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coronary syndrome—a classic and
a machine learning approach
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Background: In acute coronary syndrome (ACS), a number of previous studies
tried to identify the risk factors that are most likely to influence the rate of
in-stent restenosis (ISR), but the contribution of these factors to ISR is not
clearly defined. Thus, the need for a better way of identifying the independent
predictors of ISR, which comes in the form of Machine Learning (ML).
Objectives: The aim of this study is to evaluate the relationship between ISR and
risk factors associated with ACS and to develop and validate a nomogram to
predict the probability of ISR through the use of ML in patients undergoing
percutaneous coronary intervention (PCI).
Methods: Consecutive patients presenting with ACS whowere successfully treated
with PCI and who had an angiographic follow-up after at least 3 months were
included in the study. ISR risk factors considered into the study were
demographic, clinical and peri-procedural angiographic lesion risk factors. We
explored four ML techniques (Random Forest (RF), support vector machines
(SVM), simple linear logistic regression (LLR) and deep neural network (DNN)) to
predict the risk of ISR. Overall, 21 features were selected as input variables for
the ML algorithms, including continuous, categorical and binary variables.
Results: The total cohort of subjects included 340 subjects, in which the incidence
of ISR observed was 17.68% (n= 87). The most performant model in terms of ISR
prediction out of the four explored was RF, with an area under the receiver
operating characteristic (ROC) curve of 0.726. Across the predictors herein
considered, only three predictors were statistically significant, precisely, the
number of affected arteries (≥2), stent generation and diameter.
Conclusion: ML models applied in patients after PCI can contribute to a better
differentiation of the future risk of ISR.

KEYWORDS

risk factors, prediction, machine learning algorithms, in-stent restenosis, acute coronary
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Introduction

Coronary artery disease (CAD), especially acute myocardial infarction (AMI), is one of

the most common causes of death worldwide despite the developments in diagnosis and

revascularization treatment (1, 2). In-stent restenosis (ISR), defined by lumen reduction

following a percutaneous coronary intervention (PCI) by more than 50% or at least 5 mm

in a stent edge (3), is determined by one of the two processes: neo-atherosclerosis,
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defined by the accumulation of lipids and macrophages within the

neointima, with or without necrotic core and calcifications, and

neointimal proliferation, caused by the proliferation and

migration of vascular smooth muscle cells into the tunica intima

layer (4). In-stent restenosis is a progressive process that might

begin early (within days) from the PCI or late (weeks to months)

and it correlates with three major underlying mechanisms: elastic

recoil, vascular remodeling and neointimal hyperplasia (5).

In-stent restenosis continues to pose a significant problem even

in the age of drug-eluted stents (DES), although compared to

bare-metal stents (BMS), DES proved to reduce restenosis and

postpone later revascularization by a total percent of 50%–70%

(3). The incidence rate of ISR in the case of DES, although lower

than BMS remains as high as 10% (6). For this reason, ISR has

been thoroughly studied throughout the years, in order to find

out the best approach to prevent and treat restenosis.

Unfortunately, the risk factors for restenosis remain

controversial, only a few of them (diabetes mellitus, stent length

and stent diameter) being consistently found to influence the rate

of coronary ISR (7–9).

In some studies, classic cardiovascular risk factors are deemed

to increase the likelihood of ISR (9, 10), but in some others this

relationship is not very clearly validated (11). Many studies

investigated the role of various cardiovascular risk factors in the

development of restenosis; diabetes mellitus was incriminated in

many researches as an independent risk factor for ISR, along

with arterial hypertension, active smoking and low-density

lipoprotein cholesterol (LDL-C) (12–14). Erkan Yıldırım et al.

(15) showed in multivariate logistic regression that ISR was

independently associated with Gensini score, stent diameter and

length, left ventricle ejection fraction, and LDL-C. In another

study concentrating on the risk of restenosis in patients with

sirolimus-eluting stent implantation, age, arterial hypertension

(HTN), diabetes mellitus (DM), LDL-C, high sensitivity

C-reactive protein (hsCRP), and target lesion on left circumflex

artery (LCX) were independent predictive factors for restenosis

(12). Other reports concentrated on the angiographic risk factors

of ISR; several studies (9, 12) as well as a meta-analysis (7)

showed that increased stent length is correlated with ISR, while

the stent diameter implication in restenosis is debatable with two

studies pinpointing increase of ISR with reduced stent diameter

(13, 15), while another study found the opposite, that ISR

correlates with increased stent diameter (9). Multi-vessel disease

or multiple stents implanted also increases the risk for ISR (14).

The location of the implanted stent is also correlated with the

risk of restenosis, left anterior descending artery (LAD) being the

most often cited as the location with the highest risk of ISR (9),

although there are many studies citing either LCX or right

coronary artery (RCA) (7, 12). Inflammatory markers such as

CRP or hsCRP also correlated with ISR (12, 14). Moreover,

single nucleotide polymorphisms such as: fibrinogen factor I

(rs1800790), monocyte differentiation antigen CD14 (rs2569190),

and nitric oxide synthase 3 (rs1799983) have been correlated

with ISR (16). Even if the precise value of these cardiovascular

risk factors is not clear due to some contradictory findings, we

have integrated some of these classic risk factors and completed
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with other parameters, related to the angiographic findings using

a new approach based on machine learning (ML) that may

produce a better differentiation of the future risk of ISR.

