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Association of carotid wall shear
stress measured by vector flow
mapping technique with ba-PWV:
a pilot study
Yi Cheng1, Jie Chen1, Qing Zhao1, Jinghan Zhang1 and Junyi Gao2*
1Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China,
2Department of Cardiovascular Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing,
China

Objective: Arterial stiffness is an important tissue biomarker of the progression of
atherosclerotic diseases. Brachial-ankle pulse wave velocity (ba-PWV) is a gold
standard of arterial stiffness measurement widely used in Asia. Changes in
vascular wall shear stress (WSS) lead to artery wall remodeling, which could give
rise to an increase in arterial stiffness. The study aimed to explore the
association between ba-PWV and common carotid artery (CCA) WSS measured
by a newly invented vascular vector flow mapping (VFM) technique.
Methods: We included 94 subjects free of apparent cardiovascular disease (CVD)
and divided them into a subclinical atherosclerosis (SA) group (N= 47) and non
subclinical atherosclerosis (NSA) group (N= 47). CCA WSS was measured using
the VFM technique. Bivariate correlations between CCA WSS and other factors
were assessed with Pearson’s, Spearman’s, or Kendall’s coefficient of correlation,
as appropriate. Partial correlation analysis was conducted to examine the
influence of age and sex. Multiple linear stepwise regression was used for the
analysis of independent determinants of CCA WSS. Receiver operating
characteristic (ROC) analysis was performed to find the association between
CCA WSS and 10-year CVD risk.
Results: The overall subjects had a mean age of 47.9 ± 11.2 years, and males
accounted for 52.1%. Average systolic CCA WSS was significantly correlated with
ba-PWV (r=−0.618, p < 0.001) in the SA group. Multiple linear stepwise
regression analysis confirmed that ba-PWV was an independent determinant of
average systolic CCA WSS (β=−0.361, p= 0.003). The area under the curve
(AUC) of average systolic CCA WSS for 10-year CVD risk ≥10% was 0.848 (p <
0.001) in the SA group.
Conclusions: Average systolic CCA WSS was significantly correlated with ba-PWV
and was associated with 10-year CVD risk ≥10% in the SA group. Therefore, CCA
WSS measured by the VFM technique could be used for monitoring and screening
subjects with potential CVD risks.
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Introduction

Arterial stiffening is an adverse structural and functional

change in the artery wall (1). It has been shown to play an

important role in the progression of atherosclerotic diseases and

is an independent predictor of cardiovascular risk and mortality

(2, 3).

Pulse wave velocity (PWV) is a clinical practice widely accepted

as the gold standard of arterial stiffness measurement (4). Brachial-

ankle pulse wave velocity (ba-PWV) is the most frequently applied

PWV measurement in Asia, and it could be a representative of

arterial stiffness for the entirety of the central and peripheral

arterial system (5, 6). Ba-PWV is widely used in clinical work

and epidemiological studies for its monitoring role and

predicting value (7, 8). However, there are also temporal

fluctuations in PWV measurements, and the estimated rates of

arterial stiffening progression may deviate from the actual

situation (9).

Wall shear stress (WSS) is a force exerted on the vessel wall by

the blood flow (10). Changes in hemodynamics reflected by WSS

promote adaptive structural remodeling of the artery wall

through endothelial mechanotransduction. Artery wall

remodeling could give rise to an increase in arterial stiffness (11).

Therefore, WSS may be associated with PWV, which represents

systemic arterial stiffness.

The vascular vector flow mapping (VFM) technique was first

proposed in 2017. It is an application that measures carotid WSS

by combining speckle tracking and Doppler imaging with two-

directional echo beams (12–15). Previous study has confirmed

the accuracy and feasibility of this technique (14). The study

aimed to explore the correlation between ba-PWV and the

common carotid artery (CCA) WSS measured by the VFM

technique and to explore the association between CCA WSS and

10-year cardiovascular disease (CVD) risk.
Materials and methods

Patients

We examined subjects (N = 579) who visited the Department of

Diagnostic Ultrasound and Health Examination Center at Beijing

Anzhen Hospital for carotid artery ultrasound examination from

October 2022 to December 2022. Subjects with previous CVD

were excluded (N = 402). CVD was defined as previously

diagnosed coronary artery disease, cerebrovascular disease,

peripheral vascular disease, heart failure, rheumatic heart disease,

congenital heart disease, cardiomyopathies, and severe cardiac

arrhythmia such as atrial fibrillation (AF) (16).

