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Non-contrast cine cardiovascular
magnetic resonance-based
radiomics nomogram for
predicting microvascular
obstruction after reperfusion in
ST-segment elevation myocardial
infarction
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Wuyan Xu3 and Jingshan Gong2*
1The Second Clinical Medical College, Jinan University, Shenzhen, China, 2Department of Radiology,
Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated
Hospital of Southern University of Science and Technology, Shenzhen, China, 3Guangzhou Red Cross
Hospital, Jinan University, Guangzhou, China

Purpose: This study aimed to develop and validate a cine cardiovascular magnetic
resonance (CMR)-based radiomics nomogram model for predicting microvascular
obstruction (MVO) following reperfusion in patients with ST-segment elevation
myocardial infarction (STEMI).
Methods: In total, 167 consecutive STEMI patients were retrospectively enrolled.
The patients were randomly divided into training and validation cohorts with a
ratio of 7:3. All patients were diagnosed with myocardial infarction with or
without MVO based on late gadolinium enhancement imaging. Radiomics
features were extracted from the cine CMR end-diastolic volume phase of the
entire left ventricular myocardium (3D volume). The least absolute shrinkage and
selection operator (LASSO) regression was employed to select the features that
were most relevant to the MVO; these features were then used to calculate the
radiomics score (Rad-score). A combined model was developed based on
independent risk factors screened using multivariate regression analysis and
visualized using a nomogram. Performance was assessed using receiver
operating characteristic curve, calibration curve, and decision curve analysis (DCA).
Results: The univariate analysis of clinical features demonstrated that only cardiac
troponin I (cTNI) was significantly associated with MVO. LASSO regression revealed
that 12 radiomics features were strongly associated with MVO. Multivariate
regression analysis indicated that cTNI and Rad-score were independent risk
factors for MVO. The nomogram based on these two features achieved an area
under the curve of 0.86 and 0.78 in the training and validation cohorts,
respectively. Calibration curves and DCA indicated the clinical feasibility and
utility of the nomogram.
Abbreviations

MVO, microvascular obstruction; STEMI, ST-segment elevation myocardial infarction; CMR, cardiac magnetic
resonance; LGE, late gadolinium enhancement; LASSO, least absolute shrinkage and selection operator; cTNI,
cardiac troponin I; AUC, area under the curve; PCI, percutaneous coronary intervention; CMD, coronary
microvascular dysfunction; IMH, intramyocardial hemorrhage; bSSFP, balanced steady-state free precession;
ROI, region of interest; ICCs, intraclass correlation coefficients.
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Conclusions: A CMR-based radiomics nomogram offers an effective means of
predicting MVO without contrast agents and radiation, which could facilitate risk
stratification of patients with STEMI after PCI for reperfusion.
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1. Introduction

Percutaneous coronary intervention (PCI) is the preferred

treatment for acute myocardial infarction (AMI). Promptly

restoring blood flow through PCI in occluded arteries

significantly reduces the mortality rate of patients with ST-

segment elevation myocardial infarction (STEMI) (1). Despite

successful epicardial coronary artery revascularization,

approximately 40% of patients cannot attain optimal myocardial

perfusion due to coronary microvascular dysfunction (CMD)

following ischemia (2, 3). This condition is associated with a

long-term risk of adverse outcomes (4–7). Microvascular

obstruction (MVO) detected on cardiovascular magnetic

resonance (CMR) is the most commonly used index for assessing

CMD following STEMI (6, 8, 9). MVO is defined as a dark zone

within the hyperintense myocardial infarction region observed on

late gadolinium enhancement (LGE) images. Several studies have

consistently confirmed the accuracy and reliability of cardiac

MRI using LGE for non-invasive MVO assessment establishing it

as the gold standard for visualizing MVO (10–12).

