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Hybrid model of CT-fractional
flow reserve, pericoronary fat
attenuation index and radiomics
for predicting the progression of
WMH: a dual-center pilot study
Jie Hou1,2† , Hui Jin1,3† , Yongsheng Zhang4 , Yuyun Xu1 ,
Feng Cui4 , Xue Qin3 , Lu Han2 , Zhongyu Yuan2 ,
Guangying Zheng2 , Jiaxuan Peng2 , Zhenyu Shu1

and Xiangyang Gong1*
1Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 2Jinzhou Medical University,
Jinzhou, Liaoning, China, 3Bengbu Medical College, Bengbu, Anhui, China, 4The Hangzhou TCM Hospital
(Affiliated Zhejiang Chinese Medical University), Hangzhou, Zhejiang, China

Objective: To develop and validate a hybrid model incorporating CT-fractional
flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics
signatures for predicting progression of white matter hyperintensity (WMH).
Methods: A total of 226 patients who received coronary computer tomography
angiography (CCTA) and brain magnetic resonance imaging from two hospitals
were divided into a training set (n= 116), an internal validation set (n= 30), and
an external validation set (n= 80). Patients who experienced progression of
WMH were identified from subsequent MRI results. We calculated CT-FFR and
pFAI from CCTA images using semi-automated software, and segmented the
pericoronary adipose tissue (PCAT) and myocardial ROI. A total of 1,073 features
were extracted from each ROI, and were then refined by Elastic Net Regression.
Firstly, different machine learning algorithms (Logistic Regression [LR], Support
Vector Machine [SVM], Random Forest [RF], k-nearest neighbor [KNN] and
eXtreme Gradient Gradient Boosting Machine [XGBoost]) were used to evaluate
the effectiveness of radiomics signatures for predicting WMH progression. Then,
the optimal machine learning algorithm was used to compare the predictive
performance of individual and hybrid models based on independent risk factors
of WMH progression. Receiver operating characteristic (ROC) curve analysis,
calibration and decision curve analysis were used to evaluate predictive
performance and clinical value of the different models.
Results: CT-FFR, pFAI, and radiomics signatures were independent predictors of
WMH progression. Based on the machine learning algorithms, the PCAT
signatures led to slightly better predictions than the myocardial signatures and
showed the highest AUC value in the XGBoost algorithm for predicting WMH
progression (AUC: 0.731 [95% CI: 0.603–0.838] vs.0.711 [95% CI: 0.584–0.822]).
In addition, pFAI provided better predictions than CT-FFR (AUC: 0.762 [95% CI:
0.651–0.863] vs. 0.682 [95% CI: 0.547–0.799]). A hybrid model that combined
CT-FFR, pFAI, and two radiomics signatures provided the best predictions of
WMH progression [AUC: 0.893 (95%CI: 0.815–0.956)].
Abbreviations

AUC, area under the curve; CAD, coronary arterial disease; CCTA, coronary computed tomography
angiography; CT-FFR, CT-fractional flow reserve; DCA, decision curve analysis; pFAI, pericoronary fat
attenuation index; ROC, receiver operating characteristic; WMH, white matter hyperintensity.
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Conclusion: pFAI was more effective than CT-FFR, and PCAT signatures were
more effective than myocardial signatures in predicting WMH progression. A
hybrid model that combines pFAI, CT-FFR, and two radiomics signatures has
potential use for identifying WMH progression.

KEYWORDS

CT-fractional flow reserve, pericoronary fat attenuation index, white matter hyperintensity,

radiomics, machine learning
Introduction

White matter hyperintensity (WMH) is a neuroimaging feature

in magnetic resonance imaging (MRI) that indicates small vascular

lesions in the brain. The specific manifestation is signal

hyperintensity in the periventricular or deep periventricular

white matter on the T2-weighted or fluid-attenuated inversion

recovery (FLAIR) images (1). Several previous studies concluded

that WMH was associated with cognitive decline, depression,

stroke, and even death (2, 3). In addition, the WMH volume

may increase or decrease over time (4, 5). Accordingly, early

identification of WMH and prediction of progression are

essential for preventing the underlying diseases (6).

Cardiovascular diseases may provide a pathophysiological

background for several brain diseases, such as stroke (7),

dementia (8), and cognitive impairment (9). Among them,

coronary artery disease (CAD) is closely associated with cerebral

white matter disease, but the specific mechanism responsible for

their co-occurrence is still unclear (10). The heart and brain have

blood vessels with similar anatomical structures, and each organ

provides perfusion to tissues through a vascular network of

arteries that run on the organ surface (11). Therefore, it is

crucial to have a comprehensive understanding of the

relationship between WMH and CAD (12).

Previous studies found significant associations of the

presence and severity of WMH with cardiovascular health and

age (12, 13). The incidence rate of WMH increases with age, and

is also affected by cardiovascular risk factors (14). Other studies

showed that the presence and a larger volume of coronary artery

plaque were associated with a larger WMH volume (10).

