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The autonomic nervous system in
atrial fibrillation—pathophysiology
and non-invasive assessment
Bert Vandenberk1,2*, Peter Haemers1,2 and Carlos Morillo3

1Department of Cardiology, University Hospitals Leuven, Leuven, Belgium, 2Department of
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The autonomic nervous system plays a crucial role in atrial fibrillation
pathophysiology. Parasympathetic hyperactivity result in a shortening of the
action potential duration, a reduction of the conduction wavelength, and as
such facilitates reentry in the presence of triggers. Further, autonomic
remodeling of atrial myocytes in AF includes progressive sympathetic
hyperinnervation by increased atrial sympathetic nerve density and sympathetic
atrial nerve sprouting. Knowledge on the pathophysiological process in AF,
including the contribution of the autonomic nervous system, may in the near
future guide personalized AF management. This review focuses on the role of
the autonomic nervous system in atrial fibrillation pathophysiology and non-
invasive assessment of the autonomic nervous system.
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1 Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia and is associated with

a significant burden to patients and health care (1). While clinical research on AF

pathophysiology is focusing mostly on structural and electrical remodeling, there has

been significantly less attention for the role of the autonomic function. Increasing

knowledge on the pathophysiological process in AF, including the contribution of the

autonomic nervous system (ANS) and non-invasive substrate determination, may in

the near future guide personalized AF management (1). In this review, we focus on the

contribution of the ANS in AF pathophysiology, non-invasive assessment of the ANS,

and briefly discuss the evidence and knowledge gaps in vagally-mediated AF.
2 Vagal and adrenergic atrial fibrillation subtypes

In 1978 Coumel et al. described an atrial arrhythmia syndrome of vagal origin (2).

They reported on 18 cases, predominantly middle-aged men without underlying heart

disease, who developed progressive deterioration of AF paroxysms precipitated by vagal

overactivity. They noted a particular resistance to digitalis and beta-blocking agents,

while in 5 cases the arrhythmia was managed successfully by implanting an atrial

pacemaker for maintaining the atrial rate (2). Historically, in prior guidelines,

paroxysmal AF was classified into three types based on the involvement of the ANS

(3, 4). These included vagally-mediated AF, adrenergic-mediated AF, and mixed AF. It
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was promptly acknowledged that the impact of such classification

had limited impact on AF management (3).

The clinical characteristics of patients with vagal and adrenergic

AF subtypes differ significantly. Patients with vagally-mediated AF

are typically younger, more often male patients without structural

heart disease and in the absence of significant cardiovascular

comorbidities (5). In contrast, adrenergic AF is believed to manifest

in patients by a combination of triggers and atrial remodeling due to

underlying structural heart disease and risk factors such as arterial

hypertension, diabetes, and heart failure (5). For example, the

suggestion that nocturnal AF episodes are predominantly vagally-

mediated does not take into account episodes related to obstructive

sleep apnea (6). Studies reporting self-reported triggers of AF

paroxysms observed that vagal triggers represented between 6% and

38% of triggers (7, 8). These studies typically limited vagal triggers to

postprandial AF paroxysms, nocturnal episodes, and in the absence

of any acute adrenergic trigger. Further, some patients exhibit

episodes compatible with both vagal and adrenergic AF (9). A

specific subgroup of patients with vagal AF are endurance athletes,

where the pathophysiology of AF is hypothesized to be chronic

inflammation, structural remodeling due to long periods of increased

atrial pressure, and an altered sympathetic-parasympathetic balance

with higher vagal tone (10). The prevalence of AF in endurance

athletes have been reported to be up to 10 times higher compared to

controls and are predominantly vagally-mediated (11–14).
3 The autonomic nervous system in
atrial fibrillation

AF results from a complex interplay of triggers, substrate, and

remodeling. This pathophysiological triad interacts with several

anatomical structures, which can be targeted during ablation procedures.
3.1 Triggers

