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Identification of hub genes in
heart failure by integrated
bioinformatics analysis and
machine learning
Tengfei Wang1,2, Yongyou Sun2, Yingpeng Zhao2, Jinhe Huang2

and Ying Huang1*
1Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
2Department of Cardiology, Funan County People’s Hospital, Fuyang, China
Objective: To screen feature genes of heart failure patients through machine
learning methods, in order to identify characteristic genes driving heart failure
and investigate the progression of heart failure
Methods: Heart failure patient samples were downloaded from the public
database GEO (Gene Expression Omnibus), including the datasets GSE116250,
GSE120895, and GSE59867. GSE116250 and GSE120895 were used as the
testing set, while GSE59867 was used as the validation set. LASSO regression
analysis and SVM-RFE were utilized to identify feature genes.
Results: Analysis showed that among the differentially expressed genes between
normal and heart failure patients, 9 genes were upregulated and 10 genes were
downregulated. ROC curve analysis in the training set showed that TAGLN and
SGPP2 had AUC values greater than 0.7. Moreover, SDSL and SMTNL2 had even
higher AUC values of greater than 0.9. However, further analysis in the validation
set showed that only SDSL had an AUC value greater than 0.7. Western blot
experiments, RT-PCR, and ISO-induced experiments confirmed that SDSL was
highly expressed in heart failure patients and promoted heart failure progression.
In addition, SDSL promoted PARP1 expression and knockdown of SDSL expression
led to decreased Cleaved-PARP1 expression and reduced cardiomyocyte
apoptosis. Conversely, overexpression of SDSL resulted in increased PARP1
expression and myocardial cell apoptosis. These results suggest that elevated
expression of SDSL in cardiomyocytes from heart failure patients may be an
important factor promoting the occurrence and development of heart failure.
Conclusions: Using machine learning methods and experimental validation, it has
been demonstrated that SDSL is a driving gene in patients with heart failure,
providing a new treatment direction for clinical treatment.
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1 Introduction

Heart failure (HF) remains one of the most common, complex, debilitating, and

deadly diseases encountered by physicians in various medical fields (1). Heart failure is

the leading cause of death in cardiovascular diseases. American Heart Association

(AHA) defines it as a complex clinical syndrome that is the result of various structural

or functional disorders of the heart that impair ventricular filling or ejection capacity.

In most cases, it refers to a decrease in myocardial contractile function that prevents

the ejection volume from meeting the metabolic needs of the body, insufficient blood
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perfusion in organs and tissues, and often accompanied by

pulmonary and/or systemic circulation congestion. However, HF

patients typically present with non-specific signs and symptoms

and have a wide range of differential diagnoses, making the

diagnosis and prognosis of HF challenging based solely on clinical

manifestations. Given the increasing prevalence of HF worldwide,

timely treatment and management of this potentially fatal disease

through various pharmacological and/or non-pharmacological

means is crucial for patients (2). With the development of high-

throughput sequencing, our understanding of genetic diversity is

rapidly advancing, providing enormous potential for the

development of genetic biomarkers.

Biomarkers, such as genes or other genetic material related to

disease susceptibility, can serve as novel diagnostic methods for HF.

These biomarkers are becoming increasingly important in current

medical practice as they provide a simple way to diagnose or

monitor disease progression. In fact, biomarkers have been used to

assess the condition of HF patients, mainly by evaluating the

expression levels of certain genes in the patients (3, 4). Thus,

biomarkers may be used to evaluate the effectiveness of therapeutic

interventions in HF patients. Biomarkers also have the potential to

serve as treatment targets for HF, helping to determine the best

drugs for treatment (5). Currently, there are no relevant reports on

the research of SDSL in cardiovascular diseases, and even in

tumors, only a few studies have been reported. For example, there

are few studies on the relationship between SDSL expression and

poor prognosis in acute myeloid leukemia (6).