To complete LGE imaging, it is essential to administer an

intravenous injection of gadolinium and conduct a delayed scan

15 min after contrast administration. This procedure not only is

time-consuming and labor-intensive but also carries a risk of

nephrogenic systemic fibrosis (NSF) in patients with severe renal

disease. Given the frequent coexistence of kidney and

cardiovascular diseases (CVDs), this matter has garnered

significant attention in the clinical setting (13). Therefore, non-

contrast CMR protocols for risk stratification in patients with

STEMI should be implemented clinically. Recent research has

indicated that non-contrast cine CMR images can serve as an

alternative approach to LGE-CMR, enabling the diagnosis of

CVDs without the need for gadolinium injection (14–16).

Radiomics is a quantitative image analysis method that

transforms images into mineable data, allowing the extraction of

detailed information on myocardial characteristics and thereby

providing new information from existing standard images (17–19).

Radiomics has great potential for transforming imaging data into

clinically applicable models for disease diagnosis and prognostic

assessment. In addition, radiomics can be used to evaluate

treatment response or predict certain prognostic characteristics

and is currently widely applied in the field of CVDs. Cine CMR,

based on a balanced steady-state free precession (bSSFP) gradient

echo sequence, is routinely implemented to assess heart function

using CMR protocols. Owing to the bSSFP signal being the

coherent sum of SSFP-free induction decay and SSFP-echo, it may

bear both T2 and T2 star components, even though the T2 star
02
component is usually negligible. Therefore, we hypothesize that

radiomics could mine the features produced by the T2 star

component of the bSSFP signal. This study aimed to develop and

validate a cine CMR-based radiomics model to predict MVO in

patients with STEMI after PCI.
2. Materials and methods

2.1. Patient population

This study was approved by the institutional review board. The

requirement for informed consent was waived owing to the

retrospective nature of the study. The inclusion criteria were as

follows: (1) patients who underwent PCI within 12 h from onset

of symptoms and a diagnosis of acute STEMI based on ST-

segment elevation of >0.1 mV in at least two contiguous limb

leads or >0.2 mV in the precordial leads, along with coronary

angiography revealing more than 50% stenosis in two or more

coronary arteries and successful restoration of patency to the

occluded vessels, and (2) patients who underwent CMR

examination within 2–6 days after PCI and had complete clinical

data. The exclusion criteria were as follows: (1) patients with a

history of prior myocardial infarction or previous PCI; (2)

patients with other cardiomyopathies, severe valvular disease,

acute pericarditis, myocarditis, or recent severe cardiac

insufficiency; and (3) poor CMR image quality and inadequate

image segmentation. Between January 2021 and April 2023, 167

patients were enrolled and randomly divided into training and

validation cohorts with a ratio of 7:3. Relevant clinical data were

collected from all patients.
2.2. CMR image acquisition

CMR examination was conducted using a 3.0T MR system

(MAGNETOM Skyra; Siemens Healthcare) equipped with an 18-

channel cardiac phased-control coil and facilitated with

respiratory gating and ECG vector gating. True fast imaging with

a steady-state precession (true FISP) sequence was employed to

capture the standard left ventricular (LV) short axis and LV two-

chamber and four-chamber cine CMR. The LV short-axis images

cover the entire left ventricle. LV ejection fraction (LVEF %),

end-systolic volume (ESV, ml), end-diastolic volume (EDV, ml),

and LV mass (g) were assessed using cine imaging. The images

were resampled to 1 mm × 1 mm × 3 mm and normalized to

0–240 gray scale. LGE imaging was conducted 15 min after the
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intravenous administration of a gadolinium-based contrast agent at

a dose of 0.1 mmol/kg, using a two-dimensional T1-weighted

inversion recovery gradient echo sequence. Inversion times were

individually selected from 250 to 400 ms to optimize the nulling

of the unaffected myocardium. The scanning parameters are

listed in Supplementary Material S1.
2.3. Image preprocessing and radiomics
feature extraction

