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Machine learning approaches
for cardiovascular hypertension
stage estimation using
photoplethysmography and
clinical features
Saad Abdullah* and Annica Kristoffersson

School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

Cardiovascular diseases (CVDs) are a leading cause of death worldwide, with
hypertension emerging as a significant risk factor. Early detection and treatment
of hypertension can significantly reduce the risk of developing CVDs and related
complications. This work proposes a novel approach employing features
extracted from the acceleration photoplethysmography (APG) waveform,
alongside clinical parameters, to estimate different stages of hypertension. The
current study used a publicly available dataset and a novel feature extraction
algorithm to extract APG waveform features. Three distinct supervised machine
learning algorithms were employed in the classification task, namely: Decision
Tree (DT), Linear Discriminant Analysis (LDA), and Linear Support Vector Machine
(LSVM). Results indicate that the DT model achieved exceptional training
accuracy of 100% during cross-validation and maintained a high accuracy of
96.87% on the test dataset. The LDA model demonstrated competitive
performance, yielding 85.02% accuracy during cross-validation and 84.37% on
the test dataset. Meanwhile, the LSVM model exhibited robust accuracy,
achieving 88.77% during cross-validation and 93.75% on the test dataset. These
findings underscore the potential of APG analysis as a valuable tool for clinicians
in estimating hypertension stages, supporting the need for early detection and
intervention. This investigation not only advances hypertension risk assessment
but also advocates for enhanced cardiovascular healthcare outcomes.
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Introduction

Cardiovascular diseases (CVDs) are a leading cause of death globally, accounting for

nearly 32% of all deaths in 2019 (1). Despite the impact of the COVID-19 pandemic,

recent studies demonstrate that cardiovascular mortality remained the leading cause of

death (2, 3). Notably, the World Health Organization (WHO) predicts that the mortality

rate from CVDs will increase from 246 to 264 people per 100,000 during the period

2015–2030 (4–6). CVDs encompass a range of disorders that affect the heart and blood

vessels, including coronary artery disease, heart failure, and stroke. Many risk factors have

been identified for CVDs, including high blood pressure, high cholesterol levels, smoking,

obesity, diabetes, and a family history of CVDs (7). Hypertension, or high blood pressure,

is a particularly important risk factor for CVDs. It can lead to a number of complications

for the heart, kidneys, and other vital organs, causing irreversible injury (6, 8). Therefore,
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early diagnosis, treatment, and control of hypertension could play a

crucial role in the prevention and treatment of CVDs, whereas an

effective management of hypertension can significantly reduce the

risk of developing CVDs and other related complications (8).

The analysis of Photoplethysmography (PPG) and its second

derivative, namely Acceleration Photoplethysmogram (APG), has

demonstrated significant potential for estimating blood pressure,

particularly in patients with hypertension (9–11). Figure 1 shows

the c and d fiducial points of the APG waveform which have been

identified as sensitive indicators of CVDs (12). Numerous studies

have demonstrated that the amplitude and timing of these points

can provide valuable information about the aging process and

support the assessment of cardiovascular disease (11, 13–17). The

identification of the c and d points, however, is not trivial since they

can be undetectable or non-prominent in the APGwaveform (18, 19).

Artificial intelligence (AI) has ushered in unprecedented

advancements in medical technology, pushing the boundaries of

what was once unimaginable. AI is of relevance for precision

medicine, natural language processing, expert systems, physical

robots, patient engagement, and adherence applications (20). Even

seemingly simple technologies like PPG have demonstrated

remarkable success in establishing correlations with a diverse range

of biological processes and systems particularly, through the

computational capabilities of machine learning (ML) algorithms.

This integration has significantly contributed to advancements in

cardiovascular health assessment, respiratory monitoring,
FIGURE 1

Standard APG waveform consisting of six fiducial points, where four points (a–
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hemodynamic parameter estimation, autonomic nervous system

evaluation, and the analysis of mental and emotional states, among

others. By harnessing the potential of AI, healthcare professionals

can now access a wealth of valuable information derived from PPG

signals. The information enables more precise diagnoses, tailored

treatments, and enhanced care of patients with CVDs (21).
Background

Various studies have shown significant progress in this area,

employing advanced techniques and achieving impressive

results. Melin et al. (22) utilized neural networks and fuzzy

inference systems to classify hypertension stages based on age,

risk factors, and blood pressure pattern of behavior over a 24 h

period, achieving a maximum classification performance of

98%. Singh et al. (23) demonstrated excellent results in

diagnosing hypertension in patients with type I and type II

diabetes mellitus, using a novel approach called rule extraction

from support vector machines (SVMs). Das et al. (24) employed

various modeling techniques such as Levenberg–Marquardt,

gradient descent, and Bayesian resolution-based (BR-based)

learning functions to model hypertension types in individuals

aged 20–40. Shinde et al. (25) presented two distinct

approaches for hypertension classification: information gain-

based feature selection and genetic algorithm-based feature
d) are in the systolic phase and two points (e, f) are in the diastolic phase.
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selection. These methods achieved classification accuracies of