Coronary computed tomography angiography (CCTA) is a non-

invasive method that can provide information on the

characteristics of plaque and the severity of lumen stenosis,

which was valuable in CAD detection. Vascular stiffness,

atherosclerosis, calcification score, calcification plaque and

cardiac blood perfusion all have certain influence factors on the

occurrence and progress of cerebrovascular related diseases,

especially the most common manifestation of cerebrovascular

diseases—WMH (15). We can not only directly observe the

related manifestations of cardiovascular diseases on CCTA

images, but also use some derived markers to further analyze the

correlation of WMH through the response to cardiovascular

related risk factors. There are currently two CCTA-derived

markers that can effectively indicate CAD: the percoronary fat

attenuation index (pFAI), which reflects coronary inflammation,

and the CT-derived fractional flow reserve (CT-FFR), which
02
reflects hemodynamics (16). The pFAI represents the average

attenuation index within the range of PCAT (range of−190 to

−30 HU), which is not affected by calcified plaques and luminal

stenosis and can accurately indicates vascular inflammation and

cardiovascular risk (17, 18). By drawing spatial changes in

perivascular fat attenuation on CCTA, pFAI reflects changes in

the size and lipid content of local adipocytes around the

coronary artery, directly visualizing and quantifying perivascular

inflammation. Inflammation is another critical feature of

atherosclerosis (19). Similarly, the “inflammatory theory” of brain

disease proposes that the destruction of microcirculation leads to

the formation of WMH (16). In addition to the common role of

inflammation in the occurrence and development of these two

diseases, the brain and the heart both rely on perfusion to meet

their high metabolic needs. The regulation of resistance to

cerebral microcirculation is a key to maintaining adequate local

cerebral blood flow (12). Previous research showed a clear

correlation between the CAC volume and poor integrity of white

matter microstructure (20). Moreover, plaques with larger

volumes in the coronary artery can affect image quality due to

patchy and blooming artifacts, leading to errors in the calculation

of lumen stenosis, calcification score, and hemodynamic

evaluations (21–23). The FFR from invasive coronary angiography

(ICA) is the reference standard for detecting disease-specific

ischemia, but this test is costly and invasive (24). CT-FFR provides

data similar that from invasive FFR, and is used to evaluate the

degree of cardiac ischemia using CCTA (25, 26). Therefore,

abnormal perfusion in these two organs appear to cause similar

pathological changes.

Radiomics can extract quantitative features from images and aid

in the diagnosis of multiple disorders, including cardiovascular and

cerebrovascular diseases (27, 28). Thus, whole-brain white matter

radiomics can be used to predict the progression of WMH (29).

Radiomics features obtained from cardiovascular magnetic

resonance (CMR) images can detect cardiac changes that are

related to chronic cerebral ischemia (30). CCTA can also establish

a relationship between the heart and brain. However, the pFAI

measurements are only based on the voxel intensity value (31). It

is also unclear whether PCAT and myocardial radiomics features

can predict WMH progression.

The purpose of the study is to evaluate the value of CCTA-

derived markers and radiomics in predicting WMH progression.

We compared the predictive value of pFAI with CT-FFR and

radiomics signatures and then used the pFAI and CT-FFR, and

the radiomics signatures to develop and validate a hybrid model

for predicting WMH progression.
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Methods

Study design and participants

The patients who over 60 years old received CCTA and brain

MRI within one month from January 2019 to May 2022 at ZJP

Hospital and January 2015 to May 2022 at TCM Hospital were

examined. In order to accurately evaluate the WMH progression,

patients who underwent second MRI examination after six

months were subsequently included. After the application of the

inclusion and exclusion criteria (see below), 146 patients from

ZJP Hospital were randomly stratified into the training set

(n = 116, 50 patients with WMH progression), internal validation

set (n = 30, 13 patients with WMH progression), and 80 patients

(51 patients with WMH progression) from TCM Hospital were

included into the external validation set. The inclusion criteria

were: (1) evidence of WMH based on T2 FAIR and T2-weighted

MRI, (2) no lesion attributable to stroke on diffusion-weighted

MRI, (3) no signs of Alzheimer’s disease, multiple sclerosis, or

traumatic brain injury, and (4) no history of myocardial

infarction and revascularization. The exclusion criteria were: (1)

the presence of a vascular white matter disease, (2) signs of

cerebral hemorrhage, (3) no definite lesion signs of calcified or
FIGURE 1

Patients disposition and research design. CCTA, coronary computed tomogra
syndrome.
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non—calcified plaques and luminal stenosis on CCTA, (4)

previous revascularization or ACS, or (5) poor quality of CCTA

and MRI images. The inclusion and exclusion process of the

patients are shown in Figure 1. This research protocol was

approved by the local Ethics Committee of two hospitals.
Acquisition and analysis of MR images

