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Hypertrophic cardiomyopathy is the most common genetic cardiac disorder and
is defined by the presence of left ventricular (LV) hypertrophy in the absence of a
condition capable of producing such a magnitude of hypertrophy. Over the past
decade, guidelines on the screening, diagnostic, and management protocols of
pediatric primary (i.e., sarcomeric) HCM have undergone significant revisions.
Important revisions include changes to the appropriate screening age, the role
of cardiac MRI (CMR) in HCM diagnosis, and the introduction of individualized
pediatric SCD risk assessment models like HCM Risk-kids and PRIMaCY. This
review explores open uncertainties in pediatric HCM that merit further
attention, such as the divergent American and European recommendations on
CMR use in HCM screening and diagnosis, the need for incorporating key
genetic and imaging parameters into HCM-Risk Kids and PRIMaCY, the best
method of quantifying myocardial fibrosis and its prognostic utility in SCD
prediction for pediatric HCM, devising appropriate genotype- and phenotype-
based exercise recommendations, and use of heart failure medications that
can reverse cardiac remodeling in pediatric HCM.
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1 Introduction

Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, with

a prevalence of 0.2% and an incidence of approximately 1 per 500 adults (1). These figures

are likely underestimated due to the large number of asymptomatic cases; the actual

prevalence of the disease is much higher when genetic testing and contemporary

imaging techniques are applied (1). The pathogenesis of adult HCM is linked to

autosomal dominant mutations in various genes that encode sarcomeric proteins, most

frequently beta myosin heavy chain 7 (MHY7) and myosin-binding protein C3

(MYBPC3) (2). The clinical course of HCM is highly variable, ranging from

asymptomatic to life-threatening complications such as sudden cardiac death (SCD), left
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ventricular outflow tract obstruction (LVOTO), heart failure with

reduced ejection fraction (HFrEF), and atrial fibrillation with

associated embolic events (3).

Compared to adults, pediatric HCM is an evolving field due to

relatively limited data on epidemiology, etiologies, screening,

diagnostic protocols, and management strategies. Epidemiological

data from the United States indicate that HCM is substantially

less common in children than adults, with an estimated

prevalence of 1.2/1,000,000 and an annual incidence rate of 1.3/

100,000 (4–6). Furthermore, the penetrance of child relatives of

HCM patients is low during childhood and adolescence (7).

Pediatric HCM can be classified based on etiology into primary

and secondary (8). Primary HCM can be due to sarcomeric

mutations or can be idiopathic, which may be due to currently

unidentified sarcomeric mutations or non-sarcomeric variants

(9). Primary HCM is sometimes called familial HCM because of

its typical autosomal dominant pattern of inheritance. The

clinical outcomes of familial HCM due to sarcomeric mutations

or idiopathic HCM are very similar, hence the two are often

grouped as primary familial HCM (8). Primary HCM is typically

asymptomatic through the first years of life, appearing during

late childhood or adolescence, and exhibits an annual mortality

rate of ∼1%, which is not significantly different from adult

HCM. On the other hand, secondary HCM due to glycogen

storage diseases, lysosomal storage diseases, syndromic cases,

fatty acid oxidation disorders, and endocrine disorders like

acromegaly typically manifests during infancy and is associated

with a high mortality rate (10–12).

This review focuses on primary familial HCM, either with an

identified pathogenic/likely pathogenic (P/LP) sarcomeric genetic

variant or idiopathic. We survey the existing literature on the

screening and diagnostic approaches for childhood-onset HCM

and SCD risk assessment in such cases and highlight open

questions in these areas.
2 HCM diagnosis and risk assessment

2.1 Cardiac MRI in HCM diagnosis

The diagnostic criterion for HCM in children is different than in

adults. Left ventricular (LV) thickness children is adjusted for body

size and growth, with a thickness >2 standard deviations (SD)

above the mean after adjustment considered diagnostic for HCM

(13–15), Some flexibility can be employed in the SD criterion when

there is a high pretest probability of HCM like a strong family

history or a positive cascade genetic test (16). Transthoracic

echocardiography (TTE) is the primary imaging modality for

diagnosing HCM but has limitations like poor acoustic windows

and an overestimation of wall thickness on oblique sections (17–24).