Two experienced diagnostic radiologists (with more than 8 years

of experience in diagnosing CMR images) interpreted the CMR

images on the picture archiving and communication system (PACS)

in consensus. LGE was defined as signal intensity exceeding five

standard deviations above the mean signal intensity of the remote

myocardium, serving as the gold standard for myocardial infarction

evaluation (12). An MVO was defined as a low-signal area within

the LGE high-signal myocardial infarction zone (20). Myocardium

manual segmentation was carried out using the ITK-SNAP software

(http://www.itksnap.org/pmwiki/pmwiki.php). The entire LV

myocardium was delineated as the volume of interest (VOI) within

the end-diastolic volume of the cine CMR images by two

radiologists (with more than 5 years of experience in CMR

imaging) manually, as depicted in Figure 1. On average, each

myocardial segmentation took approximately 6.5 ± 0.75 min. In

total, 167 VOIs were identified in 167 patients. The open-source

software PyRadiomics package (https://pyradiomics.readthedocs.io)

was used to extract the radiomics features (21). Image

normalization is crucial to ensure the comparability of features

among different cine CMR images. The N4 bias field correction

algorithm was employed during the preprocessing step to address
FIGURE 1

Radiomics flowchart of the current study. Layer-by-layer manual segmenta
features, including first-order, shape, texture features, and others, were extra
were chosen through interobserver and intraobserver reliability assessment a
a linear combination of selected features. The predictive performance was
results, we developed a nomogram personalized assessment tool that eva
analyses the clinical utility of column lines by DCA curves.
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image inhomogeneity. Subsequently, feature extraction was

conducted on the complete LV myocardium (3D volume) at the

end diastole. A total of 854 radiomics features were extracted,

which consisted of 18 first-order statistical features, 12 shape

features, 24 gray-level co-occurrence matrix (GLCM) features, 16

gray-level run length matrix (GLRLM) features, 16 gray-level size

zone matrix (GLSZM) features, 14 gray-level dependence matrix

(GLDM) features, and five neighborhood gray-tone difference

matrix (NGTDM) features. In addition, several image filters were

applied to the original image to obtain corresponding derived

images, including wavelet. The details pertaining to the radiomics

feature extraction are shown in Supplementary Material S2.
2.4. Radiomics feature selection

The radiomics signature development pipeline was as follows.

First, intraclass correlation coefficients (ICCs) were calculated to

exclude features with low reliability (ICCs < 0.80), and the mean

values of the included feature values of the segmentation of the

radiologists were used for further analysis. Second, the data of all

radiomics features were standardized with the Z-score, and

Spearman’s rank correlation coefficient was used to remove

redundant features with strong correlations. For features with a

correlation coefficient of >0.9, only one was retained while the

other was dismissed. Third, the least absolute shrinkage and

selection operator (LASSO) regression with fivefold cross-

validation was implemented to select the strongest features for

calculating the radiomics score (Rad-score) through a linear

combination (Supplementary Material S3). A multivariate

logistic regression model integrating the Rad-score and clinical

features was developed and visualized using a nomogram. The
tion of the myocardium was performed using ITK-SNAP. The radiomics
cted using the PyRadiomics. For feature selection, the extracted features
nd LASSO. The Rad-score of the radiation cohort was constructed from
assessed using the AUC of the ROC. To improve the interpretation of
luates the fitting excellence of column lines by calibrating curves and
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workflow for the construction and validation of the radiomics

model is shown in Figure 1.
2.5. Statistical analysis

Statistical analyses were performed using R (R Foundation for

Statistical Computing) and SPSS version 22.0. Statistical

significance was set at p < 0.05. Correlations between clinical data,

imaging histological features, and MVO were analyzed using the t-

test, chi-square test, or Mann–Whitney rank-sum test. Continuous

variables were expressed as mean ± SD or median (lower and

upper quartile), while categorical variables were reported as

frequencies and percentages. Univariate and multivariate logistic

regression analyses were conducted to identify the clinical factors

that could independently predict the MVO status. All variables

associated with MVO status at a significance level of p < 0.05 in

the univariable analysis were included in the multivariable logistic

regression analysis. Predictive performance was assessed using the

area under the curve (AUC) of the receiver operating characteristic

(ROC) curve and compared with the DeLong test. Furthermore,
TABLE 1 Participant characteristics.