Subjects with newly discovered carotid artery stenosis during

enrollment were excluded (N = 8) (17). Subjects who refused to

take VFM examination were excluded (N = 2). Subjects who did

not participate in ba-PWV examinations were excluded (N = 73).

We finally enrolled 94 subjects for analysis. All subjects included

received routine physical examinations, medical history
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and VFM examinations. Ba-PWV and 24-hour ambulatory blood

pressure monitoring were also performed. Average Ba-PWV

combining bilateral values was used for data analysis. The China-

PAR score was used to present the 10-year CVD risk of the

subjects. Risk classification criteria were defined as: low risk

(<5%), medium risk (5%–9.9%), or high risk (≥10%) (18).
The flow chart is shown in Figure 1.
Regular ultrasound

Subjects took a rest for at least 30 min before they underwent

carotid artery examination. Carotid artery ultrasound was

performed by two experienced ultrasound clinicians using

LISENDO880LE (Hitachi, Tokyo, Japan) with a linear probe

(L441, Hitachi, Tokyo, Japan).

The presence of carotid artery plaque was evaluated before the

VFM examination (19). The posterior wall of the distal segment

(1 cm proximal to the bifurcation) of CCA without plaque was

chosen for mean intima-media thickness (IMT) measurement.

Unilateral CCA IMT was calculated automatically tracing the

luminal edge of the high-echoic layer of the intima. Unilateral

CCA peak systolic velocity (PSV), end diastolic velocity (EDV),

resistive index (RI), and pulsate index (PI) were calculated

automatically. Unilateral systo-diastolic index (SDI) was

calculated as PSV/EDV. Average CCA IMT and flow parameters

were measured by combining bilateral data.
VFM examination

CCA WSS was measured at 1 cm proximal to the bifurcation

without plaque in the supine position. If plaque existed at the

proximal bifurcation segment, the middle segment of CCA was

examined instead. Images of three heartbeats were saved as raw

data in each measurement. The depth was controlled to less than

3.5 cm. The steering angle of the color Doppler flow was

adjusted from 0 to 30 degrees. The dynamic range and velocity

range were kept as small as possible within the aliasing

correction, and the gain was adjusted as necessary. The

crossbeam was automatically set and was adjusted by 5-degree

increments to maximize the crossbeam Doppler signal in the

vessel. The unilateral systolic CCA WSS value of the anterior and

posterior walls was calculated automatically using DAS-RS1

software (Hitachi, Tokyo, Japan). (Shown in Figure 2) Average

systolic WSS was measured by combining the values of bilateral

CCA WSS.
Grouping method

Subjects were finally divided into two groups. Subjects with

average CCA IMT≥ 0.90 mm or with carotid atherosclerotic

plaque were assigned to the subclinical atherosclerosis (SA)

group (N = 47). Subjects without carotid atherosclerotic plaque
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FIGURE 1

Flow chart of the study. CVD, cardiovascular diseases; CCA, common carotid artery; WSS, wall shear stress; VFM, vector flow mapping; Ba-PWV, brachial-
ankle pulse wave velocity. CVD was defined as coronary artery disease, cerebrovascular disease, peripheral vascular disease, heart failure, rheumatic heart
disease, congenital heart disease, cardiomyopathies, and severe cardiac arrhythmias such as atrial fibrillation.

FIGURE 2

Measurement of systolic CCA WSS by VFM technique. The figure showed a longitudinal section of the common carotid artery. The red area indicated a
relatively high wall shear stress, and the green area indicated a relatively low wall shear stress. The white arrow represents the blood flow velocity vector of
the carotid artery. The electrocardiogram on the bottom ensured the time of measurement.
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TABLE 1 Basic characteristics of the subjects.
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and with average CCA IMT < 0.90 mm were assigned to the non

subclinical atherosclerosis (NSA) group (N = 47) (20–22).