Brain MRI was both performed using 3.0 T MRI scanner. All

brain images were scanned and obtained using an 8-channel

head coil 3.0 T MRI scanner (ZJP Hospital: Discovery MR 750,

GE Healthcare; TCM Hospital: Siemens Trio 3.0 T) with the

same parameter settings. The routine sequences of scanning

included T1 weighted, T2 weighted, diffusion weighted imaging

and fluid-attenuated inversion recovery (FLAIR). T2 FLAIR and

T1 weighted images were used for WMH observation and

calculation. The specific parameters and routine sequences of the

brain MRI are provided in the Supplementary Material. T2

FLAIR and T1 weighted images were imported into MATLAB

(The MathWorks, Inc, Natick, United States) for WMH

segmentation and volume calculation. The WMH volume was

measured using a 1 mm3 spatial dimension of a voxel in each
phy angiography; MRI, magnetic resonance imaging; ACS, acute coronary
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MRI slice. During this process, further automatic segmentation and

correction of WMH were carried out, including eliminating non-

brain matter and refining WMH segmentation. Images that were

considered by both radiologists to have significant segmentation

errors were manually segmented and measured again using ITK

—SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php)

again. The final corrected image was then used for calculation of

WMH. The detailed description of the process are shown in

Supplementary Figure S1A. Patients were divided into WMH

progression and no WMH progression group based on changes

of WMH volume. WMH volume progression was defined as an

observed increase of more than 0.25 ml in WMH volume, a

value derived from the 2015 study of Cho et al. (32). The

schematic diagrams of two consecutive brain MRI images of the

WMH progression and no-WMH progress groups were shown in

Supplementary Figures S1B,C.
Acquisition and analysis of CCTA images

All CCTA examinations were performed with a CT scanner

using 64 detector rows with prospective electrocardiogram (ECG)

-gating (ZJP Hospital: Somatom Flash, Siemens Healthineers,

Forchheim, Germany; TCM Hospital: Aquilion One, Toshiba

Medical, Otawara, Japan) with the same parameter settings.

Detailed information about the CCTA are in the Supplementary

Material. Patients with high myocardial jeopardy, high grade

angina pectoris, or two or three proximal vascular lesions are

likely to receive surgical treatment during the follow-up period

(33). These surgically treated vessels may affect the acquisition of

the CT-FFR and pFAI and the extraction of radiomics features

due to metal artifacts and vascular reconstruction. Therefore, we

only included three-vessel (left anterior descending artery [LAD],

left circumflex artery [LCX], and right coronary artery [RCA])

for patients who did not undergo surgical treatment and

had definite lesions. The Gensini scores were used to evaluate

the degree of coronary artery stenosis (34). This score was

0 (no stenosis), 1(1%–49% stenosis), 2 (50%–74% stenosis),

3 (75%–99% stenosis), or 4 (100% stenosis). Finally, the total

scores of all segments was considered the final score. According

to the Gensini scoring system, coronary artery stenosis was

finally classified as mild stenosis (1–14 points) or severe stenosis

(>14 points). The analysis of CCTA images were independently

performed by two experienced radiologists who were unaware of

the clinical data.
Acquisition of CT-FFR and pFAI

The two CCTA-derived biomarkers, pFAI and CT-FFR, can

effectively reflect CAD from both vascular inflammation and

hemodynamics. In our study, we used PHIgo workstations to

measure CT-FFR and pFAI based on deep learning methods

(version 1.5.1, GE Healthcare). Arterial phase images of CCTA in

each patient were imported in DICOM format into the CQK

analysis platform of PHIgo (version 1.5.1, GE Healthcare)
Frontiers in Cardiovascular Medicine 04
software for automated segmentation of PCAT and whole

myocardium. PCAT around the stenosis lesion on coronary

segments (≥2 mm) can be accurately delineated according to the

18-segment guidelines on the arterial phase images. Radiologists

A and B evaluated images of all patients for semi-automatic

segmentation of PCAT, and manually corrected images with

poor segmentation results and recognition errors for stenosis

lesions. After the above steps are processed, the CT-FFR and

pFAI at the target lesion are calculated using semi-automatic

software. The detailed process is shown in the Supplementary

Material and Figure 2. Based on threshold values for high risk of

CAD (CT-FFR≤ 0.80 and FAI≥−70.1 HU) (35), the minimum

CT-FFR and maximum pFAI values of the three-vessel in the

follow-up study were included.
Acquisition and refining of radiomics
features

PCAT was defined by voxels with CT attenuation in the range

of −190 to −30 HU, and a distance from the outer wall of the

coronary artery equal to the diameter of the corresponding

horizontal coronary artery (36). When there are multiple vascular

lesions, selecting only the largest pFAI among the three vessels for

analysis can indicate a higher cardiovascular risk, but there are

certain limitations in fully representing the pathological and

physiological changes of all vascular lesions. In addition, pFAI is

only calculated based on voxel intensity values, and higher-order

statistical analysis of spatial relationships from features of

radiomics texture can reflect more complex voxel relationships.