Variable Training cohort (n = 121)

MVO negative (n = 72) MVO positive (n = 49)
Age (years) 52.1 ± 12.5 50.5 ± 10.4

Gender

Male 64 (88.9) 44 (89.8)

Female 8 (11.1) 5 (10.2)

Time to balloon (min) 180 (120–360) 300 (165–405)

CMR time (days) 3.8 ± 1.4 3.7 ± 1.6

Culprit vessel

LAD 46 (63.9) 33 (67.3)

RCA 20 (27.8) 12 (24.5)

LCX 6 (8.3) 4 (8.2)

Infarction size (%) 16.1 ± 1.73 28.9 ± 3.1

LVEF (%) 56 (46.5–61) 46 (38–56.5)

ESV (ml) 62 (45.3–79.8) 83 (65.5–115)

EDV (ml) 142.5 (124.8–169.3) 168 (136.5–190)

CO (L/min) 5 (4.6–5.7) 5.2 (4.3–5.7)

HR (bpm) 66.5 (59–75) 71 (63.5–79)

LVM (g) 142.6 (127.3–168.9) 155.3 (133.8–180.9)

cTNI (μg/L) 2.6 (0.13–11.7) 15.4 (6.2–37.4)

NT-ProBNP (pg/ml) 502.5 (264.5–1,177.8) 904 (297.2–1,786.2)

MPV (fl) 10.3 ± 0.9 10.5 ± 1.1

LDL (mmol/L) 2.9 (2.3–3.6) 2.6 (1.9–3.3)

TG (mmol/L) 1.5 (1.1–2.4) 1.48 (1.1–2.6)

BUN (mmol/L) 5.2 (4.1–6.4) 4.7 (3.8–5.7)

Cre (μmol/L) 83.5 (74–97.5) 81 (73.6–89.5)

Smoking

No 35 (48.6) 19 (38.8)

Yes 37 (51.4) 30 (61.2)

Alcohol consumption

Never 49 (68.1) 37 (75.5)

Current/former 23 (31.9) 12 (24.5)

Rad-score −0.60 ± 0.45 −0.12 ± 0.30

LAD, left anterior descending (coronary artery); RCA, right coronary artery; LCX, left cir

brain natriuretic peptide; MPV, mean platelet volume; LDL, low-density lipoprotein; TG
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various diagnostic capabilities of the prediction models were

assessed by implementing the sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). The

calibration efficiency of the nomogram was assessed by drawing

calibration curves. The decision curve analysis (DCA) was

performed to evaluate the clinical utility of the predictive models.
3. Results

3.1. Study population

The demographic characteristics of the study population are

presented in Table 1. A total of 32 patients were excluded because

of a history of PCI (n = 9), presence of other cardiomyopathies

(n = 17), and poor CMR image quality (n = 6). A total of 167

eligible patients were included in this study, consisting of 70

(41.91%) patients with MVO and 97 (58.09%) patients without

MVO after PCI (Figure 2). In the training cohort, there were

significant differences in infarction size, LVEF, ESV, EDV, heart

rate (HR), cardiac troponin I (cTNI), and Rad-score between
P-
value

Validation cohort (n = 46) P-
value

MVO negative (n = 25) MVO positive (n = 21)
0.476 52.9 ± 11.4 54.4 ± 9.4 0.641

1 0.09

20 (80) 21 (100)

5 (20) NA

0.119 180 (135–300) 240 (165–390) 0.534

0.623 3.4 ± 1.7 3.9 ± 1.5 0.262

0.762 0.09

19 (76) 11 (52.4)

5 (20) 7 (33.3)

1 (4) 3 (14.3)