Cardiac MRI (CMR) better distinguishes between the

epicardial and endocardial layers to offer detailed information

about LV systolic and diastolic function, LVOTO severity, atrial

enlargement, and mitral regurgitation (17). CMR is also effective

in detecting LV aneurysms, mural thrombi, and papillary muscle

abnormalities in patients with sarcomeric HCM (13, 16). Existing
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data in adults with suspected HCM have showed that CMR leads

to a clear HCM diagnosis in 44.7% of patients, indicated an

alternative diagnosis in 5.3% of patients, and demonstrated no

significant hypertrophy was found in 20.4% of patients, thereby

refuting TTE findings (25). It will be important to determine

whether these findings translate to pediatric HCM patients.

Nevertheless, recommendations on when CMR is indicated for

diagnosis vary. The 2014 and 2023 ESC guidelines recommend

conducting CMR all HCM patients at initial evaluation to

establish a baseline (13, 15), while the 2020 AHA/ACC

recommends reserving CMR for cases where TTE findings are

inconclusive (16). The 2023 ESC guidelines recommend

considering CMR every 2–5 years to monitor disease progression

on a case-by-case basis (class IIa recommendation) (15).

Given that phenotypic manifestations of HCM in children are

more subtle than in adults, the question arises whether all children

with suspected or diagnosed HCM should undergo CMR, as many

of the aforementioned manifestations may be missed by TTE.

Hence, studies evaluating the diagnostic yield and prognostic value

of CMR, especially when TTE is negative or inconclusive, are

needed in pediatric HCM patients. CMR can visualize subtle

morphological changes in HCM genotype-positive individuals who

do not have LV hypertrophy, a situation that often arises in

children. These changes include narrow blood-filled myocardial

crypts (i.e., deep, blood-filled invaginations within the LV

myocardium), elongated mitral leaflets, and expanded extracellular

space (23, 26–28). Lorenzini et al. showed that 32% of sarcomeric

mutation carriers (median age 14.2 years) who were HCM

phenotype-negative at first evaluation on TTE fulfilled diagnostic

criteria of HCM on CMR (29). Furthermore, younger age at HCM

diagnosis and sarcomeric mutations are predictive of long-term

adverse outcomes including heart failure, atrial fibrillation, and

ventricular arrhythmias (30). These findings strongly support the

ESC guidelines that CMR be conducted in all genotype-positive

children (15). However, there is currently insufficient evidence on

the benefit of CMR in aiding the diagnosis of familial HCM

without a genetic diagnosis (class IIb recommendation) (15).

Different HCM genotypes can differentially affect cardiac

anatomy and physiology, manifesting as different degrees of

myocardial perfusion alterations, fibrosis, and diastolic

dysfunction. Increasing consideration of these changes as part of

the HCM spectrum may result in a broadening of what defines

HCM beyond simply LV hypertrophy (9). We posit that CMR

would become key in this context by providing a more

comprehensive description of the cardiac anatomy (Figure 1).

CMR itself is a tool to explore the genotype-phenotype

association, exemplified by the use of different CMR techniques to

associate differet genotypes (e.g., sarcomeric vs. non-sarcomeric)

with divergent findings on myocardial oxygenation (31). The

translational potential of genotype-phenotype studies is illustrated

by the results of the randomized, double-blinded, placebo-

controlled trial showing that mavacampten—a first-in-class drug

targeting cardiac myosin ATPase tailored to the pathophysiology

of sarcomeric HCM—significantly improved exercise capacity,

LVOTO, NYHA functional class, and health status in patients

with hypertrophic obstructive cardiomyopathy (HOCM) (32).
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FIGURE 1

Proposed future directions in the field of pediatric HCM.
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2.2 Sudden cardiac death risk assessment