This is a deeper level of image change that we cannot capture using

only pFAI values (37). Therefore, the PCAT around the target

segments and whole myocardium were selected as ROIs. If there

were multiple lesions in one vessel, the lesion segment with the

largest pFAI value was selected. When a patient had multiple

vascular lesions, the lesion segment with each vessel’s largest FAI

value was jointly used as the PCAT-ROI. In order to minimize the

central effect of CT images from different hospitals and scanners

(38), all CCTA images were pre-processed. A software package that

performs quantitative analysis (A.K. software, GE Healthcare) was

used to preprocess the CCTA images before extracting the

radiomics features. Each sequence of the images is resampled to a

resolution of 1 × 1 × 1 mm3 through linear interpolation and the

gray level of the images needs to be discretized and normalized to

32 orders. The preprocessing of images, automatic segmentation of

ROIs and radiomics feature extraction were shown in the

Supplementary Material. We first evaluated the the repeatability

of features in the intra- and inter-observers during the feature

extraction process using intraclass correlation coefficients(ICCs),

retaining features with high reproducibility with ICCs greater than

0.75 (39). Then, we used ComBat to normalize and gather the data

distributions to eliminate the central effects of two centers

(Supplementary Figure S2). Next, Mann-Whitney U analysis and

Elastic Net Regression were used to filter out redundant signatures.

The specific formula for Elastic Net Regression and optimal

signatures was shown in the Supplementary Material.
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FIGURE 2

The specific calculation process of CT-FFR and pFAI and radiomics extraction. (A) Original CCTA images. (B,C) CCTA reconstruction images and lesion
segments display. (D) PCAT ROI. (E) The calculation process and formula of CT-FFR. (F) pFAI acquisition and radiomics features analysis. CT-FFR, CT
fractional flow reserve; pFAI, percoronary fat attenuation index; CCTA, coronary computed tomography angiography; PCAT, pericoronary adipose tissue.
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Model construction and validation

Univariate logistic regression analysis was used to select

significant factors from potential predictors (age, gender, BMI,

hypertension, diabetes mellitus, hyperlipidemia, smoking,

alcohol intake, the number and grade of vascular stenosis,

pFAI, CT-FFR, PCAT and myocardium radiomics signatures),

and then the screened factors were included in the multivariate

analysis to finally determine the independent predictors of

WMH progression for model construction. We first used

different machine learning algorithms [LR (Logistic Regression),

SVM (Support Vector Machine), Random Forest (RF), k-nearest

neighbor (KNN) and eXtreme Gradient Gradient Boosting

Machine (XGBoost)] to construct radiomics models. LR was a

mature and powerful supervised classification method. It could

be considered as an extension of ordinary regression and could

only model the outcome events of binary variables. However, it

could help discover the possibility that new instances belong to

a certain class (40). SVM algorithm could classify linear and

non-linear data. It first maped each data item to an n-

dimensional feature space, where n represented the number of

features. Then, SVM recognized hyperplanes that divided the

data items into two categories, while maximizing the edge

distance between the two categories and minimizing

classification errors (41). Random Forest (RF) was an ensemble

classifier composed of many DTs, and deep growing DTs often
Frontiers in Cardiovascular Medicine 05
led to overfitting of training data, resulting in small changes in

input data and high changes in classification results. When

using this algorithm, different parts of the training dataset

needed to be used to train different DTs of RF. Since the RF

algorithm considered the results of many different DTs, it could

reduce the variance generated by considering a single DT for

the same dataset (42). KNN algorithm was one of the earliest

and very simple classification algorithms. The KNN algorithm

did not need to consider probability values. KNN was

particularly suitable for multi classification problems and was

relatively easy to understand and implement (43). XGBoost was

a supervised algorithm that belongs to ensemble learning

algorithms. It was a scalable and convenient Gradient Boosting

algorithm that could build models in parallel. The XGBoost

algorithm had certain advantages in preventing model

overfitting. Each algorithm had unique advantages, and we

compared multiple algorithms to find the optimal algorithm for

constructing unitary and hybrid models based on single and all

independent risk factors of WMH progression. The area under

the curve (AUC) from receiver operator characteristic curve

(ROC) analysis was used to evaluate the accuracy of different

models. Finally, the goodness-of-fit of the hybrid model was

evaluated by using calibration curve and nonparametric test,

and decision curve analysis (DCA) was used to evaluate the

clinical value of different models. Figure 3 shows the workflow

used for the radiomics analysis.
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FIGURE 3

Procedures used for radiomics analysis. CCTA, coronary computed tomography angiography; CT-FFR, CT fractional flow reserve; pFAI, pericoronary fat
attenuation index; WMH, white matter hyperintensity.
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Statistical analysis