97.58% and 99.19%, respectively. Abdullah et al. (26) presented

a linear SVM model, employed to classify subjects as normal or

at different stages of hypertension. The features used were a

combination of statistical parameters derived from the APG c

and d points and clinical parameters. The model achieved an

overall accuracy of 87.50% on the validation dataset and a

95.35% accuracy on the test dataset.

Despite the progress made in hypertension detection and

classification, alternative methodologies, and novel combinations

of features to improve accuracy and early detection of

cardiovascular diseases needs to be explored. In light of this, the

current study focuses on a different approach, combining APG

features and clinical parameters for hypertension classification

using different ML algorithms.
Method

In this study, we aim to develop a ML-based approach

for estimating four different hypertension stages: (normal,

prehypertension stage, stage 1 hypertension, stage 2 hypertension),

using 19 features derived from statistical analysis of the APG

waveform and the clinical parameters age, heart rate and systolic

blood pressure. The features were extracted using the fiducial
FIGURE 2

Scatter plot of PPG-BP dataset showing different classes of hypertension.
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point extraction algorithms explained in our recently released

MATLAB toolbox, PPGFeat (18).

We have used the publicly available PPG-BP Dataset (27),

which contains three PPG segments collected with a sampling

frequency of 1 kHz per subject, i.e., 2,100 sampling points. In the

3 min data collection phase, each PPG segment was assigned a

Skewness SQI (Ssqi). The dataset includes data from 219 subjects,

within the age range 21–86, and a nearly equal distribution of

male and female subjects (48% and 52%, respectively). Out of

219 subjects, 80 subjects had normal heart conditions whereas

139 subjects had been classified as prehypertension stage, stage 1

hypertension or stage 2 hypertension.

Figure 2 displays a scatterplot of the subjects at different

hypertension stages in the PPG-BP dataset. It reveals an interesting

insight into the relationship between age, systolic blood pressure,

and hypertension stage. The x-axis represents the age of the subjects,

while the y-axis represents their systolic blood pressure values. The

different hypertensive stages are indicated by different colors of the

data points. The scatter plot shows that there is a positive correlation

between increased age and higher systolic blood pressure, which is

associated with a greater risk of a CVD. However, it is also

important to note that there are other factors beyond age, heart rate,

and systolic blood pressure that influence hypertension stage.

By combining APG features and clinical parameters in our ML-

models, we hope to improve the accuracy of CVD diagnosis and
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risk assessment. Our study will provide new insights into the use of

APG waveform features and ML techniques for CVD diagnosis and

contribute to the development of more effective and personalized

approaches for cardiovascular healthcare.
FIGURE 3

PPG waveform preprocessing steps, APG feature extraction and
generation of a features table.
Amachine learning algorithm forclassification

In this study, we have proposed ML techniques to classify

different stages of hypertension. We utilized three distinct

algorithms to identify the most suitable approach for

hypertension classification based on the dataset’s multiple classes.

The first algorithm utilized was the decision tree (DT) classifier,

a powerful and interpretable model that makes decisions based

on hierarchical structures of rules and thresholds (28). The DT

utilizes the APG features and clinical parameters to recursively

split the dataset into homogeneous subsets, leading to the

creation of an efficient classification model.

Secondly, we applied linear discriminant analysis (LDA), a

classic method widely used for supervised dimensionality

reduction and linear classification tasks (29, 30). LDA aims to

maximize the inter-class separation while minimizing the intra-

class variability, thereby enhancing the discriminatory power of

the features for hypertension classification. It exploits the linear

relationship between features to find discriminant axes that best

separate different classes, making it suitable for distinguishing

between multiple hypertension types.

Lastly, we integrated the linear support vector machine

(LSVM), a powerful classifier known for its effectiveness in high-

dimensional spaces. LSVM seeks to find the hyperplane that best

separates the different classes by maximizing the margin between

support vectors (31). By incorporating the APG features and

clinical parameters, LSVM optimizes the classification boundary,

achieving accurate discrimination between hypertension stages.
TABLE 1 Features extracted from the APG waveform and the dataset used
for the classification.