In this study, we used machine learning methods to identify

characteristic genes of heart failure through public databases. As

a result, we discovered that SDSL could promote the progression

of heart failure, which provides a new therapeutic direction for

heart failure treatment.
2 Materials and methods

2.1 Data collection

Three raw datasets (GSE51472 (Normal:14, Heart failure

samples:50), GSE12644 (Normal:8, Heart failure samples:47), and

GSE83453 (Normal:47, Heart failure samples:390)) including

gene expression data for heart failure patients and controls were

downloaded from the GEO (https://www.ncbi.nlm.nih.gov/geo/)

database. The GSE116250 and GSE59867 datasets include 50 and

390 patients with preserved ejection fraction, respectively, while

GSE120895 includes 47 patients with reduced ejection fraction

heart failure. Supplementary Table 1 shows the distribution of

heart failure patients in all datasets. GSE116250 and GSE120895

as the training set, and GSE59867 as the test set.
2.1 Data processing and differentially
expressed gene screening

First, background calibration, normalization, and log2

transformation were performed on the three HF raw datasets
Frontiers in Cardiovascular Medicine 02
using in R (4.1.2). When multiple probes identified the same

gene,the average value was calculated to determine its

expression.Following the merging of the two datasets, the

Bioconductor “SVA” R package was applied to eliminate batch

effects. Finally, |log2 Fold change (FC)|>2 and adjust p-value

<0.05 were set as the criteria for identifying DEGs using Limma

package (7).
2.3 Functional enrichment analysis

Gene Ontology (GO) studies, including biological processes,

molecular functions, and cellular components, we utilized the

“clusterprofiler” software package (8). Additionally, pathway

enrichment analysis was performed using genes from the Kyoto

Encyclopedia of Genes and Genomes (KEGG), with the

threshold set at p < 0.05. To analyze the Disease Ontology (DO)

enrichment, we used the “DOSE” software package and p-value

<0.05, adjust p-value <0.05. The fundamental concept of Gene

Set Enrichment Analysis (GSEA) is to rank genes based on their

differential expression across two types of samples, using

predefined genes and testing whether the set of predefined genes

is enriched at the top or bottom of this ranking table. To

perform GSEA enrichment analysis, we downloaded

c2.cp.kegg.v7.4.symbols.gmt and c5.go.v7.4.symbols.gmt datasets

from the GSEA database. The “clusterProfiler” package was

utilized for this analysis.
2.4 Machine learing and ROC curve analysis

Two machine learning algorithms were used to further

screen candidate genes for HF diagnosis. LASSO (Least

Absolute Shrinkage and Selection Operator) analysis is a

regression analysis method proposed by Robert Tibshirani. We

conducted the lasso regression analysis using package

“glmnet”. Support Vector Machine Recursive Feature

Elimination (SVM-RFE) was initially proposed by Guyon et al.

for classification of cancer using only two types of data in

feature extraction. It is an embedded method. Utilized

differential genes from the training set and performed SVM-

RFE analysis using the “e1071”, “kernlab”, and “caret”

packages. The intersection genes of LASSO and SVM-RFE

were considered as candidate hub genes in HF diagnosis.

Further, ROC curves were generated in the training and test

sets to evaluate the model’s effectiveness.
2.5 Western blot experiment

For Western blot, the main materials were RIPA lysis buffer

(Biyuntian, p0013b), BCA protein concentration determination

kit (Biyuntian, p0010) and PBS (Symantec). Antibodies were

purchased from Abcam, and concentration dilution of SDSL

(ab179435) 1:1,000, Cleaved-PARP1 (ab32064) 1:1,000, PARP1

(ab191217) 1:1,000, GAPDH (#5174) purchased from CST,
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concentration dilution 1:20,000. After the cells were cultured in

6-well plates, 150 µl of lysis buffer was added to each well,

immediately scrape and collect cells into a new 1.5 ml tube

(complete on ice), and protein concentration in the lysate was

quantified with the BCA kit. The cell lysates were loaded onto

SDA-PAGE gels and separated by electrophoresis. The protein

bands were transferred onto PVDF membranes, and performing

development exposure. The ISO induction experiment is divided

into five groups, including 10 um, 25 um, 50 um, and 100 um.