Risk factors for SCD vary between adults and pediatrics, which

are reflected in different recommendations on SCD risk assessment

in both groups. Approaches for SCD risk assessment in adults

include the six-parameter risk score recommended by the 2011

AHA/ACC guidelines, the HCM Risk-SCD score recommended

by the 2014 and 2023 ESC guidelines, and the enhanced 2020

AHA/ACC SCD risk assessment approach (14, 33, 34). For

children, the 2020 AHA/ACC guidelines recommend ICD

placement with HCM children who have ≥1 major risk factor for

SCD, including a family history of SCD, massive LVH ≥30 mm

in any LV segment, syncope, LV apical aneurysm, and LV

systolic dysfunction. However, these risk factors were largely

derived from studies conducted on adult patients (16). The

phenotypic characteristics of HCM in children differ from those

in adults (see above), hence the applicability of adult risk factors

in pediatric cases may be limited (35–37). The need for devising

SCD assessment approaches tailored to pediatric HCM is

underscored by the higher risk of SCD in children (0.8%–2%)

than in adults (<0.8%) (38, 39). Furthermore, children are ∼36%
more likely to experience arrhythmic events compared to adults

(38, 39). Children ICD recipients face a lifetime of device-related

complications, including lead fracture/failure, infective

endocarditis, or the need for lead repositioning, for which there

are currently no preventative approaches (39).

Unique risk factors for SCD in the pediatric population include

LV posterior wall diameter, left atrial diameter, and LVOTO, which

are not risk factors for SCD in adult HCM (40). Conversely, family

history of SCD and abnormal blood pressure response to exercise

are not significant risk factors for SCD in HCM children (41).

The evidence behind age as a risk factor for SCD in children is
Frontiers in Cardiovascular Medicine 03
weak, hence it is not incorporated in current risk prediction

models (discussed below) (42). A meta-analysis by Norrish et al.

reported that SCD risk factors with sufficient evidence for use in

pediatric HCM patients include previous ventricular tachycardia/

ventricular fibrillation, unexplained syncope, non-sustained

ventricular tachycardia, and extreme LVH (37). Subsequent

studies identified left ventricular posterior wall diameter, left

ventricular outflow tract gradient, and, myocardial fibrosis as

additional risk factors (40, 43). Furthermore, although the meta-

analysis by Norrish et al. did not find an abnormal blood

pressure response to exercise to be a significant predictor of SCD

(37), a recent study evaluating a cohort of 630 primary HCM

pediatric HCM patients <18 years demonstrated that abnormal

exercise stress test results were present in ∼28% of patients, with

exercise stress test-induced ischemia being independently

associated with lower SCD-free survival (HR, 3.32; 95% CI, 1.27–

8.70) (44). It is important to note that the meta-analysis by

Norrish et al. was based on a limited number of studies which

were limited in terms of their patient selection, sample size, and

follow-up times. Therefore, our understanding of the risk factors

for SCD in pediatric HCM patients continues to evolve through

robustly designed multi-center studies.

Two models exist that enable individualized SCD risk

assessment in pediatric HCM (Table 1). Norrish et al. developed

a risk prediction model for SCD in children called HCM Risk-

Kids. This model achieved a c-statistic—which is a measure of

the discriminative ability of a risk prediction model—of 0.69,

with 1 patient being saved for every 10 ICD implantations in

patients with a ≥6% 5-year risk of SCD (35). HCM Risk-Kids

has been externally validated on a cohort of 421 HCM patients

aged 1–16, with the 5-year SCD risk cut-off of ≥6% identifying

73.9% of SCD events with a c-statistic of 0.70 (45). Miron et al.

developed another individualized SCD prediction model,

PRIMaCY, which achieved a c-statistic of ∼70% in predicting

5-year SCD risk (40). No study has directly compared the

performance of HCM-Risk kids and PRIMaCY in predicting the

risk of SCD. These models were recently incorporated into

the 2023 ESC cardiomyopathy guidelines, which recommended

the use of either of these two models for HCM patients

<16 years old (15).