All

(N = 94)
SA

(N = 47)
NSA

(N = 47)
p

value
Age (years) 47.9 ± 11.2 53.0 ± 11.0 42.8 ± 8.9 <0.001

Male (%) 49 (52.1%) 24 (51.1%) 25 (53.2%) 0.836

HTN history (%) 80 (85.1%) 42 (89.4%) 38 (80.9%) 0.247

DM history (%) 23 (24.5%) 15 (31.9%) 8 (17.0%) 0.093

Smoking history (%) 34 (36.2%) 21 (44.7%) 13 (27.7%) 0.086

BMI (kg/m2) 27.5 ± 4.8 26.6 ± 4.1 28.4 ± 5.2 0.067

WC (cm) 96.7 ± 12.1 95.9 ± 10.2 97.6 ± 13.7 0.481

24-hour average SBP
(mmHg)

129.2 ± 13.9 127.0 ± 11.9 131.5 ± 15.5 0.117

24-hour average DBP
(mmHg)

82.5 ± 11.0 80.2 ± 9.9 84.8 ± 11.6 0.041

24-hour variation of
SBP (%)

11.1 ± 3.0 11.0 ± 2.6 11.2 ± 3.3 0.767

24-hour variation of
DBP (%)

11.9 ± 6.0 12.2 ± 8.2 11.5 ± 2.2 0.588

24-hour average HR
(bpm)

71.4 ± 10.2 69.6 ± 9.8 73.2 ± 10.2 0.085

UA (μmol/L) 353.4 ±
100.7

352.6 ±
112.1

354.2 ± 89.0 0.939

TG (mmol/L) 1.81 (1.21,
2.44)

1.90 (1.26,
2.53)

1.70 (1.12,
2.37)

0.360

TCHO (mmol/L) 5.24 ± 1.00 5.36 ± 0.97 5.12 ± 1.03 0.254

HDL-C (mmol/L) 1.22 ± 0.29 1.29 ± 0.33 1.16 ± 0.23 0.023
Statistical analysis

Continuous variables were reported as mean ± standard

deviation (SD) or median with interquartile range as appropriate.

Categorical variables were reported as numbers and percentages.

Differences between groups were compared using the Student’s

t-test or Mann–Whitney U-test, as appropriate. Bivariate

correlations between CCA WSS and other variables were assessed

with Pearson’s, Spearman’s, or Kendall’s coefficient of correlation

as appropriate. Partial correlation analysis was used to examine

the influence of age and sex. Multiple linear stepwise regression

was used for analysis of independent determinants of average

systolic CCA WSS. Receiver operating characteristic (ROC)

analysis was used to explore the association of CCA WSS and

ba-PWV with 10-year CVD risk. All tests of significance were

two-tailed, and a p-value≤ 0.05 was considered statistically

significant. Analyses were performed using SPSS 26.0 (SPSS,

Chicago, IL, USA). G power was calculated using the software

G Power 3.1.9.7.

LDL-C (mmol/L) 3.02 ± 0.81 3.05 ± 0.82 2.99 ± 0.81 0.691

hs-CRP (mg/L) 0.97 (0.59,
2.46)

0.87 (0.57,
1.79)

1.21 (0.67,
3.29)

0.246

HbA1c (%) 6.0 ± 0.8 6.1 ± 0.8 5.9 ± 0.7 0.176

Average CCA IMT (mm) 0.643 ±
0.123

0.679 ±
0.146

0.608 ±
0.083

0.005

Average systolic CCA
WSS (Pa)

1.090 ±
0.330

1.049 ±
0.295

1.130 ±
0.361

0.242

Average CCA PSV (cm/s) 74.1 ± 15.4 70.8 ± 14.6 77.5 ± 15.6 0.037

Average CCA EDV (cm/
s)

19.4 ± 4.1 18.9 ± 4.3 20.0 ± 3.8 0.231

Average CCA RI 0.74 ± 0.07 0.729 ±
0.048

0.756 ±
0.089

0.074

Average CCA PI 1.67 ± 0.32 1.62 ± 0.28 1.72 ± 0.35 0.141

Average CCA SDI 3.90 ± 0.68 3.84 ± 0.67 3.95 ± 0.70 0.442

Average ba-PWV (cm/s) 1,553 ± 277 1,563 ± 327 1,543 ± 217 0.731

China-PAR 10-year CVD
score (%)

