCA, right coronary artery; LCA, left coronary artery; AUC, area under the
curve.

illustrating the effect of the redundancy training is demonstrated
in Figure 4 with visualization aided by a heatmap. The overfitting
caused by background structures is markedly reduced, likely resulting
in the improvement in classification performance.

Additionally, the image-level classification performances of
different CNN models of ResNet-50, ResNet-101, Inception-v3 and
InceptionResNet-v2 were compared in Table 4. The comparative
result suggests that Inception-v3 is the most suitable one among all
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FIGURE 4

A representative image of the effect of the redundancy training demonstrated in a heatmap style. In the original training, the model had mid-to-high
level attention on background regions. The redundancy training reduced the overfitting caused by background structures and improved the
performance of stenosis classification.

four models, because of its fast inference speed, small size, and high
accuracy in many tasks.

Stenosis localization

Quantitative results were summarized in Table 5. In brief, the
anchor-based FPN method showed better performance than the
CAM-based method by all the metrics studied. Both the localization
techniques performed better for RCA images than for LCA images.
In both methods, Sensitivity was low due to the many annotations
that highlighted small lesions that had ambiguous feature patterns in
the arteries. Performance was also lower when there were multiple
stenoses in distal coronary arteries or branches (see Figure 5 for
illustration).

Discussion

In this study, we developed a CAG stenosis detection and
localization tool to facilitate safety screening of a large volume
of the CAG images. The main findings from the present study
are summarized as follows: (1) the fully automatic, end-to-end
workflow, which eliminated the vessel extraction and segmentation
step for supervised-learning was developed; (2) the multi-view
CAG analyzing architecture for artery- and patient-level stenosis
classification, achieving an accuracy of 0.85, a sensitivity of 0.96 and
an AUC of 0.86 at the per-patient level; (3) redundancy training
improved classification performance, hedged against the invalid
feature learning and reduced the error between the training and
validation sets; (4) stenosis localization was investigated with two
methods of CAM-based and anchor-based models, with superior
quantitative results with the anchor-based models.

End-to-end workflow is advantageous in reducing human
interaction steps. In our proposed workflow, once applied to the CAG
videos, the model automatically selects the optimal frames, performs
stenosis classification and localizes stenosis positions, providing
robust results at both the artery and patient levels. Our workflow
is advantageous in a large volume clinical setting or quality control
purposes because the timely screening of many CAG videos to
identify cases with normal or only mild stenoses consequences
to secure more time on the cases with higher stenosis severities,
which can translate into improved productivity and facilitated safety
screening. Additionally, by providing stenosis classification and
localization, the reader/physician can quickly focus on the lesion and
perform quantitative CAG in an efficient manner.

The candidate frame selection performance presented here was
better than previous publication by another group (4), likely due to
the use of the bi-directional CNN + LSTM network to effectively
extract high dimensional features of contrast flows from images, so
that the network can effectively detect the changing trend in temporal
sequences and find the contrast frames with higher accuracy than
the RNN-only method (4). The stenosis classification results in the
current study are encouraging that are comparable and sometimes
outperforming when compared to the methods reported in previous
studies; in which the image-based stenosis classification methods (5,
36) presented patient-level 2-CAT sensitivity of 0.80, 0.87; other three
vessel- and patch-based studies (6, 9, 17) presented accuracies of
0.94, 0.97, and 0.92, respectively. We attribute our favorable results to
addressing different aspects of a typical CAG study such as multiple
angle views, background frames, and visually insignificant features of
vessel stenoses through redundancy training to reduce overfitting in
classification training.

Redundancy training is an effective tool for improving
classification accuracy and reducing the error between the training
and validation sets. In the original training, CNNs may be activated
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by invalid features such as image background and artifacts, which can
be visualized from CAM heatmap. Comparatively, the redundancy
frames were introduced as new categories in redundancy training,
therefore the stenosis features were more activated on effective
features such as vessel morphology, intensity change and narrow
characteristics.

The comparison between 2-CAT and 3-CAT classification implies
extra characteristics in stenoses analyzing. From the experimental
result, the image-level classification performance is better in 2-
CAT than 3-CAT for the LCA (accuracy = 0.77 vs. 0.71) while
not significantly different for the RCA (accuracy = 0.84 vs. 0.83).
One possible reason is that LCA anatomy presents itself with
more variation than RCA (31), causing adverse factors against
the CNN models to detect vascular blockage and occlusion in 3-
CAT classification. Another explanation is that there are slightly
imbalanced category distributions in 3-CAT classification than in 2-
CAT, resulting in reduced accuracy (in LCA) and sensitivities (both
in LCA and RCA).