Although these models have transformed pediatric HCM

clinical practice, some notable limitations must be contended

with (46). Most glaringly, important predictors of future adverse

outcomes like electrocardiography parameters, CMR-based

features, measures of myocardial fibrosis, and genetic factors like

the presence of sarcomeric mutations have not been included

(Figure 1). The importance of myocardial fibrosis and genetic

factors is discussed below. Another critique raised by Maron

et al. is concern over the derivation of HCM Risk-Kids from the

HCM Risk-SCD score, which the authors found to lack

sensitivity (47). However, the HCM Risk-SCD score has been

externally validated in other multi-institutional studies and meta-

analyses (48, 49). Although it is no longer the case that pediatric

risk factors for SCD need to be derived from adult studies, the

criteria by which variables were selected for the HCM Risk-Kids

model was that they needed to be examined in at least two or
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TABLE 1 Comparison of the individualized SCI prediction models for pediatric HCM.

Characteristics HCM-risk kids PRIMaCY

Age range for use ≥1 years and ≤16 years ≤18 years
Predictor variables used
(Differences bolded)

1. Unexplained syncope.
2. Maximal left-ventricular wall thickness.
3. Left atrial diameter.
4. Left ventricular outflow tract gradient.
5. Non-sustained ventricular tachycardia

1. Age at diagnosis.
2. Interventricular septal thickness.
3. Left ventricular posterior wall thickness.
4. Left atrial diameter.
5. Left-ventricular outflow tract gradient.
6. Non-sustained ventricular tachycardia
7. Unexplained syncope

Internal validation c-statistic 0.69 (95% CI = 0.66–0.72 0.75 (CI not provided)

External validation c-statistic 0.714 (95% 0.58–0.85) 0.71 (CI not provided)

Model website https://hcmriskkids.org/ https://primacycalculator.com/

Future directions
• Incorporate CMR-based assessments of cardiac structure and function
• Incorporate measures of myocardial fibrosis
• Evaluate if incorporating EKG findings improve SCD prediction by these models
• Update models according to future data on adverse outcome risk based on genetic basis of HCM

Shafqat et al. 10.3389/fcvm.2023.1277041
more studies employing univariate or multivariate analyses.

Employing only predictors established in multivariate analyses,

although more robust, was not possible because of the limited

data on pediatric HCM.

These findings highlight the transformative impact of

individualized pediatric SCD assessment models but also raise

suggestions on how to improve them. Future studies expanding

our knowledge of the genotype-phenotype association in HCM

may reveal important caveats about the genetic basis of SCD risk

that need to be reflected in these models.
2.3 Myocardial fibrosis in SCD risk
assessment

Myocardial fibrosis can be an indicator of myocardial ischemia,

LV diastolic dysfunction, and future risk of atrial fibrillation and

SCD (50). Late-gadolinium enhancement (LGE) is the most

widely used tool to quantitatively measure myocardial fibrosis.

Studies have demonstrated that LGE improves the stratification

of adult HCM patients at low-to-intermediate risk of SCD when

added to the 2011 AHA/ACC algorithm and HCM-Risk SCD

(16, 51, 52). Consequently, the enhanced AHA/ACC SCD risk

assessment approach incorporates LGE and LV apical aneurysm

detected by CMR to the 2011 AHA/ACC six-parameter

prediction score and is currently the most sensitive SCD risk

assessment method for adult HCM patients (∼95%) (16, 34).

Integrating artificial intelligence (AI) into CMR-LGE, a multi-

center study on 1,229 HCM patients (mean age 52 years) showed

that radiomic features—i.e., using computational algorithms to

extract quantitative features from medical images—of myocardial

scars on LGE-CMR added incremental prognostic value to HCM

Risk-SCD and AHA/ACC SCD risk assessment protocols for

adults (53). The 2023 ESC guidelines maintained the

recommendation of utilizing HCM Risk-SCD as the first-line

tool in SCD risk assessment in adult HCM patients, but
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state that the presence of extensive LGE (≥15%) in patients

classified as low-risk can inform decision-making on prophylactic

ICD implantation (15).