AF triggers are focal ectopic activity manifesting as atrial ectopic

beats or micro-reentrant circuits (15, 16). At the cellular level,

ectopic firing arises from enhanced automaticity or triggered

activity. While early afterdepolarizations are related to atrial action

potential prolongation with reactivation of L-type calcium

channels, delayed afterdepolarizations are related to calcium

overload and ryanodine receptor dysfunction of the sarcoplasmic

reticulum (16). Particularly delayed afterdepolarizations are of

pathophysiological importance in AF as cardiovascular diseases,

such as heart failure, are associated with altered atrial calcium

handling (17). Similar cellular calcium abnormalities have been

identified in paroxysmal and persistent AF (18, 19). Triggered

activity can result in local micro-reentry due to spatial differences

in action potential duration and myofibril arrangements, such as

the complexity of the muscular sleeves in the pulmonary veins (20).

In AF, adrenergic activation mediated by the sympathetic

nervous system strongly promote arrhythmogenesis by boosting

the calcium-dependent cardiac function and calcium-dependent

triggered activity (21). Further, parasympathetic hyperactivity
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result in a shortening of the action potential duration by

activation of the acetylcholine-activated outward potassium

current (22). These acetylcholine-activated potassium channels

have a higher density in the left atrium when compared to the

right atrium (23). Shortening of action potential duration reduces

the conduction wavelength, refractory period, and as such

facilitates reentry in the presence of triggers (22, 24). In animal

models, the shortening of the effective refractory period was

highest in the pulmonary veins and posterior left atrium (24).

This heterogeneity in response to parasympathetic nerve

stimulation is attributed to both differences in nerve supply and

distribution of acetylcholine-activated potassium channels (22, 25).
3.2 Substrate

The substrate can be defined as specific conditions that favor

initiation and maintenance of AF (15). AF substrate can be

divided in three types based on their etiology and eligibility for

intervention. The non-modifiable substrate includes static risk

factors such as age, sex, and genetic predisposition (15). The

modifiable substrate are dynamic risk factors that can be targets

in the management of AF with medical or lifestyle interventions,

such as comorbidities as obesity, obstructive sleep apnea, and

alcohol use (15). Lastly, the AF-induced substrate was introduced

in 1995 as the “AF begets AF” concept as research showed that

the presence of AF episodes augments the susceptibility for

future AF episodes (26). In the current era this is often referred

to as atrial remodeling, which are time-dependent changes of

atrial myocytes and the extracellular matrix to various external

stressors or risk factors resulting in persistent changes in left

atrial size or function (27). Typically, the AF substrate refers to

abnormalities predisposing to re-entrant circuits with areas of

slow conduction prone to unilateral conduction block and altered

refractoriness, such as myocardial fibrosis (28).
3.3 Remodeling

While structural and electrical remodeling receive most

attention in research, autonomic remodeling promoting the

sympathetic nervous system also plays a crucial role in AF

pathophysiology. AF is associated with progressive sympathetic

hyperinnervation by increased atrial sympathetic nerve density

and sympathetic atrial nerve sprouting in both animal models

and patients with AF (21). The coinciding adrenergic

overstimulation promotes the occurrence of delayed

afterdepolarization (16). Chronic adrenergic stimulation

stimulates structural remodeling by increased oxidative stress,

amongst others (29). This sympathetic hyperinnervation can

typically be observed in patients with obesity, diabetes mellitus,

heart failure, and persistent AF (30–33). However, also the

extracardiac sympathetic nervous system shows clear signs of

remodeling in chronic cardiovascular diseases with neuronal

hypertrophy and increase in the synaptic density of the stellate

ganglia (34, 35).
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3.4 Anatomic structures

Throughout the right and left atrium, there are anatomical

structures that are well-known for their predisposition to AF

triggers and their specific role in the perpetuation of AF. In

paroxysmal AF, up to 94% of AF triggers originate inside the

pulmonary veins and may induce AF by interacting with the

complexity of the myocardial sleeves at the veno-atrial junction or

the local atrial substrate (36, 37). While targeting the triggers

originating from the pulmonary veins is the cornerstone for patients

with paroxysmal AF, in persistent and long-standing persistent AF

the triggers and re-entry sites are more frequently dependent of the

atrial remodeling and the myocardial substrate (1, 15, 38).