Statistical analyses were performed using R software (version

3.5.0), SPSS software(version 17.0, Armonk, NY) and Python

(version 3.5). Continuous variables were expressed as means ±

standard deviations. Categorical variables were compared using the

chi-square test. The normality of distribution was assessed using the

Kolmogorov-Smirnov test, and variables were then compared using

the t-test (normal distributions) or the Mann-Whitney test (non-

normal distributions). The intra- and inter-observer reproducibility

of extracted features was evaluated using the ICCs. For features

extracted from each ROI, the Mann-Whitney U test and Elastic Net

Regression were used for filtering redundant and irrelevant

signatures. The predictions of different models were evaluated

according to AUC, accuracy, and specificity. Compare the ROC

curves of different models by using the nonparametric method of

DeLong test (44). A p-value below 0.05 was considered significant.
Results

Patient characteristics and study design

We finally enrolled 146 and 80 patients who had coronary

artery stenosis and WMH in the two hospitals. We used the

second MRI results to evaluate changes of WMH volume. The

WMH volume progressed in 63 patients in ZJP Hospital and 51

patients in TCM Hospital (Supplementary Table S1). Gender,

age, BMI, hypertension, diabetes mellitus, hypertension, tobacco
Frontiers in Cardiovascular Medicine 06
smoking, alcohol use, and the number and degree of stenotic

vessels were not significantly different between the “WMH

progression” group and the “no WMH progression” group for

the training set, internal validation set and external validation

set. However, the CCTA-derived markers and the radiomics

scores were significantly different for the “WMH progression”

group and the “no WMH progression” group in the training set

and external validation set (both p < 0.05; Table 1).
Development of radiomics signatures and
assessment of performance

We extracted 1,073 features from the PCAT-ROI and

myocardium-ROI by PyRadiomics. After standardisation of scanner

type and location and using specific feature reduction methods, we

selected 5 myocardial and 9 PCAT radiomics signatures that were

statistically different between those with and without WMH

progression (Figure 4). The results indicated there were statistically

significant differences in the radiomics scores for the “WMH

progression” group and the “no WMH progression” group in the

training, internal validation and external validation set (p < 0.05)

(Figure 5). By comparing the AUC of myocardium and PCAT

radiomics signatures constructed by different algorithms of LR,

SVM, RF, KNN and XGBoost, it was demonstrated that PCAT

radiomics signatures and XGBoost algorithm have better prediction

efficiency in the training, internal validation and external validation

set (AUC: 0.862 [95% CI: 0.788–0.924], 0.760 [95% CI: 0.570–0.923]
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FIGURE 4

Selection of myocardium and PCAT radiomics signatures for the prediction models. (A,C) Myocardium (top) and PCAT (bottom) signatures selection by
Elastic Net Regression with the optimal penalization coefficient lambda (λ) using 10-fold cross-validation and the minimal criteria process. The x-axis
shows Lambda (λ), and the y-axis shows the model AUC. (B,D) Elastic Net Regression coefficient profiles of the myocardium signatures (top) and
PCAT signatures (bottom). (E,F) Importance ranking of the myocardium signatures (left) and PCAT signatures (right) that had the greatest correlations
with WMH progression. PCAT, pericoronary adipose tissue, WMH, white matter hyperintensity.
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FIGURE 5

Scatter box plot of radiomics signatures scores. (A–C) Myocardium signatures radiomics scores in the “WMH progression” group and the “no WMH
progression” group in the training set, internal validation set and external validation set. (D–F) PCAT signatures radiomics scores in the “WMH
progression” group and the “no WMH progression” group in training set, internal validation set and external validation set. The horizontal line in the
box represents the median of the signatures score, the upper and lower borders of the box represent the upper and lower quartiles of signatures
score, and the scattered points around the box represent the distribution position of each radiomics signatures score. PCAT, pericoronary adipose
tissue; WMH, white matter hyperintensity. *Represents p < 0.05, **represents p < 0.01, *** represents p < 0.001, and ***represents p < 0.0001.
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and 0.731 [95% CI: 0.600–0.836]) in Supplementary Table S2 and

Supplementary Figure S3.
Development of a hybrid model

The results demonstrated that CT-FFR, pFAI, PCAT and

myocardium radiomics scores were independent predictors of

WMH progression (all p < 0.05, Table 2).