Statistical features from APG and clinical parameters
1 ct (Time domain) 11 Slope of c and d
Preprocessing

Figure 3 summarizes the various preprocessing stages

performed on the raw PPG signals before the feature extraction,

further information is presented in (19). These stages were

necessary to remove noise and artifacts from the signal and

enhance the quality of the data for accurate feature extraction.

The preprocessing stages included the filtering of the raw PPG

waveform using a Chebyshev Type II, 4th order, 20 dB filter. Next,

the data was normalized and smoothed using a moving average

filter. Finally, the filtered PPG segment for each subject was obtained.
2 dt (Time domain) 12 T (total time of APG segment)

3 cm (magnitude) 13 Distance between c and d
dt
ct

4
dm (magnitude) 14 Distance between c and d

dm�cm

5 dt � ct 15 Slope of c and d
T

6 dt
ct

16 dt � ct
T

7 ct � dt 17 HR (heart rate)

8 ct
dt

18 AGE

9 ct
cm
� dt

dm
19 SBP (systolic blood pressure)

10 Distance between c and d
Feature extraction

The study follows the APG fiducial point detection method

proposed by Abdullah et al. (18, 19). Figure 3 summarizes the

steps required to obtain features from APG. The algorithm takes

a filtered PPG segment to obtain the APG, which is then

processed through the PPGFeat (18) to extract relevant features

from APG. In this study, we have focused on using the c and d
Frontiers in Cardiovascular Medicine 04
points of the APG and performed statistical analysis on them for

generating 16 time and amplitude features. The significance of

these features has been discussed greatly in (32–34). In addition

to the 16 statistical features, three clinical parameters were used

as features, i.e., age, systolic blood pressure and heart rate. For

ease in the ML-based classification, numerical classes were

assigned to each subject, where class 0 was assigned to the

normal subjects, class 1 was assigned to subjects with stage 1

hypertension, class 2 was assigned to stage 2 hypertension and

class 3 was assigned to prehypertension stage.
Features table

Table 1 provides a comprehensive list of the features derived

from the APG waveform and utilized as input for the ML

algorithms. The feature extraction process involved capturing the

amplitude and time domain values of the c and d points.

Furthermore, various other parameters, including the total time

of the APG segment, were obtained to gain insights into the

overall waveform characteristics. To enhance the feature set, a

range of statistical features, such as distance, ratios, and slope,

were then calculated from the extracted data (14, 35, 36). These
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carefully selected features collectively serve as critical inputs to the

supervised ML algorithms, enabling accurate and reliable

classification of hypertension stages.
Results

Table 2 presents a comprehensive evaluation of three

supervised ML-models: DT, LDA, and LSVM for CVD
TABLE 2 Performance comparison of ML-models on a multiclass
classification.

Total Observations: 219

Training Data Observations: 187

Response Classes: 4

Response Class Names: 0, 1, 2, 3

Validation: 5-fold cross-validation

Test Data Observations: 32

Model Type Accuracy % (Test) Accuracy % (Validation)
DT 96.87 100

LDA 84.37 85.02

LSVM 93.75 88.77

FIGURE 4

Validation confusion matrix for DT model.

Frontiers in Cardiovascular Medicine 05
classification. The evaluation process involves two key steps:

5-fold cross-validation and testing. During cross-validation,

each model is trained and tested five times on different

subsets of the dataset to ensure robustness and reduce

overfitting. The test dataset, consisting of 32 observations, is

entirely separate from the training dataset, enabling an

unbiased assessment of the models’ performance on previously

unseen data.

The DT model (Table 2) demonstrates remarkable

performance with an accuracy of 100% during cross-validation,

indicating that it correctly classifies all instances in the validation

data. During testing, the DT model achieves an accuracy of

96.87%, highlighting its ability to generalize well on new, unseen

data. The model’s hyperparameters were tuned using grid search

optimization, with the split criterion set to Gini’s diversity index

(37). The grid search involved dividing the hyperparameter space

into 10 grids, systematically exploring different combinations of

hyperparameters to find the best configuration for optimal

accuracy.

In the validation confusion matrix (Figure 4), the true positive

rate (TPR) is 100% for all four classes, indicating that the model

correctly identifies all instances of each class without any false
frontiersin.org
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FIGURE 5

Test confusion matrix for DT model.
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negatives. In the test confusion matrix (Figure 5), the TPR for class

0, 2, and 3 remains 100%. However, for class 1, the TPR drops to

80%, implying that the model misclassifies 20% of stage 1

hypertension instances as other classes, leading to a 20% false

negative rate (FNR) for class 1.

The LDA model (Table 2) exhibits competitive performance,

achieving an accuracy of 85.02% during cross-validation and

84.37% on the test dataset. Hyperparameter optimization for the

LDA model was carried out using Bayesian optimization, with 30

iterations to find the most favorable hyperparameter values for

maximizing accuracy.