Recently, ML technology started to be used in medical studies

due to its ability to quickly scan through large databases, find

patterns that would have been otherwise hard to detect through

other means, and use these patterns in order to accurately

predict outcomes when given new sets of similar data (17). Thus,

it becomes clear that ML has an increasing potential not only in

the world of medical studies, but also in clinical practice. To the

best of our knowledge, there is only one study that used ML in

order to predict the probability of ISR occurrence by Jesús

Sampedro-Gómez et al. (18).

In the present study, we used ML to build a prediction model

which uses demographic, clinical and angiographic data in order to

predict the appearance of ISR and the necessity of target lesion

revascularization.
Materials and methods

Patients with ACS who underwent PCI at Clinical Emergency

Hospital, Bucharest, followed by a second coronary angiography,

that occurred in the context of a new ACS, both between 2011

and 2019, were enrolled in this retrospective case-control study.

We excluded patients whose data about the main outcome, ISR,

could not be found. For the prediction of ISR we collected the

following type of data: demographic: age and gender;

cardiovascular risk factors: active smoking, smoke quitting

compliance, dyslipidemia, HTN, DM; angiographic: extent of

coronary artery disease (number of major coronary arteries with at

least 70% stenosis, respectively 50% stenosis for lesions in the left

main), location, length, diameter and type of stent, stent inflation

pressure, the need for pre-dilation and/or post-dilation, presence

of artery calcification and culprit lesion—whether the stented

lesion was the one that cause the acute coronary syndrome(ACS)

or not; other data: time passed between the PCI and the second

angiography, whether the ACS was AMI or unstable angina,

previous PCI or coronary artery by-pass graft (CABG). All the

angiographic measurements were done by Quantitative Coronary

Angiography in the core laboratory formed by interventional

cardiologists with at least ten years of experience. The primary

outcome evaluated was coronary in-stent restenosis, defined as a

50% or higher stenosis diameter in a coronary segment in which a

stent had been previously implanted. The secondary outcome was

the necessity of revascularization of the target lesion, defined as

indication of PCI in a coronary segment with ISR. Addressing ISR

severity, Mehran classification dividing ISR into four patterns was

considered (19).

All analyses were completed using the statistical software

program SPSS version 23. Data were presented as mean ± SD for

continuous variables and as number and percentage for

categorical counterparts. Differences between groups if normally

distributed were compared with Student’s t-test or chi-square,

while for non-parametric variables Mann–Whitney U-test was
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assessed. P-values were two-tailed with a cut-off of less than 0.05

considered statistically significant.

We herein explored various ML techniques to predict the risk

of ISR development within a certain timeframe, based on

demographic, clinical parameters and risk factors. Overall, 21

features were selected as input variables for the ML algorithms,

including continuous, categorical and binary variables. Therefore,

in the preprocessing phase continuous features were rescaled to

[0,1] and the categorical features have been one hot encoded.

Experiment setup—given the relatively small number of

available samples, the trained models may lack generalizability,

and a regular performance evaluation on a held-out test set might

not be representative. Therefore, as depicted in Figure 1 we

propose a strategy to assess the performance of various ML

algorithms as a function of the amount of data available for training.

First, for each experiment a random train-test split was

performed designating 20% of the available samples as an

evaluation set. Next, from the remaining 80% of the data

allocated to the training set, we randomly select 25%, 50%, 75%

and 100% of the samples to train a Random Forest (RF) model

(20), a support vector machines (SVM) model (21), a simple

linear logistic regression (LLR) and a deep neural network

(DNN). To reduce potential biases stemming from the data, we

repeated each experiment 100 times with different random splits

and store the area under the receiver operating characteristic

curve (AUC) for the binary classification problem. This allowed

us to assess the performance of the ML algorithms more

accurately, by computing the mean of the AUC scores obtained

across the experiments, as well as to assess the performance

trend with respect to the number of training examples.

Four different types of ML algorithms—as displayed in

Figure 1 - were trained to predict ISR. Deep neural networks
FIGURE 1

Schematic overview of the proposed analysis. The outer loop sets the fraction
and a testing set.
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exhibit the greatest potential in modelling non-linear patterns in

the data that could lead to a performant classifier. However,

when provided with insufficient number of training samples they

become difficult to train due to overfitting effects. Therefore, to

assess the true modelling potential we concurrently employed 3

established machine learning algorithms that can be optimized

on relatively fewer data-points as compared to DNNs.[PA

(DERIAD11] The RF, SVM and LLR algorithms have been

trained using the scikit-learn library (22) available in the Python

programming language, using the default parameters.

The deep learning model has a fully connected architecture

with three hidden layers of 64, 64 and 32 neurons respectively,

where non-linearities are provided by hyperbolic tangent

activation functions. The output layer is composed of only one

neuron with a sigmoid activation, hence the model will output

the probability for the input pertaining to the positive class.