SDSL interference experiment divide into four groups, including

AC16, siRNA-NC (40 nm, 24 h), SDSL siRNA (40 nm, 24 h),

and ISO (50 um, 24 h). The experiment was conducted in

triplicate and repeated three times.
2.6 Real-time quantitative PCR (qPCR)

Real-time quantitative PCR (qPCR) is a method used in DNA

amplification reactions to measure the total amount of product

after each cycle of polymerase chain reaction (PCR) using

fluorescent chemistry. Firstly, culture AC16 cells, then add 1 ml

of Trizol to the cells and lyse them into a 1.5 ml EP tube, add

200 ul of chloroform, gently invert several times, mix well, leave

at room temperature for 5 min, centrifuge at 12,000 rpm, 4°C for

15 min, and measure RNA concentration using a

spectrophotometer. The expression levels of SDSL mRNA were

detected by qPCR. The primer sequences of GAPDH and SDSL

were, respectively, h-GAPDH-F primer sequence 5’→3’: ACAA

CTTTGGTATCGTGGAAGG, h-GAPDH-R primer sequence

5’→3’: GCCATCACGCCACAGTTTC, h-SDSL-F primer sequence

Sequence 5’→3’: GACGGCTGGGAGAATGTCC, h-SDSL-R primer

sequence 5’→3’: ATGGCCGCATTGAAGCAGT. The ISO induction

experiment is divided into five groups, including 10 um, 25 um,

50 um, and 100 um. Repeat each experiment three times.
TABLE 1 Differential gene expression.

id logFC AveExpr t
SDSL 2.239475 5.31462 8.887828

AQP4 −2.11099 3.186507 −7.57735
NPPB 3.68695 9.061614 7.524013

CHDH −2.00698 1.947702 −6.74885
LSAMP −2.67948 2.973226 −6.68218
SCGB1D2 −2.15224 2.257207 −6.10948
SMTNL2 −2.24937 4.540269 −6.10128
MFAP4 2.447268 6.16297 5.967751

NPPA 3.577934 10.46512 5.923948

SGPP2 −2.2203 2.667199 −5.80425
CHST9 −2.74878 2.902939 −5.73782
DHRS7C −2.79079 5.214339 −5.60007
EGFL7 2.000391 5.251084 5.276298

PPP1R13l −3.20057 8.850626 −4.49841
TAGLN 2.121351 7.16273 4.424147

TNNI1 2.196924 4.478899 3.650588

NDUFS1 3.962628 13.81949 3.238772

NRP1 −2.41843 9.043121 −2.67862
CUX1 3.108471 9.434677 2.63947
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2.7 Ac16 cell apoptosis experiment

Apoptosis is one of the fundamental characteristics of cells,

playing a crucial role in embryonic development, tissue

repair, and stability of the internal environment in the body.