<0.001 16.1 ± 2.4 27.9 ± 2.7 <0.001

<0.001 56 (45.5–62) 48 (37.5–54) 0.15

0.019 68 (51–103.5) 88 (63.5–135.5) 0.193

0.0031 155 (124.5–182) 173 (131–238) 0.183

0.859 4.7 (4.5–6.4) 5.1 (4.7–6.2) 0.514

0.043 65 (55.5–72.5) 66 (61–80) 0.119

0.805 153.3 (127.7–172.6) 166 (137.2–189.2) 0.033

<0.001 3.7 (0.6–8.9) 13.2 (3.5–32.7) 0.043

0.211 666 (286.5–1,559) 925 (187–1,738) 0.421

0.192 10.4 ± 0.8 10.5 ± 0.9 0.49

0.125 2.5 (1.8–3.8) 2.6 (1.9–3.4) 0.614

0.614 1.8 (0.9–1.9) 1.3 (1.1–1.7) 0.967

0.755 4.9 (4.1–7.3) 5.4 (3.8–7.1) 0.855

0.228 84 (68–95) 79.9 (70.4, 102.5) 0.372

0.378 1

7 (28.0) 6 (28.6)

18 (72.0) 15 (71.4)

0.494 0.046

21 (84.0) 11 (52.4)

4 (16.0) 10 (47.6)

<0.001 −1.59 ± 0.67 −0.92 ± 0.43 <0.001

cumflex; CO, cardiac output; cTnI, cardiac troponin I; NT-ProBNP, N-terminal pro-

, triglyceride; BUN, blood urea nitrogen; Cre, creatinine.
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FIGURE 2

Flowchart of inclusion and exclusion criteria. A total of 167 patients were enrolled in this study and randomly divided into a training (n= 121) and validation
cohort (n= 46) at a ratio of 7:3.
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MVO-negative and MVO-positive patients. In the validation cohort,

infarction size, left ventricular mass (LVM), cTNI, alcohol

consumption, and Rad-score were significantly different between

the MVO-negative and MVO-positive patients (p < 0.05). In

addition, the Rad-score for patients with myocardial infarction

with MVO was higher than that in patients without MVO.
3.2. Rad-score and the integrated model
construction

In total, 559 radiomics features with ICCs > 0.80 were

introduced into LASSO regression. Among them, 12 strongly
TABLE 2 Twelve statistically significant radiomics features selected by
analysis.

Radiomics features λ coefficient
original_glszm_SmallAreaLowGrayLevelEmphasis −0.64
wavelet-LLH_ngtdm_Strength −1.05
wavelet-LHH_glcm_SumSquares 0.15

wavelet-LHH_glszm_SizeZoneNonUniformity 0.50

wavelet-HLL_gldm_DependenceVariance 0.06

wavelet-HLH_glszm_SizeZoneNonUniformity 0.65

wavelet-HLH_glszm_SmallAreaHighGrayLevelEmphasis 0.44

wavelet-HHL_firstorder_RootMeanSquared 0.37

wavelet-HHH_firstorder_Mean 0.68

wavelet-HHH_glszm_SizeZoneNonUniformity 0.45

wavelet-LLL_gldm_LowGrayLevelEmphasis −0.27
wavelet-LLL_gldm_SmallDependenceLowGrayLevelEmphasis −0.52

LLH, LHH, HLL, HLH, HHL, HHH, and LLL, wherein L and H are low-pass (i.e.,

scaling) and high-pass (i.e., wavelet) functions, respectively; glszm, gray-level

size zone matrix; glcm, gray-level co-occurrence matrix; gldm, gray-level

dependence matrix; ngtdm, neighborhood gray-tone difference matrix.
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correlated with MVO and were selected to calculate the Rad-

score (Table 2) (Supplementary Methods S4). The AUCs of the

Rad-score for MVO were 0.82 [95% confidence interval (CI):

0.74–0.89] and 0.78 (95% CI: 0.65–0.92) in training and

validation cohorts, respectively, and the difference was not

statistically significant. The multivariate logistic regression

revealed that cTNI [odds ratio (OR) 1.04, 95% CI: 1.01–1.08]

and Rad-score (OR 31.29, 95% CI: 7.58–173.52) were

independent risk factors for MVO in patients with STEMI after

PCI (Table 3). The final nomogram model was obtained by

integrating the clinical signatures with the Rad-score (Figure 3).