In the validation confusion matrix (Figure 6), the LDA model

achieves varying TPRs for each class: 94.1% for class 0, 65.5% for

class 1, 82.4% for class 2, and 84.9% for class 3. The FNRs for

the respective classes are 5.9%, 34.5%, 17.6%, and 15.1%. These

results indicate the model’s effectiveness in correctly identifying

most normal subjects (class 0) but that the model is

encountering challenges in distinguishing instances of stage 1

hypertension (class 1). In the test phase (Figure 7), the LDA
Frontiers in Cardiovascular Medicine 06
model achieves a TPR of 100% for class 2 and 91.7% for class 3,

indicating its ability to correctly identify all instances of these

classes. However, it exhibits lower TPRs for class 0 (83.3%) and

class 1 (60.4%), indicating difficulties in correctly classifying

these instances. The corresponding FNR values for the test

dataset are 16.7% for class 0, 40% for class 1, 0% for class 2, and

8.3% for class 3.

The LSVM model (Table 2) also demonstrates high accuracy,

achieving 88.77% during cross-validation and 93.75% on the test

dataset. Hyperparameter optimization for the LSVM model was

performed using random search, involving 30 iterations to

explore various hyperparameter combinations.

In the validation confusion matrix (Figure 8), the LSVM

model achieves TPRs of 97.1% for class 0, 75.9% for class 1,

76.5% for class 2, and 89% for class 3. These results indicate

the model’s ability to correctly identify a significant proportion

of instances for each class during validation. However, it

encounters more challenges in accurately classifying stage 1

hypertension subjects (class 1) as evidenced by a relatively
frontiersin.org
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FIGURE 6

Validation confusion matrix for LDA ML model.
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lower TPR for this class. The corresponding FNRs are 2.9% for

class 0, 24.1% for class 1, 23.5% for class 2, and 11.0% for class

3, reveals the specific types of misclassifications made by the

model. In the test confusion matrix (Figure 9), the LSVM

model exhibits high TPRs of 91.7% for class 0, 80% for class 1,

and 100% for classes 2 and 3, demonstrating its accurate

identification of instances in the testing dataset. However, the

FNRs for class 0 and class 1 are 8.3% and 20%, respectively,

indicating some misclassifications for these classes during

testing. The LSVM model performs well in distinguishing stage

2 hypertension and prehypertension subjects, making it

promising for hypertension classification.

The results show that the DT model achieves 96.87% accuracy

on testing, demonstrating robust generalization, while LDA attains

competitive results of 85.02% accuracy and LSVM achieves 93.75%

accuracy. However, challenges arise in distinguishing stage 1

hypertension instances. Recommendations for future studies

encompass refining models for better classifying stage 1

hypertension, expanding the dataset, incorporating additional

clinical variables, and exploring model interpretability. This

research advances hypertension risk assessment and highlights

the potential for APG-based estimation in cardiovascular

healthcare.
Frontiers in Cardiovascular Medicine 07
Discussion and conclusion

The present study aimed to enhance hypertension diagnosis

using ML by integrating APG features and clinical parameters.

The research explored various ML-models and evaluated their

performance in classifying normal subjects, and subjects with

different stages of hypertension. The study showed that

ML techniques have the potential to accurately classify

different stages of hypertension. Three ML-models were

employed for classification. The DT model exhibited

exceptional performance, achieving a remarkable accuracy of

96.87% on the test dataset. It demonstrated robust

generalization, correctly identifying instances from various

classes. LDA and LSVM also exhibited competitive accuracies

of 84.37% and 93.75%, respectively, showing their effectiveness

in hypertension stages classification. However, all models faced

challenges in accurately classifying instances of stage 1

hypertension, indicating a need for further improvement in

this area.

PPG has been shown to be a useful tool for diagnosis and

monitoring of various pathologies and physiological parameters

and in recent years, it has been used with high accuracy as a

substitute for BP and heart rate estimation (38, 39). Literature
frontiersin.org
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FIGURE 7

Test confusion matrix for LDA ML model.
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has shown that the PPG signal and the clinical parameters are

valuable for diagnosing risk of cardiovascular diseases,

especially hypertension (40, 41). The importance of

preprocessing is evident in the quality of data used for feature

extraction. To ensure accurate feature extraction, several

preprocessing steps were undertaken. The raw PPG signals

underwent Chebyshev filtering, normalization, and smoothing

to remove noise and artifacts. The resulting filtered PPG

segments provided a solid foundation for accurate APG

features extraction. This process minimized the impact of noise

and artifacts, ensuring that the extracted APG features were

representative of cardiovascular health. Moreover, the APG

features were extracted using the recently released MATLAB

toolbox, PPGFeat (18). The toolbox’s algorithms considered the

preprocessed APG signals to accurately identify and extract

relevant features, contributing to the comprehensive feature set

used for ML classification.