The steps of the apoptosis experiment include: (1) After

digestion with trypsin without EDTA, cells were collected by

centrifugation at 4°C for 5 min at 300 g. The digestion time of

pancreatic enzymes should not be too long to prevent

false positives. (2) Preparation 1 × Binding Buffer: Dilute 4

times with deionized water × Binding Buffer (4 ml binding

buffer + 12 ml deionized water). (3) Wash the cells twice with

PBS pre cooled at 4°C, each time requiring 300 g, and

centrifuge at 4°C for 5 min. (4) Add 250 μl 1× Binding Buffer

resuspended cells and adjusted their concentration to 1 ×

106 cells/ml. (5) Take 100 μ Transfer the cell suspension into a

5 ml flow cytometry tube and add 5 μ Annex FITC and 10 μ

PI, gently mix well. (6) Avoid light and react at room

temperature for 15 min. (7) Join 400 μl 1× Binding Buffer, mix

well, and test the sample within 1 h. ISO induced apoptosis of

AC16 cells was divided into five groups, including 10 um,

25 um, 50 um,and 100 um, and divide AC16 cell apoptosis

induced by ISO interference with SDSL expression into

four groups, including control, SDSL siRNA, ISO, SDSL

siRNA + ISO.
2.8 SDSL overexpression

To investigate the impact of SDSL overexpression on apoptosis

in AC16 cells, we performed overexpression experiments using

SDSL plasmids. The overexpression sequence of SDSL was as

follows: SDSL-F AGCGATTCGCCACCATGGGGGGAGCCTCT

GCGAGA and SDSL-R TTTGTAGTCGGATCCCTGCAGTT
P. Value adj. P. Val B
7.99 × 10−15 2.20 × 10−11 23.21108

8.44 × 10−12 2.70 × 10−09 16.49716

1.11 × 10−11 3.20 × 10−09 16.23042

5.75 × 10−10 6.02 × 10−08 12.43361

8.00 × 10−10 7.80 × 10−08 12.11493

1.30 × 10−08 7.31 × 10−07 9.438457

1.35 × 10−08 7.54 × 10−07 9.400955

2.55 × 10−08 1.24 × 10−06 8.794525

3.13 × 10−08 1.46 × 10−06 8.597121

5.47 × 10−08 2.29 × 10−06 8.061666

7.44 × 10−08 2.92 × 10−06 7.767104

1.40 × 10−07 4.91 × 10−06 7.16234

6.00 × 10−07 1.59 × 10−05 5.77477

1.60 × 10−05 0.000213 2.658742

2.16 × 10−05 0.000271 2.379004

0.00039 0.002852 −0.32736
0.001556 0.00876 −1.60004
0.008439 0.03368 −3.12349
0.009416 0.036648 −3.22054
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FIGURE 1

Differential gene heatmap and gene enrichment analysis, (A) indicates the differential gene heat map after merging the datasets, (B) indicates the
differential gene volcano heat map after merging the datasets, (C) GO enrichment analysis for each differential gene, (D) KEGG enrichment
analysis for each differential gene, (E) enrichment analysis for differential genes in DO, (F) expresses GSEA enrichment analysis for genes in the
tumor group.
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CAGCTGTGTGTTTT. Subsequently, Western blot, Real time

quantification, and apoptosis experiments were performed on

AC16 cells overexpressing SDSL. The experimental groups
Frontiers in Cardiovascular Medicine 04
were divided into four subgroups, and each experiment was

replicated three times to ensure robustness and reliability of

the results.
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2.9 Statistical analysis

All statistical analyses were performed by R 4.1.2, p values

<0.05 were considered statistically significant. Related R packages

including “sva”, “limma”, “pheatmap” and “glmnet”. and other

related R packages were downloaded from Bioconductor

packages or R packages. For each analysis, statistical significance

was set at p-value <0.05.
3 Result

3.1 Identification of candidate heart failure
related differential gene

The R software was used to normalize the GSE116250 and

GSE120895 training sets, and a total of 19 genes with
FIGURE 2

Machine learning screening of model hub genes and differential expression
target genes were screened by LASSO regression analysis, (B) 19 model gene
PPP1R13l, SMTNL2, MFAP4 and TAGLN were highly expressed in heart failure
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differential expression were obtained by differential analysis, of

which 10 genes were down-regulated and 9 genes were up-

regulated, as shown in Table 1 and (Figure 1A), and the genes

with significant differential expression were annotated by

volcano plots (Figure 1B).
3.2 Functional enrichment analysis

To explore the potential biological functions of the 19

differential genes summarized in the previous work, we

performed GO analysis and KEGG pathway enrichment analysis.