The nomogram obtained predictive performance for MVO with

AUCs of 0.86 (95% CI: 0.79–0.92) and 0.78 (95% CI: 0.65–0.91)

in the training cohort and validation cohort, respectively

(Figure 4). The sensitivity and specificity in the validation cohort

were 0.86 and 0.7, respectively (Table 4). The DeLong test

demonstrated that the model did not exhibit significant

differences between the training and validation cohorts (p =

0.32), suggesting that it possesses a high capacity for

generalization. The calibration curves for the nomogram

demonstrated good agreement regarding the presence of MVO

between the risk estimation by the nomogram and the

confirmation of LGE in the training (Figure 5A) and validation

(Figure 5B) cohorts. The result of DCA shows that using the

nomogram for MVO prediction has more benefits than two

extreme conditions [the predict-all-patient scheme (gray curve)

and the predict-none scheme (horizontal black line)]. A larger

area under the decision curve suggested a better clinical utility.

The combined model achieved a high net benefit at most

probability thresholds, indicating that the MVO prediction model

could facilitate decision-making in clinical settings (Figure 5C).

Representative cases are shown in Figure 6.
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TABLE 3 The univariate and multivariate logistic regression of MVO status
based on clinical characteristics and Rad-score in the training set.

Univariate logistic
regression

Multivariate logistic
regression

Variables OR
value

95% CI P-
value

OR
value

95% CI P-
value

LVEF 0.94 0.83–1.06 0.33

ESV 1.00 0.95–1.03 0.97

EDV 0.99 0.95–1.04 0.53

CO 1.50 0.54–4.15 0.42

HR 1.01 0.94–1.09 0.77

LVM 1.00 0.98–1.01 0.58

NT-ProBNP 1.00 0.99–1.00 0.90

cTNI 1.04 1.01–1.08 0.02 1.04 1.01–1.08 0.005

MPV 1.18 0.65–2.17 0.59

LDL 0.64 0.37–1.61 0.09

TG 1.09 0.78–1.61 0.63

BUN 1.04 0.71–1.55 0.84

Cre 0.99 0.95–1.01 0.68

Gender 0.57 0.054–4.52 0.62

Age 1.02 0.98–1.08 0.36

Drink 0.58 0.15–1.98 0.40

Smoke 1.05 0.35–1.82 0.91

Heartache time 1.01 0.98–1.04 0.34

Rad-score 46.04 7.42–449.5 <0.001 31.29 7.58–173.52 <0.001

Liu et al. 10.3389/fcvm.2023.1274267
4. Discussion

In this study, we investigated the capability of non-

contrast cine CMR in MVO diagnosis using radiomics

analysis and machine learning algorithms. To the best of

our knowledge, this is the first study to extract radiomics
FIGURE 3

Nomogram based on the combined model of cTNI and Rad-score. The probab
according to the “points” at the top of the nomogram. After calculating the tot
probability of MVO is at the bottom of the radiomics nomogram.
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features from cine CMR images to predict MVO in patients

with STEMI after PCI. The present study demonstrated that

a nomogram integrating non-contrast cine CMR-based

radiomics signature and cTNI could achieve high predictive

accuracy for MVO in the training and validation cohort,

which could provide a gadolinium-free CMR potential

approach for risk stratification after reperfusion in patients

with STEMI. The optimal cutoff value of the total

nomogram score of 28.50, derived from the training cohort,

obtained sensitivity, specificity, NPV, and PPV of 0.86, 0.70,

0.85, and 0.70 in the validation cohort, respectively.