6.0 (3.1,
10.8)

8.5 (4.3,
12.3)

3.8 (2.1, 8.4) 0.005

High 10-year CVD
risk (%)

25 (26.6%) 16 (34.0%) 9 (19.1%) 0.102

SA, subclinical atherosclerosis; NSA, non-subclinical atherosclerosis; HTN,

hypertension; DM, diabetes mellitus; BMI, body mass index; WC, Waist

circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR,

heart rate; bpm, beat per minute; UA, uric acid; TG, triglycerides; TCHO, total

cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density

lipoprotein cholesterol; hs-CRP, high-sensitivity C reactive protein; HbA1c,

glycated hemoglobin; CCA, common carotid artery; WSS, wall shear stress; IMT,

inter-medium thickness; Ba-PWV, brachial-ankle pulse wave velocity; PSV, peak

systolic velocity; EDV, end diastolic velocity; RI, resistive index; PI, pulsate index;

SDI, systo-diastolic index; China-PAR score, prediction for atherosclerotic

cardiovascular disease risk score in China.
Results

Basic characteristics

The overall subjects had a mean age of 47.9 ± 11.2 years, and

males accounted for 52.1%. Compared with the NSA group (N =

47), subjects in the SA group (N = 47) were older (53.0 ± 11.0

years vs. 42.8 ± 8.9 years, p < 0.001). The two groups had a

comparable incidence of hypertension (HTN) history, incidence

of diabetes mellitus (DM) history, body mass index (BMI), waist

circumference (WC), 24-hour average systolic blood pressure

(SBP), 24-hour average heart rate (HR), TG levels, TCHO levels,

LDL-C levels, and HbA1C levels. We found that 24-hour average

diastolic blood pressure (DBP) was lower in the SA group

(80.2 ± 9.9 mmHg vs. 84.8 ± 11.6 mmHg, p = 0.041), and average

CCA IMT was higher in the SA group (0.679 ± 0.146 mm vs.

0.608 ± 0.083 mm, p = 0.005).

In the SA group, average systolic CCAWSS was lower (1.049 ±

0.295 Pa vs. 1.130 ± 0.361 Pa, p = 0.242) and average ba-PWV was

higher (1,563 ± 327 cm/s vs. 1,543 ± 217 cm/s, p = 0.731), but the

differences were not significant. The SA group had a higher

China-PAR score compared with the NSA group [8.5 (4.3, 12.3)

vs. 3.8 (2.1, 8.4), p = 0.005].

Basic characteristics of patients are shown in Table 1.
Correlation analysis

In the SA group, average systolic CCA WSS was significantly

correlated with average ba-PWV (r =−0.618, p < 0.001), age (r =

−0.626, p < 0.001), average CCA IMT (r =−0.479, p = 0.001),
Frontiers in Cardiovascular Medicine 04
average CCA PSV (r = 0.629, p < 0.001), and average CCA EDV

(r = 0.642, p < 0.001). The significance of correlations between

CCA WSS and ba-PWV, CCA PSV, and CCA EDV remained

after age and sex were adjusted. The significance of the

correlation between CCA WSS and IMT weakened after age and

sex were adjusted. In the NSA group, average systolic CCA WSS
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was correlated with CCA PSV (r = 0.488, p = 0.001). No significant

correlation was observed between CCAWSS and average ba-PWV.

China-PAR score had significant correlations with CCA WSS

in both the SA group (r =−0.632, p < 0.001) and the NSA group

(r =−0.400, p = 0.005). Results from correlation analysis were

shown in Supplementary Table S1.

Age, average CCA IMT, CCA PSV, CCA EDV, and ba-PWV

were included in multiple linear stepwise regression analyses for

determinants of average systolic CCA WSS. Average CCA PSV

(β = 0.452, p = 0.001) and ba-PWV (β =−0.361, p = 0.003) were

significant and independent determinants of CCA WSS. Results

from multiple linear stepwise regression analysis were shown in

Supplementary Table S2.
ROC analysis

ROC analysis was conducted in SA subjects and in the overall

subjects to represent the association between CCA WSS (as well as

ba-PWV) and 10-year CVD risk. The area under the curve (AUC)