In biological process (BP), it was significantly (p < 0.05)

associated mainly with regulation of anatomical size, regulation

of tubular diameter, and maintenance of vascular diameter, and

in molecular function (MF), it was significantly associated with

molecular functions such as extracellular matrix, contractile
of candidate model genes in normal vs. abnormal tissues, (A) indicates 11
s were screened by SVM-RFE method, (C–H) Showed that EGFL7, SDSL,
patients, (I) indicated that SGPP2 was highly expressed in normal patients.
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fibers, and astrocyte projection, and we also enriched cellular

component (CC) functions, which were significantly associated

with hormone activity, hormone receptor binding, and signaling

hormone receptor activity and signaling receptor activity

(Figure 1C). In KEGG pathway enrichment analysis, it was

mainly associated with glycine, serine and threonine metabolism

and thermogenesis pathways (Figure 1D), and in DO enrichment

analysis, 19 differential genes were shown to be mainly associated

with diseases such as atrial septal defect, pulmonary embolism,

and septal defect (Figure 1E).
FIGURE 3

Candidate model marker genes (A) EGFL7, (B) SDSL, (C) PPP1R13l, (D) SMTNL
validation.
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To analyze how genes cause the developmental process of heart

failure, we performed GSEA enrichment analysis on the

GSE116250 and GSE120895 training sets. The results showed

that differential gene expression in pathway enrichment in heart

failure samples was significantly associated with KEGG_

ANTIGEN_PROCESSING_AND_PRESENTATION, KEGG_ECM_

RECEPTOR_INTERACTION, KEGG_FOCAL_ADHESION,

KEGG_GRAFT_VERSUS_HOST_DISEASE, and KEGG_TYPE_I_

DIABETES_MELLITUS. In the normal sample it is mainly

significantly associated with KEGG_INSULIN_SIGNALING_
2, (E) MFAP4, (F) TAGLN and (G) SGPP2 in the test dataset for ROC model
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PATHWAY, KEGG_LONG_TERM_POTENTIATION and KEGG_

PYRUVATE_METABOLISM (Figure 1F).
3.3 Identification of hub gene by lasso
regression analysis and SVM-RFE analysis

To detect heart failure hub gene, we screened disease genes

by machine learning Lasso regression analysis and SVM-REF

analysis on GSE116250 and GSE120895 training set heart

failure samples, where lasso analysis screened to obtain 11
FIGURE 4

Candidate model marker genes (A) EGFL7, (B) SDSL, (C) PPP1R13l, (D) SMTNL
model validation.
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signature genes (Figure 2A), while SVM-REF obtained 19

signature genes by screening (Figure 2B), and 11 overlapping

genes were obtained by taking the intersection of the two. The

11 genes were SDSL, AQP4, SCGB1D2, SMTNL2, MFAP4,

SGPP2, EGFL7, PPP1R13l, TAGLN, NDUFS1, and NRP1.

Furthermore, the 11 hub gene obtained by lasso and SVM-

REF intersection were differentially expressed in normal and

heart failure patients, of which 7 genes were significantly

differentially expressed in the test set GSE59867. EGFL7,

SDSL, PPP1R13l, SMTNL2, MFAP4 and TAGLN were highly

expressed in heart failure samples (Figures 2C–H), and the
2, (E) MFAP4, (F) TAGLN and (G) SGPP2 in the validation dataset for ROC
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high expression of these 6 hub gene may promote the

progression of heart failure and be a risk factor for heart

failure patients, while SGPP2 was highly expressed in normal

samples (Figure 2I), which may play a protective role for heart

failure patients.

The accuracy of the seven model genes was further verified

by ROC curves. In the training set, EGFL7, SDSL, SMTNL2,

MFAP4, TAGLN and SGPP2 showed AUC curve areas

greater than 0.7, while the AUC values of SDSL and SMTNL2

were even greater than 0.9 with high accuracy

(Figure 3). However, only SDSL showed an AUC value greater

than 0.7 in the test set, whereas EGFL7, SMTNL2, MFAP4,

TAGLN, SGPP2 and SMTNL2 showed AUC values greater

than 0.5, so SDSL may be a high risk factor in patients with

heart failure (Figure 4).
FIGURE 5

SDSL and PARP1 expression in heart failure cells. (A) Protein expression of SD
Protein expression of SDSL at different concentrations of ISO detected by R
apoptosis characteristics. *<0.05, **<0.01, ***<0.001.
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3.4 Induction of apoptosis in Ac16 by ISO
treatment and upregulation of SDSL
expression