Additional relevant anatomical structures are the ganglionated

plexi. In 2004 Pachon et al. described the AF-Nest ablation

technique (39). They defined two types of atrial tissue by using

spectral analysis of atrial electrograms by applying fast Fourier

transformation (39). First, a compact myocardium which shows

classical myocardial behavior with fast conduction. Second, a

fibrillar myocardium which they compared to a group of nerve cells,

characterized by heterogeneous conduction and short refractory

periods. They reported clustering of fibrillar myocardium in small

areas, which they called AF nests as upon stimulation of these areas

ectopy and AF could be induced (39). Later on, they correlated

these AF nests with vagal innervation by assessing the response

upon extracardiac vagal stimulation before and after ablation of

these fibrillar regions (40). In 2007, Lellouche et al. described that a

specific pattern of local electrograms, so-called high amplitude

fractionated electrograms, prior to ablation was associated with

parasympathetic responses defined as an increase in AH-interval

with ≥10 ms or a decrease in heart rate ≥20% (41). In retrospect,

both Pachon et al. and Lellouche et al. described techniques to

determine the endocardial location of the ganglionated plexi.

Lastly, while the ligament of Marshall is the remaining structure

after involution of the left superior caval vein, the vein of Marshall

remains an active vein with abundant parasympathetic and

sympathetic innervation and myocardial bundles (42). Due to its
TABLE 1 Common HRV measures.

Units

Time domain analysis
NN interval ms Normal-to-normal intervals.

SDNN ms Standard deviation of all NN intervals reflecting the sum o

SDANN ms Standard deviation of the averages of NN intervals in all 5 mi

RMSSD ms The square root of the mean of the sum of the squares of di

pNN50 % Percentage of NN intervals differing by more than 50 ms i

Frequency domain analysis
Total power ms2 Variance of all NN intervals

5 min total power ms2 Variance of NN intervals over the temporal segment (Freq

ULF ms2 Power in the ultra-low frequency range (≤0.003 Hz)

VLF ms2 Power in very low frequency range (≤0.04 Hz)

LF ms2 Power in low frequency range (0.04–0.15 Hz), reflects both

LF norm n.u. (LF/Total Power-VLF) × 100

HF ms2 Power in high frequency range (0.15–0.4 Hz), reflects para

HF norm n.u. (HF/Total Power-VLF) × 100

LF/HF Ratio of LF and HF
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size, the vein of Marshall is targeted using ethanol infusion. While

the vein of Marshall has been an origin of triggers and reentrant

activity in the AF pathogenesis, it is most commonly targeted to

facilitate or complete mitral isthmus block given its posterior

epicardial location between the left inferior pulmonary vein and the

coronary sinus (42, 43).
4 Assessing the autonomic nervous
system in atrial fibrillation

The gold standard for assessing cardiac ANS activity is the direct

measurement of action potentials, nerve activity, or changes in

neurotransmitter concentrations in the sympathetic and

parasympathetic nerves (44). The invasiveness of these techniques

limits their use in clinical practice. Further, the robustness of

measurement of venous and urinary neurotransmitter levels or their

spillover is limited due to the rapid clearance of acetylcholine and the

fact that circulating noradrenaline represents only a minor fraction of

the neurotransmitter secreted from nerve terminals (44, 45). ANS

activity is typically assessed by measuring its effect on the innervated

organs, therefore ANS response, rather than true activity (46).
4.1 Heart rate variability

The most commonly applied methods to assess ANS response

is heart rate variability (HRV) (47). These sets of measurements

describe the fluctuations in time intervals on a beat-to-beat basis.