Given that up to 40% of STEMI patients develop CMD

despite prompt recanalization of the culprit epicardial

coronary artery and CMD is associated with long-term adverse

outcomes, early risk stratification becomes imperative for

effective patient management. Although CMD can be assessed

using invasive modalities, an increasing number of studies

have shown that CMR findings such as MVO or

intramyocardial hemorrhage (IMH) could achieve similar

predictive performance for adverse outcomes in patients with

STEMI after PCI (6). As the diagnosis of MVO requires an

intravenous gadolinium-based contrast agent and delayed

scanning, it can be time-consuming and has some limitations

in patient selection due to the side effects of the contrast

agent. Therefore, there is a need for gadolinium-free CMR

protocols. Most studies have highlighted T2 star imaging of

IMH as a surrogate imaging marker for MVO. They found

that IMH was more closely associated with adverse outcomes

than MVO (22). As T2 star imaging is not widely available in

clinical settings, some studies have focused on other non-

contrast CMR images. Bustin et al. (23) utilized a T2-prepared
ility of each predictor (cTNI, Rad-score) can be converted into a risk score
al points by adding up these predictors, the corresponding prediction risk
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FIGURE 4

The ROC curves of the radiomics nomogram in the training and validation cohorts, along with their corresponding 95% confidence intervals.
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bSSFP sequence to obtain 3D-T2 mapping of the myocardium,

revealing a notable correlation between areas exhibiting

increased T2 values in patients with myocarditis and the

presence of LGE. Our previous study showed that radiomics

features derived from cine CMR images were associated with

MVO (24). Based on the results of this study, we attempted to

establish and validate a nomogram model for predicting MVO

in patients with STEMI. Cine CMR imaging, conducted using

a bSSFP or true FISP sequence, harbors both T2 and T2 star

components. Therefore, it has the potential to mirror

prolonged T2 relaxation due to edema in myocardial

infarction and reflect susceptibility to IMH. Unfortunately, the

T2 star components of the bSSFP might be subtle and

challenging for human visual interpretation. Radiomics, on the

other hand, can capture the features induced by IMH through

a comprehensive set of quantitative features.

In this study, the analysis of radiomics features extracted from

non-contrast cine CMR revealed that 12 features had a strong

correlation with MVO. The Rad-score, derived from these 12
TABLE 4 ROC analysis of the integrated models.

Performance indicators Nomogram model

Training cohort Validation cohort
AUC (95% CI) 0.86 (0.79–0.92) 0.78 (0.65–0.91)

Sensitivity 0.78 0.86

Specificity 0.79 0.7

NPV 0.84 0.85

PPV 0.72 0.7
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features, exhibited significant differences between all patients who

were diagnosed with myocardial infarction, with or without

concurrent MVO, underscoring the ability of non-contrast cine

CMR-based radiomics to reveal features that may not be

apparent to the naked eye. This study represents the first effort

to predict MVO in patients with STEMI after PCI using a non-

contrast cine CMR-based radiomics nomogram. Several previous

studies have demonstrated the value of cine CMR imaging in

predicting the diagnosis of CVDs based on histological features.

For instance, Avard et al. (25) reported that radiomics analysis of

non-contrast cine CMR images achieved high accuracy in

detecting myocardial infarction, offering a potential alternative

diagnostic approach to LGE-CMR. Zhang et al. (26) developed a

deep learning framework based on non-contrast cine CMR that

could detect the presence, location, transmurality, and size of

chronic myocardial infarction without relying on additional LGE

images, demonstrating the diagnostic capabilities of routinely

acquired non-contrast cine CMR images for chronic myocardial

infarction diagnosis. Gräni et al. (27) included 48 STEMI

patients who underwent CMR after PCI. Their study showed that

segmental strain in patients with STEMI had a good diagnostic

performance in identifying MVO+ and excellent diagnostic

performance for LGE+ segments. It illustrated that segmental

strain could serve as a potential contrast-free surrogate marker to

enhance early risk stratification in patients after primary PCI.