Different concentrations of isoproterenol (ISO) can lead to

increased expression of the protein SDSL. The expression of SDSL

gradually increased in response to ISO concentrations of 0, 10, 25,

50, and 100 um (Figures 5A,B), with maximum expression observed

at an ISO concentration of 100 um. Concurrently, the expression of

PARP1 and Cleaved-PARP1 also increased with increasing ISO

concentration (Figure 5A). Additionally, ISO induction resulted in

significant apoptosis of cardiomyocytes in AC16 cells. Cell apoptosis

gradually increased in response to ISO concentrations of 0, 10, 25,

50, and 100 um , with the most significant level observed at an ISO

concentration of 100 um (Figures 5C–H).
SL and PARP1 in AC16 cells induced by ISO at different concentrations, (B)
eal-timePCR, (C-H) AC16 at ISO 10 um, 25 um, 50 um, 100 um induced
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3.5 Down-regulation of SDSL suppresses
ISO-induced apoptosis in Ac16

To investigate whether SDSL is a biomarker for heart failure,

we downregulated its expression (Figures 6A,B) and observed a

decrease in the expression of Cleaved-PRAP1. This resulted in

reduced myocardial cell apoptosis compared to the normal

group, indicating that inhibiting SDSL expression can regulate

PRAP1 and prevent myocardial cell apoptosis. On the other

hand, under ISO induction, downregulated SDSL expression

increased myocardial cell apoptosis by regulating Cleaved-PRAP1

expression (Figures 6C–H). However, compared to the ISO

group, the promotion of myocardial cell apoptosis decreased,

which suggests that SDSL may be a targeted biomarker for heart

failure, as it can regulate PRAP1 and inhibit ISO-induced

myocardial cell apoptosis.
FIGURE 6

Effect of inhibition of SDSL expression on apoptosis. (A) The expression of S
SDSL. (B) selected the optimal sequence siRNA 3 for transfection of AC
significantly decreased after transfection of SDSL compared with the co
induced apoptosis in cardiomyocytes after transfection. The ability of SDSL
after ISO induction promoted apoptosis in cardiac myocytes.

Frontiers in Cardiovascular Medicine 09
3.6 The overexpression of SDSL impacts the
PARP1/cleaved-PARP1 expression and
myocardial cell apoptosis

To investigate the impact of SDSL overexpression on PARP1/

cleaved-PARP1 expression and myocardial cell apoptosis, the

results of Western blot analyses revealed that SDSL

overexpression led to increased expression of PARP1/cleaved-

PARP1. Furthermore, when ISO was added to the system, the

expression of SDSL and PARP1/cleaved-PARP1 increased

(Figures 7A,B). These findings suggest that ISO stimulated AC16

to enhance the expression of SDSL and PARP1/cleaved-PARP1.

With regards to apoptosis, SDSL overexpression was observed to

promote myocardial cell apoptosis. Furthermore, ISO treatment

in combination with SDSL overexpression led to increased

apoptosis of myocardial cells (Figures 7C–G). Thus, it appears
DSL and cleaved-PARP1 protein decreased after siRNA interference with
16 by interfering with the sequence. (C) The expression of SDSL was
ntrol group, and increased after ISO-induced transfection. D-H SDSL
to induce apoptosis was decreased after (D-H) transfection, and SDSL
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FIGURE 7