HCM Risk-Kids and PRIMaCY are yet to incorporate LGE

into their risk prediction (26, 33, 34, 54). Low levels of myocardial

fibrosis with LGE (>2% of LV mass) are common in children with

HCM and the introduction of LGE significantly improves the

predictive accuracy of the HCM Risk-Kids prediction model

(55, 56). A recent study on a cohort of 166 pediatric HCM patients

with a mean age of 10.4 years demonstrated the prognostic value of

LGE in determining major cardiac events (i.e., sustained VT,

resuscitated cardiac arrest, SCD, end-stage heart failure, heart

transplant, and appropriate ICD intervention) (57). This study

showed that the optimal cutoff LGE extent for predicting events

was ≥2% (57). The predictive accuracy—evaluated by the median

time-dependent area under the curve (AUC)—of LGE extent (0.88,

95% CI 0.86–0.89) significantly outperformed that of syncope

(0.63, 95% CI 0.61–0.66, p < 0.0001) and nonsustained ventricular

tachycardia (0.52, 95% CI 0.50–0.53, p < 0.0001), both of which

have been included in the individualized pediatric SCD predictive

models (57). Although this study utilized a composite primary

endpoint not composed of just SCD or its equivalent event (i.e.,

sustained VT, resuscitated cardiac arrest, or appropriate ICD

intervention) but also end-stage heart failure and heart

transplantation, these results advocate for the introduction of LGE

in the SCD risk assessment for pediatric HCM (Figure 1).

The influence of genetic background such as the presence of

sarcomeric mutations on the decision to perform LGE is an area

of active interest. LGE may be less prevalent in pediatric HCM

(46%) compared to adults (∼60%), particularly in sarcomeric

mutation carriers without overt left ventricular hypertrophy (58).

However, some pediatric patients demonstrate progression of

LGE extent over time, although age at diagnosis or time elapsed

since diagnosis was not predictive of LGE increase, indicating a

potential genetic basis for the progression of myocardial fibrosis

in HCM (58). These results highlight the need for further
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exploration of genotype-phenotype associations with respect to

myocardial fibrosis development and progression, which may

enhance the decision-making process of when to opt for LGE

based on patient genotype.

There is no universally accepted/agreed-upon method of

quantifying myocardial fibrosis. LGE may not be the most

sensitive method for detecting fibrosis. Alternative approaches like

T1 mapping or calculation of extracellular volume (ECV) fraction

may be more sensitive for assessing diffuse interstitial fibrosis (59).

For example, left atrial enlargement and diastolic dysfunction can

be present in childhood-onset HCM without LVH, which may be

due to diffuse interstitial fibrosis that is undetectable by LGE

(58, 60). In adult HCM patients, T1 mapping and ECV fraction

measurements have been associated with major cardiac events like

SCD in patients without LGE, even in those determined low-risk

by the enhanced AHA/ACC strategy and HCM Risk-SCD (61,

62). Studies exploring what the added prognostic value of T1

mapping over LGE is in predicting SCD risk and other adverse

cardiac events in pediatric primary HCM are needed (Figure 1).

These alternate approaches may also constitute avenues to explore

the genotype-phenotype association of HCM, as one study applied

radiomics analysis to T1 mapping to study the genotype-

phenotype associations of sarcomeric (MYH8 and MYPBC3)

HCM patients with respect to myocardial fibrosis (63).
3 Appropriate screening age for
children

Genetic evaluation of relatives of HCM patients requires a

systematic approach including a comprehensive family history to

assess for early-onset HCM and family history of SCD, a

comprehensive phenotypic (i.e., clinical) and genetic evaluation of

the proband to confirm phenotype-positivity and guide cascade

genetic testing, referral for genetic counseling, and genotype- and

phenotype-directed guidance on potential therapies like ICD,

medications, and lifestyle modifications (64).