While a higher HRV is typically considered beneficial, it should

be differentiated from pathological conditions where an irregular

heart rate mimics a large variability in cycle length, such as AF

(48). HRV measures can largely be divided into three groups

(Table 1 and Figure 1): time domain, frequency domain, and

nonlinear measurements (47). In brief, the time domain indices

quantify the variability in cycle length on a beat-to-beat basis,

while the frequency domain indices are based on a fast fourier
Description

f symphatic and parasympathetic activity.

n segments of the entire recording and correlates with VLF and ULF over a 24 h period.

fferences between adjacent NN intervals reflecting vagally-mediated changes in HRV.

n the entire recording reflecting vagally-mediated changes in HRV.

uency range: ≤0.4 Hz).

symphatic and (predominantly) parasympathetic activity

sympathetic activity.
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FIGURE 1

Overview of HRV measurements and techniques. (A) Example of raw ECG. All QRS complexes are marked with N, identifying normal heartbeats. The
RR interval between consecutive beats is shown in milliseconds. (B) 24-h tachogram presenting the heart rate on the Y-axis and the time on the X-axis.
(C) 24-h RR histogram presenting results of the time domain HRV analysis. (D) 24 h spectral analysis of the heart rate using a Fast Fourier
Transformation with results of the frequency domain HRV analysis. (E) Poincaré plot presenting the RR interval between consecutive normal
heartbeats. (F) Detrended fluctuation analysis.

Vandenberk et al. 10.3389/fcvm.2023.1327387
transformation or autoregressive models resulting in the variance

of all normal-to-normal beats in predefined frequency bands

(47). Nonlinear measurements, such as detrended fluctuation

analysis and poincaré plots, assess the complexity, repeatability,

and predictability of patterns in the normal-to-normal intervals
Frontiers in Cardiovascular Medicine 04
(47). The standard deviation of normal-to-normal intervals

(SDNN) is the standard of time domain measurements and

reflects the sum of both sympathetic and parasympathetic activity

(49). The root-mean-square of successive differences (RMSSD) is

the best time domain measure to assess vagally-mediated changes
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in HRV and is highly correlated with the high frequency (HF)

component in frequency domain analysis. The low frequency

(LF) component in frequency domain analysis reflects both

sympathetic and parasympathetic nervous system activity.

Compared to fast fourier transformation, autoregressive models

have several advantages including smoother spectral components,

easy post-processing of the spectrum, and lower requirements

with regards to the length of the data (50). Further, it should be

noted that both short-term and 24-h measurements are reported,

where the 24-h measurements are the gold standard and often

show a higher predictive power (51).

Table 2 presents an overview on the findings of relevant studies

regarding HRV in AF. Overall, these reports show that persistent

AF is associated with lower HRV measures and that HRV shows

distinct patterns to differentiate between vagal and adrenergic

subtypes (9, 52, 54–56, 58, 62). However, there is an overlap where

patients have both distinct vagal and adrenergic onset of AF (9, 56).

Typically, HRV is reduced after AF catheter ablation, but patients

with AF recurrence either show less pronounced reduction or

recovery or HRV measures (53, 57, 59, 60). These associations were

also present in a meta-analysis including 16 studies and a total of

2,352 patients, albeit significant publication bias was detected (63).
4.2 Heart rate turbulence

Heart rate turbulence (HRT) describes the perturbation of

sinus rhythm cycle length after isolated extrasystoles (64). It

provides measurements of the brief acceleration of the heart rate,

turbulence onset, and the subsequent gradual deceleration of the

heart rate, known as turbulence slope. While HRT is best known

for risk stratification of sudden cardiac death where it is based
TABLE 2 Overview of relevant studies describing HRV measures in patients w

First author Year N
VandenBerg et al. (52) 1997 28 Baseline HRV was higher in AF group. After adm

returned to baseline in AF group. SD, RMSSD, LF
groups.

Fioranelli et al. (9) 1999 28 In the 5 min before onset of AF 2 distinct patterns w
increase in sympathetic tone, while the other half h

Akyürek et al. (53) 2003 47 After electrical cardioversion, patients with persist
recurrence had lower HRV compared to those wit

Vikman et al. (54) 2003 78 Increased HF, reflecting enhanced autonomic tone
Short-term and non-linear HRV measures were no

Friedman et al. (55) 2004 38 Reduced HRV correlated with increasing left atria
determinant of HRV. HRV greater in “lone AF” th

Lombardi et al. (56) 2004 65 Among 110 paroxysmal AF episodes, approximate
predominance was detected.