Overexpression of SDSL promotes PARP1/cleaved-PARP1 expression and cardiomyocyte apoptosis. (A) Weston blot results showed that
overexpression of SDSL significantly promoted PARP1/cleaved-PARP1 expression. (B) RT-PCR reveals SDSL overexpression. (C–G) SDSL
overexpression promotes cardiomyocyte apoptosis and promotes further apoptosis when ISO is added.
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that SDSL acts as a factor that can promote myocardial cell

apoptosis and contribute to the development of heart failure.
4 Discussion

Heart failure is a condition caused by the incapacity of the

heart to pump blood efficiently, or to fill with blood, and has

become common due to the variety of factors that cause it. In

the United States alone, approximately 5.8 million people suffer

from heart failure (9), with an associated mortality rate of 87.9

deaths per 100,000 people (10). The diagnosis of heart failure in

patients is conventionally based on clinical examinations, medical

history, physical evaluations, and chest radiographs. However,

when used in isolation, these methods are inadequate for
Frontiers in Cardiovascular Medicine 10
accurately diagnosing heart failure (11–13). Recent years have

seen the advent of laboratory and imaging-based diagnostic

criteria that provide accurate heart failure diagnosis (14,

15).Research into various biomarkers associated with heart failure

pathophysiology is gaining momentum, with natriuretic peptide

(16–18) and troponin (19, 20) standing out as promising

markers. Though heart failure patient survival rates have grown,

their mortality rates remain stubbornly high (21). Therefore,

accelerating and perfecting the diagnosis of heart failure has

become of paramount importance to heart failure patients.

Biomarkers are useful in understanding disease prediction,

diagnosis, progression, degeneration, causation, or treatment

outcomes. They can be cellular, biochemical, or molecular

variations that can be detected in biological media, such as

human tissues, fluids, or cells. BNP and NT-proBNP have
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emerged as popular biomarkers for heart failure (22). With most

research studies associating the development of heart failure with

their presence (23–26). However, given the plurality of factors

that lead to heart failure, it is essential to identify new diagnostic

markers for heart failure. This paper explores the genetic

regulation of HF and its involvement in the pathological process,

identifying biomarkers for the diagnosis and prognosis of HF.

This study identified a total of 11 differential genes in the

training set, out of which 7 differentially expressed genes were

analyzed further in the test set. The analysis revealed that heart

failure samples had significantly higher expression levels of

EGFL7, SDSL, PPP1R13l, SMTNL2, MFAP4, and TAGLN genes,

which may promote the development of heart failure. Conversely,

SGPP2 was highly expressed in normal samples and may serve as

a protective gene against heart failure. The ROC model

confirmed the accuracy of the identified genes. However, it is

worth noting that SDSL was consistently significant in both the

training and test sets, indicating its vital role in heart failure

development.

SDSL is an enzyme with serine dehydratase-like activity that is

primarily found in the liver (27). A gene similar to SDH has been

identified through human genome sequencing (28), and this gene

has been identified in human cancer cell lines, including those

from lung, kidney, and brain cancer (29). However, there are

only a few reports on the role of serine dehydratase-like (SDSL)

in tumors and heart failure. In this study, we discovered that

SDSL was upregulated in heart failure via machine learning

techniques, High expression of SDSL promotes the development

of heart failure. which was subsequently corroborated by

experiments. Isoproterenol (ISO) can trigger apoptosis in

cardiomyocytes. The inhibition of SDSL expression reduced ISO-

induced cardiomyocyte apoptosis, whereas the promotion of

SDSL expression elevated ISO-induced cardiomyocyte apoptosis.

To examine the mechanism underlying the promotion of

cardiomyocyte apoptosis by SDSL, we manipulated SDSL

expression levels and discovered that PARP1 exhibited similar

changes in expression. Therefore, we suggested that ISO induced

SDSL expression promotes cardiomyocyte apoptosis by regulating

PARP1, thereby promoting the progress of heart failure, and

confirms that SDSL is a factor promoting heart failure. Although

there is currently limited research on the role of SDSL in heart

failure, our research fills this gap and provides new directions for

the research and treatment of heart failure.

This study employed machine learning methods to identify

characteristic genes associated with heart failure. Seven of these

genes were identified as potential diagnostic markers for heart

failure. Moreover, the study revealed that SDSL, via the

regulation of PARP1 under ISO induction, plays a pivotal role in

promoting the development and progression of heart failure in
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patients. This discovery highlights a novel research avenue for

the diagnosis and treatment of heart failure.
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