of CCA WSS and ba-PWV were 0.788 (p < 0.001) and 0.756 (p <

0.001) for high 10-year CVD risk (≥10%) in the overall subjects. In

the SA group, the AUC of CCAWSS and ba-PWV was 0.848 (p <

0.001) and 0.775 (p < 0.001), respectively. Although no significant

difference could be found, the trend still indicated that CCA

WSS had at least comparable AUC with ba-PWV. Results from

ROC analysis are shown in Figure 3.
FIGURE 3

ROC analysis of CCA WSS and ba-PWV for 10-year CVD risk ≥10%. ROC, receiv
ankle pulse wave velocity; CCA, common carotid artery; WSS, wall shear stress
year CVD was 0.848 (p < 0.001) in SA subjects (A) and 0.788 (p < 0.001) in the o
PWV in SA and the overall subjects. The cutoff value of CCA WSS was 0.866 P
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Discussion

Our data showed that the average systolic CCA WSS value was

1.090 ± 0.330 Pa in the subjects free of apparent CVD, and our

result was consistent with He’s research in 2022. They reported

an average CCA WSS of 1.28 ± 0.33 Pa in a population without

obvious CVD (23). Adel. M. and colleagues elucidated that WSS

higher than 1.5 Pa indicates a healthy artery wall, while WSS

lower than 0.4 Pa promotes the development of arteriosclerosis

(24). In our study, the average systolic CCA WSS was between

normal and atherosclerosis tendency conditions. Considering the

characteristics of the patients, our result was reasonable.

Our study is the first known to propose a significant correlation

between ba-PWV and CCA WSS measured by the VFM technique

in a subclinical atherosclerosis population. Multiple linear stepwise

regression analysis confirmed that ba-PWV was an independent

determinant of average systolic CCA WSS. Previous research

indicated that WSS is a “local” factor for arterial remodeling

(25), and endothelial dysfunction in different artery beds may

present heterogeneity in an individual. The significant correlation

between CCA WSS and ba-PWV (represents systemic arterial

stiffness) showed a possibility that CCA WSS might not only be

a regional parameter but could also reflect a “systemic”

characteristic.

There are certain mechanisms underlying the association

between CCA WSS and ba-PWV, including endothelial

dysfunction, extracellular matrix degeneration, and inflammation
er operating characteristic; AUC, area under the curve; Ba-PWV, brachial-
; SA, subclinical atherosclerosis. The AUC of CCA WSS for high risk of 10-
verall subjects (B). The AUC of CCA WSS was comparable with that of ba-
a in the overall subjects and 0.895 Pa in the SA subjects.

frontiersin.org

https://doi.org/10.3389/fcvm.2023.1293106
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Cheng et al. 10.3389/fcvm.2023.1293106
(26). Endothelial dysfunction might be an important bridge linking

CCA WSS and ba-PWV. Changes in mechanical forces (such as

WSS) in the artery microenvironment affect endothelial functions

by influencing the phenotype and function of endothelial cells.

Alternation of the endothelium to a dysfunctional status leads to

the pathogenesis of cardiovascular diseases such as

atherosclerosis (27). On the other hand, changes in endothelial

function often involve structural alternation of the artery wall,

which could lead to an increase in arterial stiffness (3). In

addition, it has been reported that remodeling of extracellular

matrix protein, which could be induced by changes in WSS, may

also have a role in arterial stiffening (28, 29).

Therefore, CCA WSS and ba-PWV are two indicators that

gradually change together on the road from “healthy” to

“arteriosclerosis status”. We speculate the reason that the

correlation was more prominent in the SA group might be more

obvious structural and functional alterations in this group.

However, we could not rule out the possible association between

ba-PWV and CCA WSS in the NSA group, and future research

is needed in other populations as well.

In our study, carotid hemodynamic parameters, including CCA

PSV and CCA EDV, represented significant correlations with CCA

WSS. As an important determinant of WSS, blood velocity

promotes adaptive structural remodeling of the artery wall

through endothelial mechanotransduction (30). Previous studies

revealed that age has a certain impact on vascular hemodynamic

parameters. Thus, we speculate that the influence of age on the

progress of atherosclerosis might partially be mediated by blood

flow parameters, which should be paid more attention to in

future studies (31).