Seaborn et al. (57) 2014 83 RF catheter ablation of paroxysmal and persistent
had only temporary HRV reduction, while in pati

Perkiömäki et al. (58) 2014 784 In a middle-aged population, the only HRV predi

Vesela et al. (59) 2019 45 There was no difference in change in short-term H
GP ablation. Vagal responses during ablation were

Marinkovic et al. (60) 2020 100 HRV changes during the 3-month period after RF
value of 62.5 ms showed the best predictive ability

Khan et al. (61) 2021 94 Patients with permanent AF exhibited higher HRV
in AF.

Kim et al. (62) 2022 782 Higher HRV, assessed by HF, RMSSD, and pNN5
importance of increased parasympathetic activity.
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on ventricular extrasystoles, one can also use atrial HRT by using

atrial extrasystoles (64–66). Ventricular-based HRT was

associated with the incidence and burden of postoperative AF

(67). Atrial-based HRT onset has shown clear dynamics before

the onset of AF suggesting an important role for transient

enhancement of vagal tone (68). When inspecting the graphs,

however, one can appreciate that most patients show a significant

increase in vagal outflow, but that a smaller subset show the

exact opposite suggestive of an adrenergic phenotype. It should

be noted, however, that for ventricular-based HRT the site of

origin does not influence its results, while for atrial-based HRT

the result is highly dependent on the coupling interval and

atrioventricular nodal conduction (65, 69). Therefore, instead of

truly reflecting autonomic function, the potential of HRT in AF

could rather be a surrogate of the pro-arrhythmic potential of

short-coupled atrial extrasystoles with delayed AV conduction.
4.3 Baroreflex sensitivity

Baroreflex sensitivity (BRS) reflects acute changes in sympathetic-

parasympathetic balance during blood pressure variability and is a

potent risk stratification tool in cardiovascular diseases (70–72).

Baroreceptors located on the aortic and carotid wall sense acute

changes in blood pressure and counteract with changes in heart rate

and systemic vascular resistance. As the acute changes in cardiac

sympathetic activity are too slow to respond to beat-to-beat changes

in blood pressure, BRS is considered to reflect vagal activity. BRS is

expressed as the change in interbeat intervals in milliseconds per unit

change in blood pressure (70). Higher values indicate more

pronounced vagal activity. However, it should be noted that BRS does

not represent the blood pressure buffering capacity but only measures
ith AF.

Findings
inistration of methylatropine, HRV neared zero in the control group whereas it
and HF at baseline were significantly (p < 0.05) correlated with vagal tone in both

ere differentiated based on power spectrum analysis. In half of the episodes there was an
ad an increase in parasympathetic tone. There was overlap of episodes within subjects.

ent AF exhibited reduced HRV compared to healthy controls. Patients with AF
h AF recurrence.

, was associated with AF recurrence after electrical cardioversion of persistent AF.
t associated with outcome.

l and left ventricular dimensions. Left atrial dimension was an independent
an other cardiac disorders.

ly 70% were preceded by increase in sympathetic activity while only in 30% a vagal

AF was associated with reduced HRV. At 1-year follow-up, patients with recurrence
ents without recurrence the change in HRV was sustained.

ctor in multivariable analysis of new-onset AF was reduced LF.

RV measures before and after catheter RF ablation when comparing PVI with PVI +
not different between subgroups.

catheter ablation for paroxysmal AF may predict long-term outcomes. SDNN cut-off
for late recurrence AF.

compared to those with paroxysmal AF. However, measurements were obtained

0, was associated with new-onset AF in patients with hypertension reflecting the
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the reflex effect on the sinus node, and BRS does not take into account

the direction of the effects (increase or decrease). Acute increases in BRS

preceding onset of AF has been described, suggesting a typical vagally-

mediated AF subtype (73). Further, BRS was severely impaired during

AF, but could be restored by maintaining rhythm control (74). Before

catheter ablation, but measured during sinus rhythm, patients with

persistent AF had a significant lower BRS when compared to those

with paroxysmal AF (75).