After comparing different machine learning algorithms, we

constructed a hybrid model using the XGBoost algorithm based

on CT-FFR, pFAI, PCAT and myocardium radiomics scores. The

weight scores of each independent predictors in the hybrid

model were shown in a nomogram (Figure 6). To verify the

accuracy of hybrid model, we plotted calibration curves and

assessed the goodness of fit of the hybrid model. The results
Frontiers in Cardiovascular Medicine 09
showed that the predictions of hybrid model were highly

consistent with the observed values. The nonparametric test

showed that prediction efficiency was not statistically different

for the training set, internal validation set and external validation

set (Figures 7A–C; p < 0.05). We observed significant differences

between the “WMH progression” group and the “no WMH

progression” group by assessing the predictive ability of hybrid

model in the training, internal validation and external validation

set (Figures 7D–F).
Development and validation of different
models

We also built unitary models based on the CCTA-derived

markers and radiomics signatures in sequence. Analysis of the
frontiersin.org
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TABLE 2 Independent predictors of WMH progression based on logistic
regression analysis.

Univariate logistic
regression

Multivariate logistic
regression

OR (95% CI) P OR (95% CI) P
Age 1.00 (0.94–1.07) 0.930 NA NA

Gender 0.86 (0.39–1.89) 0.703 NA NA

BMI 0.93 (0.84–1.02) 0.176 NA NA

Hypertension 1.72 (0.79–3.74) 0.172 NA NA

Diabetes mellitus 1.37 (0.62–3.05) 0.435 NA NA

Hyperlipidemia 0.54 (0.13–2.19) 0.387 NA NA

Smoking 1.40 (0.66–2.95) 0.380 NA NA

Alcohol 1.06 (0.47–2.37) 0.887 NA NA

Stenotic vessels
number

1.38 (0.83–2.14) 0.159 NA NA

Stenosis classification 0.92 (0.32–2.61) 0.871 NA NA

pFAI 1.23 (1.12–1.34) <0.001 1.16 (1.04 −1.29) 0.006

CT-FFR 0.04 (0.00–0.63) 0.016 0.000002
(1.1497E-10–0.049)

0.011

Myocardium—rad
score

2.10 (1.48–2.97) <0.001 1.62 (1.01–2.60) 0.044

PCAT—rad score 2.04 (1.59–2.61) <0.001 1.921 (1.434–2.575) <0.001

WMH, white matter hyperintensity; BMI, body mass index; pFAI, pericoronary fat

attenuation index; CT-FFR, CT fractional flow reserve; PCAT, pericoronary

adipose tissue; rad score, radiomics score; OR, odds ratio.

Bold values represent P < 0.05, with significant statistical differences.

Hou et al. 10.3389/fcvm.2023.1282768
external validation set demonstrated that the pFAI had greater

performance than the CT-FFR for predicting WMH progression

(AUC: 0.762 [95% CI: 0.651–0.863] vs. 0.682 [95% CI: 0.547–

0.799]; p < 0.05). Comparing the two radiomics signatures

showed that the PCAT signatures had a slightly higher AUC

value than myocardial signatures [AUC: 0.731 (95% CI: 0.603–

0.838) vs. 0.711, 95% CI: 0.584–0.822]; p > 0.05) (Figures 8A–C).
FIGURE 6

The variables included in the hybrid model are presented as a nomogram.

Frontiers in Cardiovascular Medicine 10
Then, we found that the hybrid model with all parameters can

show the optimal prediction performance in the training set,

internal validation set and external validation set (AUC: 0.918

[95% CI: 0.862–0.963, 0.846 [95% CI: 0.693–0.957 and 0.893

[95% CI: 0.815–0.956) (Figures 8A–C). Based on the DeLong

test, we found significant differences between the hybrid model

and unitary models (p < 0.001). The hybrid model also had high

accuracy, sensitivity and specificity in the training, internal

validation and external validation set (Table 3). Furthermore,

DCA showed that the hybrid model provided more net benefit

than the “all treatment” or “no treatment” options in the

training, internal validation and external validation set

(Figures 8D–F). When the high risk threshold was less than 0.82

(internal validation set) and 0.84 (external validation set), the

hybrid model had a greater net benefit than other models.
Discussion

We compared the predictive performance of PCAT and

mycocardium radiomics signatures by using different machine

learning algorithms, and constructed a hybrid model for

comprehensive comparison with pFAI, CT-FFR and radiomics

signatures. The results indicate that CCTA-derived markers and

radiomics signatures can effectively predict the WMH

progression. The occurrence and progress of WMH can lead to a

series of subsequent degenerative diseases such as fiber

demyelination and cortical damage (45). These changes can

cause irreversible damage to the microstructure of the brain and,

to a certain extent, have certain indicators of poor prognosis for

patients (46). An early analysis based on the UK Biobank

suggested that lower left ventricular (LV) ejection fraction was
frontiersin.org
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FIGURE 7