The chosen features encompassed a range of statistical

calculations derived from the c and d points of the APG

waveform, capturing essential information about cardiovascular

health. Additionally, the clinical parameters age, systolic blood

pressure, and heart rate were included. These features collectively

contributed to a comprehensive representation of physiological

state, aiding accurate classification.
Frontiers in Cardiovascular Medicine 08
Hyperparameters played a crucial role in model performance.

The DT model’s hyperparameters were tuned using grid search

optimization, resulting in exceptional accuracy. Similarly,

Bayesian optimization was employed for hyperparameter

optimization in LDA, while LSVM hyperparameters were fine-

tuned through random search. The impact of hyperparameter

tuning was evident in the performance of each model,

underscoring the importance of selecting optimal values to

enhance classification accuracy. The complexity of the ML-

models varied. DT offers interpretability through hierarchical

structures of rules, while LDA aims to maximize inter-class

separation by reducing dimensionality. LSVM, known for its

effectiveness in high-dimensional spaces, seeks optimal

hyperplanes for classification. While all models demonstrated

strong accuracy, the DT´s simplicity and interpretability

stood out.

In comparison with previous studies, the current research

presents a novel approach to hypertension classification by

integrating APG features and clinical parameters with ML-

algorithms. While previous studies have explored various

techniques for diagnosing hypertension, such as neural networks,

fuzzy inference systems, and support vector machines, the

utilization of APG waveform features combined with ML

algorithms represents a significant advancement in this field.
frontiersin.org
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FIGURE 8

Validation confusion matrix for SVM ML model.
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Melin et al. (22) employed neural networks and fuzzy inference

systems to classify hypertension types based on age, risk factors,

and blood pressure pattern of behavior over a 24 h period. Singh

et al. (23) introduced rule extraction from support vector

machines for diagnosing hypertension in patients with diabetes

mellitus. Das et al. (24) used modeling techniques such as

Levenberg–Marquardt and gradient descent to model

hypertension types. Shinde et al. (25) presented information

gain-based and genetic algorithm-based feature selection for

hypertension classification. Abdullah et al. (26) utilized a linear

SVM model with APG features and clinical parameters for

hypertension classification.

While these previous studies have made notable contributions

to hypertension diagnosis/classification, the current study

differentiates itself by leveraging APG waveform features in

combination with clinical parameters for ML-based classification.

This approach enables a more comprehensive representation of

cardiovascular health, capturing essential physiological

information from the APG waveform. The integration of APG

features enhances the discriminatory power of the classification

models, leading to improved accuracy in identifying different

stages of hypertension. Furthermore, the study’s use of diverse

ML algorithms, including DT, LDA, and LSVM, provides a

comprehensive evaluation of classification performance.

Future endeavors will encompass the collection of diverse

datasets and the investigation of APG features to enhance
Frontiers in Cardiovascular Medicine 09
diagnostic precision. The study underscores the significance of

the PPG-BP database as a pivotal resource for further research

into PPG signals and cardiovascular health. As this research

advances the comprehension of hypertension stages, future work

could encompass the development of a real-time algorithm for

detecting hypertension stages, cardiovascular health, and

estimation of blood pressure, thereby promoting preventive

strategies in cardiovascular healthcare.
Limitations of the study

While this study makes a significant contribution in the

realm of hypertension stage detection, it is important to

acknowledge certain limitations and challenges that warrant

consideration. One notable limitation lies in the inherent class

imbalance within the dataset, which could potentially bias the

performance of the developed ML-models. Furthermore, the

reliance on a single dataset, the PPG-BP database, optimized

for feature extraction using the PPGFeat toolbox, may

introduce some level of dataset-specific bias and limit

generalizability. The choice of clinical features and their

associated threshold values, while based on established clinical

significance, can also present potential limitations, especially

when applied to diverse populations. Additionally, the

interpretability of ML-models remains a challenge, especially in
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FIGURE 9

Test confusion matrix for SVM ML model.
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the context of medical decision-making. Finally, ensuring

seamless integration of AI-driven diagnostic tools into clinical

practice demands careful consideration of practical aspects,

such as user interfaces and integration with electronic health

records. By addressing these limitations and challenges, the

field can advance toward more equitable, accurate, and

clinically impactful AI-driven hypertension diagnosis and

cardiovascular health assessment.
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