Data on BRS after catheter ablation is limited. Both Kondo et al.

and Miyoshi et al. described a significant reduction in BRS after

radiofrequency catheter ablation (75, 76). Further, both described a

significant difference in change between patients with AF

recurrence and those without AF recurrence (75, 76). In the study

by Kondo et al. the reduction in BRS was 5.0 ± 4.0 ms/mmHg in

patients without recurrence, which was significantly larger than

the 1.9 ± 1.4 ms/mmHg observed in patients with AF recurrence

(p = 0.019) (76). Miyoshi et al. observed a slightly lower BRS in

patients with persistent AF when compared to paroxysmal AF

[2.97 (IQR 0.52–6.62) vs. 4.70 (IQR 2.36–8.37) ms/mmHg, p =

0.047] (75). Further, the reduction in BRS was more pronounced

in patients with paroxysmal AF when compared to those with

persistent AF. The reduction in BRS was significantly smaller in

paroxysmal AF patients with recurrence, when compared to those

without recurrence [4.21 (IQR2.50–8.19) vs. 1.97 (IQR 0.46–

2.88) ms/mmHg, p = 0.011] (75). The latter was not present in

patients with persistent AF and recurrence.
4.4 Other

The concept of P-wave alternans or atrial alternans is currently

under investigation in the setting of AF (77). Similar to the well-

known albeit nearly abandoned T-wave alternans, atrial

repolarization dynamics reflect sympathetic nervous system

activity by measuring beat-to-beat differences in action potential

dynamics due to changes in cytosolic calcium levels (77).

Distinct differences in action potential restitution curves have

been observed when comparing vagally-mediated and adrenergic

AF models (78). Hence, atrial alternans could be of interest to

differentiate these AF subtypes, but most contemporary data is

based on in-silico or animal models (77). This is partly due to

the challenging technical requirements to measure atrial alternans.

Alternative measures of ANS activity, such as post-extrasystolic

potentiation, self similarity, deceleration capacity, salivary gland

activity, and sudomotor function, have been poorly or not

studied in the setting of AF (79, 80).
5 Discussion

Over time, the role of the autonomic nervous system and its

role in modulating AF pathophysiology has been consistently

documented. Surges of both sympathetic and parasympathetic

activity have been associated with the onset of AF. Differentiating

these vagal and adrenergic AF paroxysms is however challenging

as patients may exhibit both subtypes. How this knowledge can
Frontiers in Cardiovascular Medicine 06
be applied to improve AF catheter ablation outcomes requires

further investigation. Based on previous randomized clinical

trials, some patients might benefit from autonomic denervation.

Given the wide range of therapeutic interventions, the question is

how can we identify which patients will best benefit from a

certain intervention and evolve towards personalized AF

treatment strategies. Identifying patients who might benefit from

parasympathetic denervation may be challenging due to the

overlap phenomenon. Also, rather than detecting AF current

research is focusing on prediction of AF burden, while patients

with vagal subtypes may have less frequent episodes when linked

to specific triggers (81–83). Novel artificial intelligence

algorithms based on HRV features have high accuracy in

predicting AF based on the ECG signal just a few minutes before

AF onset (82, 83). Hence, in the era of digital health and

wearables there may be an opportunity to collect data and

improve our understanding on how we can differentiate vagal

and adrenergic AF subtypes and guide treatment strategies in

future randomized clinical trials.
6 Conclusion

While the existence of a vagal AF subtype cannot be denied,

there is no universal definition of a vagal AF. This is mainly due

to the fact that vagal and adrenergic AF subtypes represent the

extremes of a spectrum where most of the patients will present

with a mixed subtype. Therefore, it is important to note that the

described characteristics are not definitive markers for either

subtype or that there may be significant overlap. Differentiation

of vagal and adrenergic AF subtypes may have implications for

the treatment options as certain interventions have shown not to

modify the autonomic innervation of the heart. Non-invasive

methods for identifying patients with vagally-mediated AF, such

as ambulatory HRV, may have potential to guide ablation

strategy. However, further research is needed to better

understand the mechanisms underlying the relationship between

autonomic tone and AF, and to validate the use of measures

such as HRV, baroreflex sensitivity, or novel artificial intelligence

algorithms, as tool for patient selection.
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