The 2011 AHA/ACC guidelines recommended screening first-

degree child relatives with a positive HCM family history at the age

of 12 years, with earlier screening recommended in children with a

family history of SCD, participation in intense physical activities,

and an early growth spurt (14). The 2014 ESC guidelines

recommended initiating screening in first-degree child relatives

with an unknown genetic history after the age of 10 years with

screening intervals of 1–2 years between the ages of 10–20 and

every 2–5 years thereafter (13).

Studies in the years following these guidelines challenged the

notion that sarcomeric mutations and clinically significant adverse

events in children with familial HCM are rare. Approximately

43%–63% of pediatric HCM cases are associated with sarcomeric

mutations, and sarcomeric childhood-onset HCM is linked

increased risk of heart failure and a composite clinical outcome of

life-threatening ventricular arrhythmias, atrial fibrillation, stroke,

and death (38, 65, 66). Childhood-onset HCM also exhibits a

steeper increase in LV wall thickness and higher median event

rate than adults, associated with a greater likelihood of developing
Frontiers in Cardiovascular Medicine 05
life-threatening ventricular arrhythmias and interventions such as

heart transplantation or ventricular assist device implantation

(38, 67). Furthermore, a significant proportion of HCM

phenotype-positive children and those with major adverse cardiac

events were below the recommended screening age of 10 years,

with around 69% of these children meeting the 2011 AHA/ACC

and 2014 ESC criteria for early screening (67, 68).

Considering these findings, the updated 2020 AHA/ACC

guidelines recommended clinical and/or genetic screening first-

degree children relatives of genotype-positive patients irrespective of

age. All children and adolescents with a family history of early-

onset HCM are also advised to undergo screening regardless of age

(16). Echoing the trend of basing screening decisions off proband

genetic testing results rather than a cut-off age, the 2023 ESC

cardiomyopathy guidelines recommended that if a P/LP genetic

variant is identified, cascade genetic testing should be performed in

first-degree relatives irrespective of age. Genotype-positive relatives

should undergo clinical evaluation by EKG, multimodality imaging

(echocardiography and CMR), and long-term follow-up, while

relatives without the disease-causing variant are discharged from

further follow-up but counseled to seek re-assessment if they

develop symptoms (15). The value of genetic testing at a young age

is further indicated by a study showing that a younger age at HCM

diagnosis and sarcomeric mutations are predictive of long-term

adverse outcomes including heart failure, atrial fibrillation, and

ventricular arrhythmias (30). In favor of discharging genotype-

negative patients, Nielsen et al. showed that first-degree relatives of

an index HCM patient with no P/LP variant have a low frequency

of diagnosis at initial evaluation and risk of developing the

condition during 5 years of follow-up, and, if diagnosed, are at low

risk of SCD (69). On the other hand, even sarcomeric variants of

undetermined significance (VUS) have been shown to correlate

with adverse outcomes (30), hence child relatives of the index VUS

HCM patient should be offered serial clinical evaluations because of

age-related penetrance (15). Finally, if no P/LP variant is identified

in the proband or if genetic testing is not performed, then clinical

evaluation with EKG and multi-modality imaging should be

performed in first-degree relatives (class I recommendation) (15).

A puzzling HCM patient population that requires further

improvement in their management is genotype-positive

phenotype-negative patients. More precision is needed when

ascertaining their risk of phenotypic conversion, which is affected

by the specific underlying genetic mutation and possibly by

gender. A retrospective study following 285 phenotype-negative

sarcomeric mutation carriers demonstrated that 46% of individuals

develop HCM over 15 years of follow-up (29). Male sex and an

abnormal EKG were independently associated with higher

penetrance. Furthermore, the TNNI3 sarcomeric protein variants

had the lowest penetrance (29). Hence, future updates must

account for individual differences in risk of phenotypic conversion,

perhaps reflected as a stronger emphasis on the use of CMR and

myocardial fibrosis assessment in high-risk groups (Figure 1).

Early genetic screening of children is not without its challenges

(Table 2). It may not be feasible to screen every first-degree child

relative of the index HCM patient. Many families also choose not

to undergo genetic testing, limiting the identification of P/LP
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TABLE 2 Potential benefits and harms of early screening for HCM in
children.