(A–C) calibration curves of hybrid model for WMH progression in the training set, internal validation set and external validation set. The x-axis represents
the predicted probability of WMH progression estimated by the nomogram, and the y-axis represents the actual WMH progress probability. The red solid
line represents logistic regression calibration, and the green dashed line represents nonparametric testing. The closer the red solid fit to the green dashed,
the higher the accuracy of nomogram for predicting WMH progression. The triangle represents the grouped observations. (D–F) The predictive probability
of the hybrid model in the “WMH progression” group and the “no WMH progression” group in the training set, internal validation set and external validation
set. The horizontal line in the box represents the median of the predictive probability, the upper and lower borders of the box represent the upper and
lower quartiles of predictive probability, and the scattered points around the box represent the distribution position of predictive probability. CT-FFR, CT
fractional flow reserve; pFAI, pericoronary fat attenuation index; PCAT, pericoronary adipose tissue; radscore, radiomics score. *Represents p < 0.05, **
represents p < 0.01, ***represents p < 0.001, and ***represents p < 0.0001.
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associated with brain structural abnormalities such as lower gray

matter volume and greater WMH volume (47). In fact, many

vascular risk factors, including smoking, hypertension, diabetes,

obesity and lack of exercise, have been proved to be related to

poor performance in brain (48). Among cardiovascular risk

factors, hypertension has a stronger correlation with WMH and

may damage brain microcirculation (49). Another report from

the Framingham cohort study also suggested that hypertension

and smoking were associated with higher WMH burden (50). In

a large Chinese cohort of 4,683 subjects, it was found that high

low density lipoprotein (LDL) cholesterol was associated with

high WMH (51). Therefore, it is essential to implement

appropriate interventions that control vascular risk factors to

prevent WMH progression, such as timely control of

hypertension and dyslipidemia (16, 52). In CAD, pFAI is a

marker of coronary arteritis and CT-FFR is an imaging marker
Frontiers in Cardiovascular Medicine 11
of defective hemodynamics. The co-occurrence of inflammation

and diminished blood perfusion has unique pathophysiological

effects in the development of cerebrovascular diseases (53–55).

Research has shown that poorer LV function and decreased

arterial compliance were closely related to adverse brain

characteristics, which can provide a research basis for the theory

of vascular hypoperfusion, which is closely related to cerebral

hypoperfusion and microvascular plaque accumulation (15). Our

study showed that the pFAI had greater predictive value than the

CT-FFR, suggesting a hidden inflammatory pathway between

the cardio-cerebral diseases. This result is consistent with the

interpretation of Moroni et al. (12), who concluded these two

microcirculatory diseases were pathogenically connected. In fact,

some common pathophysiological features of the brain and

heart, such as inflammation theory and blood flow perfusion,

may be mainly related to the vascular function of the two organ
frontiersin.org
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FIGURE 8

Diagnostic performance of different models in predicting WMH progression. (A–C) ROC curves for different models for prediction of WMH progression in
the training set, internal validation set and external validation set. (D–F) DCA of different models from the training set, internal validation set and external
validation set. The horizontal black line indicates the net benefit assuming that no patients have WMH progression and the smooth gray line indicates the
net benefit assuming that all patients have WMH progression. PCAT, pericoronary adipose tissue; pFAI, pericoronary fat attenuation index; CT-FFR, CT
fractional flow reserve; ROC, receiver operating characteristic; DCA, decision curve analysis.

TABLE 3 The diagnostic performance of different models.

Model AUC (95% CI) Accuracy Sensitivity Specificity
Training pFAI 0.80 (0.75–0.85) 0.78 0.68 0.86

CT-FFR 0.63 (0.59–0.67) 0.60 0.74 0.50

Mycardium signature 0.74 (0.70–0.78) 0.70 0.68 0.71

PCAT signature 0.86 (0.81–0.89) 0.83 0.76 0.88

Nomogram 0.92 (0.90–0.94) 0.85 0.86 0.83

Internal validation pFAI 0.79 (0.49–0.88) 0.63 0.62 0.65

CT-FFR 0.73 (0.71–0.82) 0.73 0.85 0.65

Mycardium signature 0.71 (0.56–0.81) 0.70 0.69 0.71

PCAT signature 0.76 (0.67–0.84) 0.70 0.54 0.82

Nomogram 0.85 (0.70–0.94) 0.73 0.85 0.65

External validation pFAI 0.76 (0.65–0.86) 0.54 0.29 0.97

CT-FFR 0.68 (0.55–0.80) 0.58 0.49 0.72

Mycardium signature 0.71 (0.58–0.82) 0.64 0.63 0.66

PCAT signature 0.73 (0.60–0.84) 0.56 0.47 0.72

Nomogram 0.89 (0.82–0.96) 0.69 0.55 0.93

pFAI, pericoronary fat attenuation index; CT-FFR, CT fractional flow reserve; PCAT, pericoronary adipose tissue.
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systems. There is indeed a certain comorbidity mechanism between

the two diseases in terms of inflammation and blood flow

perfusion.