Recently, texture analysis (TA) has been explored for detecting

subacute and chronic myocardial infarction using non-contrast

cine CMR. Larroza et al. (28) found that TA based on cine CMR

and LGE-CMR images could be used to differentiate AMI from

chronic myocardial infarction with good diagnostic efficacy.
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FIGURE 5

Evaluation of calibration and clinical utility of a radiomics nomogram in the training (A) and validation (B) cohorts. The calibration curves of the radiomics
nomogram in the two cohorts are close to the ideal line, indicating good agreement on the presence of MVO between the risk estimation by the
nomogram and confirmation of LGE. The DCA curves of the radiomics nomogram in the training cohort (green line) and validation cohort (red line)
(C). The x-axis means the threshold probability, and the y-axis shows the model benefit. The higher curve at any given threshold probability is the
optimal prediction to maximize net benefit. The combined model achieved a great net benefit at most probability thresholds in the training and
validation cohorts.
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Baessler et al. (15) employed TA to assess and discriminate between

acute and chronic myocardial infarction tissues. Their objective was

to showcase the diagnostic capabilities of non-contrast cine CMR

images in myocardial infarction diagnosis. From the initially

extracted 286 features using the random forest algorithm, five

relevant features were identified and selected. Using logistic

regression, they achieved an AUC of 0.93 for cine CMR,

highlighting its strong efficacy in discriminating myocardial

infarction tissues. Similarly, Schofield et al. (29) used cine CMR

to differentiate the etiologies of LV hypertrophy (LVH) in

multiple patients, aiming to reduce the reliance on gadolinium

injection in CVDs. Their research suggested that the radiomics

features extracted from bSSFP CMR datasets using TA held

promise for distinguishing the etiologies of LVH. In this study,

we aimed to develop and validate a cine CMR-based radiomics

nomogram model, exploring the potential of radiomics. The

utilization of non-contrast cine CMR radiomics could potentially

reduce the need for gadolinium injection while enhancing the

accuracy of MVO detection from CMR images. The combined
Frontiers in Cardiovascular Medicine 08
model we developed demonstrated high predictive efficacy for

MVO.

This study has some limitations. First, the retrospective study

was conducted at a single center, resulting in a small sample size

and images collected solely from one center. Consequently, the

generalizability and stability of the findings may be limited. Future

studies with larger sample sizes and multicenter designs are

required to assess the efficacy of our constructed model and

improve the robustness of the model. Second, our segmentation

relied solely on one cardiac cycle (end diastole) and was manually

segmented by cardiologists, which is a time-consuming and labor-

intensive approach. With the gradual improvement in automatic

cardiac segmentation techniques, we will attempt to reduce the

workload by implementing automatic segmentation. Finally, our

study did not utilize advanced technologies such as deep learning

methods, which are end-to-end processes that bypass the need for

segmentation, feature extraction, and data analysis. In future

endeavors, we aim to harness these advanced algorithms to bolster

the accuracy and predictive capabilities of our models.
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FIGURE 6

A 48-year-old male patient with positive MVO. The maximum section of the LGE lesion corresponds to the short-axis map of cine (yellow arrows). The
cTNI level of the patient was 15.4 μg/L, which corresponds to a point score of 7.5. The Rad-score was 0.16, resulting in a corresponding point score of
73.5. The total point score was 81, and MVO risk exceeded 0.78 (A). A 65-year-old male patient with negative MVO. The maximum section of the LGE
lesion corresponds to the short-axis map of cine (yellow arrows). The cTNI level of the patient was 9.53 μg/L, which corresponds to a point score of 4.8.
The Rad-score was −0.5, resulting in a corresponding point score of 50. So the total point score was 54.8, and the risk of MVO was less than 0.25 (B).
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5. Conclusions

In this study, we established a nomogram that can

accurately predict the occurrence of MVO after

reperfusion in patients with STEMI. This gadolinium-free

approach for detecting MVO may facilitate risk stratification

in patients with STEMI post-PCI. This represents a

significant step toward personalized medicine for

the management of patients with STEMI and has the

potential to improve patient outcomes and reduce

healthcare costs.
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