Benefits Harms
Decrease in uncertainty regarding HCM
status

Increased anxiety about the child’s future

Anticipating future care enhances
patient management through informed
decision-making

Alteration of one’s self-image and stigma
associated with cardiovascular disease

Early detection and management with
possible improved prognosis

Lack of confidence around exercise/
physical activity can negatively impact
quality of life

Overall reduced healthcare costs by
reducing the need for advanced, lifelong
therapies for complications

Increased insurance costs and
accessibility limitations

Shafqat et al. 10.3389/fcvm.2023.1277041
variants and cascade genetic testing in relatives (70). Clinical and

imaging evaluation of children should take place in these

circumstances. The financial and psychological cost of universal

screening need also be considered, especially because significant

LV hypertrophy and adverse events like SCD—although more

common than previously thought—are still exceedingly rare before

10 years of age (70). The psychological aspects of an HCM

diagnosis are increasingly recognized, such as anxiety among the

child and especially parents, a difficult transition to higher levels

of education and from pediatric to adult care, and the social

stigma associated with cardiovascular disease and its consequences

on confidence and anxiety, especially around exercise. Support

from a trained professional like a clinical psychologist has been

shown to significantly mitigate quality of life impairment in

children who receive an HCM diagnosis (71, 72). On the other

hand, genetic and clinical screening to identify potentially affected

child relatives of the affected HCM individual does not seem to

impair quality of life (72). Lastly, universal early screening could

promote the potentially unnecessary prescription of medical

treatment, lifestyle changes particularly surrounding exercise, and

prophylactic implantation of ICDs. A paradigm shift towards

individualized risk assessment and shared decision-making is

emphasized because indiscriminate screening in an era where

judicious resource allocation is crucial does not seem feasible.

To address many of these challenges, we need to understand the

link between specific genotypic variants, phenotypic HCM

manifestations, and associated risks of adverse events (9). Genetic

studies on the penetrance of different P/LP variants, most of which

are currently unknown (15), are required to inform screening

decisions (Figure 1). Further research may expand the definition of

HCM beyond LV hypertrophy since different genotypes can

differentially affect various aspects of cardiac structure and function

and thus may be detected differently during screening (9).
4 Management of pediatric HCM

4.1 Exercise recommendations

HCM was originally described in the context of SCD and was

popularized as the most common cause of SCD in professional

athletes (73). Also, exercise can theoretically trigger hypertrophy of
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the myocardium, which may exacerbate LVOTO. Consequently,

management strategies have historically strictly advised against any

form of exercise other than low-intensity training, stemming from

the fear of triggering a ventricular arrhythmia and SCD (13, 14).

Subsequent studies began to highlight the negative psychological

and long-term medical outcomes HCM patients may be

predisposed to because of this restriction on their lives.

Furthermore, a substantive percentage of HCM patients nowadays

are largely asymptomatic and exhibit a normal life expectancy. It

thus becomes important to explore more deeply the types of

physical activity that HCM patients can carry out, especially

during childhood and adolescence given its enormous benefits on

physical and social development in this phase.

Recent studies have begun to show that exercise training during

childhood and adolescence is associated with favorable indices of

diastolic function independent of LVH (74). This is consistent

with data on adult HCM patients, where a sedentary lifestyle is

associated with obesity and adverse cardiovascular outcomes on

the one hand and exercise is correlated with improved exercise

capacity and cardiovascular and quality-of-life outcomes on the

other (75–83). Recent studies also indicate that even vigorous

exercise in genotype-positive HCM patients across most age

groups including children and adolescents does not increase the

risk of a primary endpoint of death, resuscitated SCD, arrhythmic

syncope, and appropriate shock from an ICD (76). Furthermore,

endurance exercise in athletes with HCM is associated with an

enlarged LV cavity size and amelioration of outflow obstruction

(84). Consequently, the recent North American and European

guidelines adopt somewhat of a more liberal approach and

encourage low-to-moderate intensity for all HCM genotype-

positive individuals, even those exhibiting the phenotype (15, 16).