Our study also explores a solution to the stenosis localization
problem via an object detection framework. Two different stenosis
localization methods of CAM and FPN were compared. The CAM-
based model has the strength of employing a simple derivation
that uses stenosis classification as a backbone model. However,
as the activation map should be calculated by feature maps in
deep layers from CNNs, CAM method is unfavorable for fine-
grained and multiple object detection, such as small blood vessel
stenoses in the same CAG image. In contrast, anchor-based
model showed a better performance for stenosis positioning, since
the different scales of features can be well exploited by feature
pyramid structure. The trade-off is that the additional annotations
and supervised-learning procedure were necessary for training the
anchor-based model. Additionally, the comparison of the stenosis
localization performances between RCA and LCA also support
our viewpoint that the complexity of morphology and structure
of angiographic vessels may be a severely adverse factor to the
accuracy of the algorithms (classification and localization). In LCA
angle views, two main arteries (LAD and LCX) may interlap on
the 2-dimensional CAG image and twist with each other, raising
difficulties in stenosis visualization. In some cases, there are multiple
lesions in separate vessels or segments in LCA (such as second
diagonal, second obtuse marginal or posterolateral), with vague
and insignificant visual characteristics. By comparison, RCA has
clearer vessel shapes and simpler morphologic characteristics so that
more significant stenosis features. Therefore, all the above factors
lead to better localization performances with both methods for
RCA than for LCA.

Future work will aim at the following aspects. (1) We could
perform an external validation in different studies as a means to
generalize our technique and further improve performance. We
believe that the proposed method will achieve good results with
new images. Considering that the new dataset may have different
imaging parameters (angle views, phase intervals, and FOVs),
we may have to adjust the image pre-processing algorithm to
accommodate the new images. Furthermore, transfer learning in
a small subset could also improve performance. (2) Application
in a variety of clinical or investigative scenarios beyond safety
screening with different clinical goals such as fine-grained stenosis
classification/localization.

Our study had a few important limitations. Training and
evaluation were performed in the same cohort. A validation
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TABLE 5 Performance of the stenosis localization algorithms for the LCA and RCA.

CAM-based Anchor-based

Global-
sensitivity

Senss Specs MSE
(deviation)

Global-
sensitivity

Senss Specs MSE
(deviation)

LCA 0.59 0.25 0.43 103.3 (71.18) 0.68 0.44 0.68 39.3 (40.00)

RCA 0.61 0.17 0.51 79.5 (47.21) 0.70 0.51 0.77 37.6 (51.63)

Results are presented as the global sensitivity, sensitivity, specificity, and MSE for the two techniques presented—the CAM-based model and the anchor-based model. Global-sensitivity was defined
as the sensitivity of one most severe stenosis localization per image. Due to the low resolution, metrics (Sens, Sens_s, Spec_s) for the CAM-based model were calculated with IoU > 0.2 whereas the
metrics for the anchor-based model were calculated with IoU > 0.5.
LCA, left coronary artery; RCA, right coronary artery; Sens_s, per-stenosis sensitivity; Spec_s, per-stenosis specificity; MSE, mean square error; CAM, class activation map; IoU,
intersection over union.

FIGURE 5

Representative images of stenosis position localization experiments. Predicted boxes from the anchor-based model produced more accurate boxes
when compared to the CAM-based model. Multiple stenoses in distal coronary arteries or branches were difficult for correct localization, which was the
main reason for the failed cases.

study using an external cohort is needed to accurately assess the
performance of our techniques. Stenosis classification was simply
categorized into three groups of < 25, 25–99%, and total occlusion
for 3-CAT while < 25 and 25–100% stenosis for 2-CAT. Our aim
was to develop a tool that identifies normal and mild stenosis cases
within a large cohort. In this regard, more granular categories for
mild to moderate stenosis may be considered for different clinical or
investigational purposes, such as the detection of hemodynamically
significant stenosis.

Conclusion

In conclusion, a fully automatic end-to-end deep learning-based
workflow for CAG images that eliminates the vessel extraction
and segmentation step was accomplished. Our redundancy-based
algorithm showed high accuracy for stenosis classification, and
accurate localization was achieved by an anchor-based model. This
end-to-end approach may facilitate safety screening in high-volume
centers and in clinical trial settings.
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SUPPLEMENTARY FIGURE 1

The detailed structure of inception-v3 and LSTM. Inception-v3 was employed
as a basic classifier to recognize full-contrasting frames and non-contrasting
frames as candidates or redundancy frames. Then, the fully connection layer
of inception-v3 was output to a bi-directional LSTM with 32 time-steps
(units), and also concatenated with the output of forward and backward LSTM
units. The concatenation result was connected with a multi-layer perception
(MLP, with one hidden layer) and a binary activation layer (sigmoid).

SUPPLEMENTARY FIGURE 2

The architecture of the anchor-based feature pyramid network for stenosis
localization. The 1st, 2nd, and 3rd feature map in the pyramid were derived
from the output of the concatenate feature before the 1st, 2nd, and 3rd
pooling layer, respectively. The 4th and 5th feature maps were down sampled
from the previous layers. The shapes of anchor were preset by K-Means
clustering method with seven different groups of height and width.
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