We are also the first known to propose the significant association

between CCA WSS measured by VFM technique and a high risk of

10-year CVD (China-PAR score ≥10%). In addition, the AUC of

CCA WSS was comparable with that of ba-PWV.

Arterial stiffness has been shown to play an important role in the

progression of atherosclerotic diseases. As a representative of

systemic arterial stiffness, ba-PWV is an independent predictor of

cardiovascular risk and mortality (2, 3). CCA WSS reflects changes

in endothelial function, which is the accumulation of the impact

of various risk factors on the arterial wall. It also reflects an

interaction between genetic background and environmental impact

(comorbidities, life habits, etc.). Therefore, endothelial function

might be a potential representative of the overall CVD risk of an

individual (32). In our data, we found a significant correlation

between CCA WSS and China-PAR score in both the SA and

NSA groups. So we speculate that CCA WSS might also be

associated with CVD risk. The disease burdens of CVD including

coronary heart disease and stroke are increasing and contribute to

the major challenge of public health policy (33). There are

different tools for CVD risk evaluation that guide public health

and clinical practice in different regions (34, 35). We chose the

most suitable evaluation system for our study. The China-PAR

project proposed validated equations predicting 10-year CVD risk

in an asymptomatic population. A clear relationship was observed

between China-PAR scores and the incidence of 10-year CVD (18).
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Our data showed that the AUC of CCA WSS for high risk

of 10-year CVD was 0.848 (p < 0.001) in SA subjects and 0.788

(p < 0.001) in the overall subjects. The AUC of CCA WSS was

comparable with that of ba-PWV (shown in Figure 3). In

addition, the AUC of CCA WSS in the SA group seemed to be

better than the AUC of the overall subjects. These results

confirmed our speculation that CCA WSS may correlate with

CVD risk and a greater extent of endothelial dysfunction as well

as other pathological changes that may exist in the SA group.

We believe our result may bear some clinical value. Ba-PWV is

widely used in clinical works and epidemiological studies for its

monitoring role in the progression of atherosclerotic diseases and

predicting value on CVD prognosis (7, 8). It is crucial to

monitor ba-PWV regularly for subjects with potential

cardiovascular risks. However, measurements of ba-PWV may

depend on the device types used. Not only that, the temporal

fluctuations of PWV measurements lead to the deviation of the

estimated arterial stiffening rates from the actual situation

(9, 36). Although CCA WSS could be measured using various

methods such as computed flow dynamics (CFD) and four-

dimensional magnetic resonance imaging (MRI), they may not

be suitable for daily clinical practice (37, 38). Carotid ultrasound

is a commonly used monitoring method and the measurement of

CCA WSS using VFM technique bears the advantages of

demanding little time and being non-invasive and cheap. It is

quite convenient to measure CCA WSS simultaneously with a

regular carotid ultrasound. Therefore, CCA WSS measured by

the VFM technique could be used for large-scale screening of

populations with potential risks before regular ba-PWV is needed

and for monitoring during the interval of ba-PWV measurements.

This research has some limitations.

First, we only included subjects free of apparent CVD with a

relative young age, and the association between CCA WSS and ba-

PWV was only significant in subclinical atherosclerosis subjects.

We could not rule out the possible association between them in

healthy subjects or other populations. Additionally, this does not

mean that CCA WSS could replace ba-PWV. Further studies in

other populations are needed to expand the value of CCA WSS.

The second limitation was that our sample size was limited.

However, we used the software G Power 3.1.9.7 to calculate the

power of bilateral correlation (0.8) and the power of multiple linear

regression analysis (0.73), which were acceptable. We also used

partial correlation analysis to evaluate the influence of age and sex.
Conclusion

We measured average systolic CCA WSS using the newly

invented VFM technique. We are the first known to propose that

average systolic CCA WSS was significantly correlated with ba-

PWV in a subclinical atherosclerosis population. Multiple

stepwise regression analysis confirmed ba-PWV was significantly

and independently associated with average systolic CCA WSS. In

addition, CCA WSS had a comparable AUC with ba-PWV for

high 10-year CVD risk (China-PAR score ≥10%). Therefore,
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CCA WSS measured by the VFM technique might be used for

screening and monitoring of subjects with potential CVD risks.
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