Vascular lesions may cause multiple myocardial changes such

as myocardial ischemia, decreased myocardial flow, and changes

in myocardial contractile function, followed by indirect changes

in some pathogenic pathways between the heart and brain (12,

56, 57). The pFAI can reflect perivascular inflammation and

cardiovascular disease (18). However, the pFAI is only based on

voxel intensity and does not consider the complex relationships

among voxels (31). The key difference between machine

learning algorithms and traditional methods was that machine

learning algorithms can learn from observations, enabling

perform the mapping from features to labels at the image level

and create a model that can summarize information into a new,

previously unseen inputs (58). Therefore, we used radiomics to

extract quantitative information and then selected radiomics

signatures that were related to the clinical results to build

prediction models by different algorithms (59). After comparing

the two kinds of radiomics signatures, the PCAT signatures

were better than the myocardium signatures in predicting

WMH progression, and the Xgboost algorithm showed superior

predictive performance. When comparing CCTA-derived

markers and radiomics signatures, we found that the PCAT

signatures and pFAI both have similar performance in

predicting WMH progression, both higher than myocardium

signatures and CT-FFR.

Shu et al. previously predicted the progression of any

WMH, periventricular WMH, and deep WMH using

radiomics signatures (AUC: 0.714 [any WMH], 0.697

[periventricular WHH], and 0.717 [deep WMH]. By

comparing the predictive effects of different signatures on

WHH progression, we found that the predictive efficiency of

radiomics features extracted from the entire white matter of

the brain was higher than that extracted from the entire

myocardium [AUC: 0.0.717 (95% CI: 0.603–0.838) vs. 0.711,

95% CI: 0.584–0.822]), but when compared with the PCAT

signatures, the PCAT signatures showed a higher predictive

ability [AUC: 0.731 (95% CI: 0.603–0.838)] for predicting

WMH progression. Our study is the first to show that PCAT

can be used to predict WMH progression. The another major

innovation is the demonstration that a hybrid model

constructed by CCTA was a tool for identifying WMH

progression. In addition, we found that the pFAI was a

better predictor of WMH progression than the CT-FFR, and

the results suggested that heart-related inflammatory changes

are more sensitive indicators of changes in WMH than

hemodynamic markers. Another study that examined

predictors of myocardial ischemia also found a difference

between these two markers (60).

There are also many indicators that play an important role in

reflecting perivascular inflammation and cardiovascular disease.

Hypersensitive C-reactive protein (hs-CRP), which is currently

a representative biomarker for detecting inflammation in CAD

(61). hs-CRP mediated chronic inflammation is an independent

predictor of coronary microvascular dysfunction in patients
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with ischemic heart disease (62). In addition, vulnerable

plaques, as a characteristic inflammatory process of damage and

anti-damage, are also closely related to vascular inflammation.

Furthermore, there are also many factors related to

cardiovascular disease. For example, indicators such as calcified

plaque score, degree of luminal stenosis, and left ventricular

ejection fraction (LVEF) all have a suggestive effect on

cardiovascular risk factors (63, 64). There are also some basic

physical indicators that are cardiovascular related risk factors. For

example, obesity induces the aggregation of macrophages into

perivascular adipose tissue, inhibits the release of vasodilators such

as hydrogen sulfide from endothelial cells and smooth muscle

cells, and can affect coronary microvascular dilation function,

leading to cardiovascular disease (65). On the other hand, aging is

also one of the important risk factors for cardiovascular diseases

(66). Therefore, it is not enough for us to focus solely on

exploring WMH progression based on two imaging markers

obtained from CCTA, and further joint evaluation of multiple

related factors is needed. In addition, as the impact of cerebral

blood flow perfusion on WMH is crucial, we should further

explore the correlation between cerebral blood flow perfusion and

WMH.

Our study also had certain limitations. First, the population

included in our study was relatively small. However, there was

no significant difference in sample size between the WMH

progression and no-WMH progression group in our study

population, so the results had reference significance. Secondly,

our determination of WMH progression was based on

measurements at two time points. Ideally, this assessment should

be based on many measurements over time. In addition, the time

interval between two brain MRI examinations was determined to

be no less than 6 months, which may have a certain bias in the

evaluation of WMH progression due to the short interval time.

Regardless, the hybrid model captured the presence of a

pathogenic pathway. Thirdly, there were inevitably some biases in

the semi-automatic segmentation and volume calculation of

WMH using MATLAB software. However, all results were

evaluated and corrected by physicians, and the method of

obtaining WMH volume using MATLAB has been used multiple

times in some other WMH related studies (29, 67). Therefore,

the calculation of WMH volume in our study has some

reliability. Finally, we used deep learning software and machine

learning methods to build models. So it still needed some time to

be promoted and applied in clinical practice.
Conclusions

The CCTA-derived markers and radiomics signatures were

reliable indicators for predicting WMH progression. We found

that the pFAI was superior to the CT-FFR, and the PCAT

signatures was superior to the mycocardium signatures for

predicting WMH progression. A hybrid model combining pFAI,

CT-FFR, and radiomics features is a potential use for identifying

patients with WMH progression in elder coronary heart disease

populaiton.
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