Competitive and high-intensity sport is still approached with

caution and is allowed for phenotype-negative and low-risk

pediatric and adult phenotype-positive individuals after extensive

initial assessment and re-assessments to check for phenotypic

progression (15). For future studies, in line with the emphasis on

genotype-phenotype associations and tailored management

strategies, it will be important to distinguish exercise

recommendations for different genotypes and for pediatric patients

in different risk categories of the individualized SCD risk models.
4.2 Medications

Therapy for heart failure does not distinguish between

specific etiologies and can be grouped into medical therapy,

resynchronization therapy, ventricle assist devices, and

transplantation. Different medications indicated for the treatment

of HFrEF include angiotensin-converting enzyme inhibitors

(ACEi), angiotensin receptor blockers (ARBs), angiotensin receptor

neprilysin inhibitors (ARNI), beta blockers, mineralocorticoid

receptor antagonists, and sodium-glucose cotransporter-2 (SGLT2)

inhibitors (85, 86). These medications are also indicated in end-

stage HCM with LV systolic dysfunction (86).

The role of these medications in early-stage HCM, which often is

the case in pediatric patients, is not well understood. The multicenter,
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1277041
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Shafqat et al. 10.3389/fcvm.2023.1277041
randomized, double blind, placebo controlled, phase 2 VANISH

clinical trial of 178 participants including both adults and children

with early-stage HCM showed that valsartan treatment for 2 years

improved cardiac structure and function, indicated by an integrated

z-score of LV wall thickness, mass, and volume, left atrial volume,

doppler systolic and diastolic velocities, and serum levels of hs-

troponin T and pro-BNP (87). In contrast, the INHERIT clinical

trial did not show a statistically significant benefit to losartan use in

decreasing LV mass in middle-aged patients with overt HCM

compared to placebo (88). The INHERIT trial utilized CMR and

cardiac CT to measure the primary outcome of LV mass, while

secondary outcomes included LV fibrosis, maximum LV wall

thickness, left atrial volume, and plasma levels of NT-pro-BNP.

Therefore, different outcome measurements may have contributed

to the conflicting results of the VANISH and INHERIT studies.

However, a recent analysis showed that utilizing the VANISH

composite z-score in the INHERIT cohort still did not result in a

statistical benefit to losartan use (89).

It is plausible that ACEi/ARB may be beneficial in reversing

cardiac remodeling in early-phase disease but this effect is lost

upon progression to overt HCM (90). However, the recent

multicenter, double-blind, placebo-controlled VANISH

randomized clinical trial of 34 sarcomeric HCM patients (mean

age of 16 years) showed no statistical benefit to valsartan use in

patients with early subclinical HCM with no LVH using the

aforementioned integrated z-score approach (91). However, this

study was underpowered to detect a statistically significant benefit

due to a small sample size, short follow-up duration (∼2 years),

and slow phenotypic progression in both the valsartan and placebo

group. Larger scale studies with longer follow-up durations are

required to conclusively assess the clinical benefit of valsartan on

cardiac remodeling in early phase HCM. It will also be important

to determine if the underlying genotype influences treatment

response in the early phase.
5 Conclusions

Tremendous advancements have been made in the screening

protocols, timely diagnosis, and management of pediatric HCM, a

historically understudied field. The recent ESC cardiomyopathy

guideline update embraced the individualized pediatric SCD
Frontiers in Cardiovascular Medicine 07
prediction models, but the incorporation of key imaging and

genetic parameters into these models is awaited. Other important

knowledge gaps notably include gaining a better understanding of

the genotype-phenotype association, the best technique to detect

myocardial fibrosis, and defining the potential role of AI as

clinical decision support systems in screening and as algorithms

like LGE-CMR radiomics approaches. Addressing these challenges

will undoubtedly contribute to improving the care of these

patients and thereby alleviate a significant healthcare burden in

terms of morbidity, mortality, and health expenditures.
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