Given the reduced number of training examples, we regularized

the model by a drop-out layer placed between the last hidden

and the output, randomly removing 15% of the connections, thus

forcing the model to perform predictions more objectively.

For the DNN model the fraction of data used for training was

further randomly split into a train set (80% of the samples) and a

validation set. The training was enabled by the Adam optimizer

with an initial learning rate of 10−4, minimizing a binary cross-

entropy cost function for 200 epochs, with a batch size of 64.

Given the reduced number of training examples, for each

experiment we chose the best performing model with respect to

the validation loss to avoid the effect of overfitting. To count for

the severe class imbalance (only 18% positive cases) we penalize

the model more when misclassifying a positive sample, as

compared to a negative one, by setting class weights computed

using the scikit-learn library (22).
of data used and the inner loop randomly splits the dataset into a training
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Results

A number of 340 patients was admitted into the hospital for two

diagnoses, namely unstable angina (37.20%) and acute myocardial

infarction (62.80%). From this cohort, 72.76% were males with a

mean age of 59.95 ± 11.07 years old, and 27.24% were females

with a mean age of 64.93 ± 9.26 years. A total of 492 stents were

implanted in these patients, out of which 158 (32.11%) were BMS,

18 (3.66%) were first-generation DES, 125 (25.41%) second-

generation, and 132 (26.83%) third-generation DES. In-stent

restenosis was found in 87 (17.68%) of the coronary lesions, out

of which 42 (48.28%) required a second PCI with stent

implantation. The demographic, clinical, angiographic and stent

predictors for ISR considered into our study are displayed in Table 1.

Out of the stents, 17 (3.46%) were implanted on the left main

(LM) coronary artery, 187 (38. 01%) on the RCA, 184 (37.40%)

on LAD artery, 74 (15.04%) on LCX and 30 (6.10%) on other

smaller branches or by-pass grafts. The average time spent

between the two angiographies was 1.25 years. The characteristics

of the implanted stents were also evaluated in terms of length,

diameter, generation, and maximum pressure (Table 1).

Concerning the angiographic Mehran classification of ISR cases,

pattern I was found in 35% of patients, pattern II in 25%, pattern

III in 31% and IV in 9%, p = 0.72.

Taking into account all the variables introduced in the model,

the following regression equation was obtained:

In-stent restenosis probability ¼ 3:50 þ 0:000043(TtF)

� 0:0262 LSt þ 0:0112 StL � 1:163 StD þ 0:0558Pmax

� 0, 0106 A þ 0:0 Dysyes þ 0:419 Dysno þ 0:272 Dysx

þ 0:0 Syes � 10 Sno � 0:274 Diabno � 0:377AHTno

þ 0:0 Ang þ 0:872 AMI þ 1:153 No1 þ 0:0 No2

þ 0:310 No3 þ 0:0 LocRCA � 2:136 LocCA

� 0:474LocAIVA0:77 LocCT � 1:65 LocO þ 0:0 Culyes

þ 1:097 Culno þ 0:0 Gen0 þ 0:38 Gen1 � 1:877 Gen2

� 2:638Gen3 � 2:28 Genx þ 0:0 PreDyes

� 0:356 PreDno þ 0:0 PostDyes � 0:226 PostDno

þ 0:555 Cno þ 0:0SCyes þ 10 SCx � 0:088 SCno

þ 0:0 Atyes � 0:416 Atno þ 0:0F � 0:360 M (1)

Where TtF–time to follow-up

LSt–stented lesion, %

StL–stent length

StD–stent diameter

Pmax–maximum pressure

A–age

Dysyes–with dyslipidemia

Dysx–unknown dyslipidemia status

Syes–smoking

Sno–non-smoking

Diabyes–with diabetes

AHTyes–with arterial hypertension
Frontiers in Cardiovascular Medicine 04
Ang–hospitalized for unstable angina

AMI–hospitalized for acute myocardial infraction

No1–one affected artery

No2–two affected arteries

No3–three affected arteries

LocRCA–stent located in the right coronary artery

LocCA–stent located in the circumflex artery

LocAIVA–stent located in the anterior interventricular artery

LocCT–stent located in the coronary trunk

LocO–stent located in other vessels

Culyes–with culprit lesion

Culno–without culprit lesion

Gen0–stent generation 0

Gen1–stent generation 1

Gen2–stent generation 2

Gen3–stent generation 3

Genx–stent generation unkonown

PreDyes–with predilatation

PreDno–without predialtation

PostDyes–with postdilatation

PostDno–without postdilatation

Cyes–with calcification

Cno–without calcification

SCyes–with smoking compliance

SCx–smoking compliance unknown

SCno–with smoking compliance

Atyes–with atheromatosis history

Atno–without atheromatosis history

F–female

M–male

Simplifying Equation 1 by removing the terms with null

coefficient, we obtain the following relation:

In-stent restenosis probability ¼ 3:50 þ 0:000043 TtF

� 0:0262 LSt þ 0:0112 StL � 1:163 StD þ 0:0558Pmax

� 0, 0106 A þ 0:419 Dysno þ 0:272 Dysx � 10 Sno

� 0:274 Diabno � 0:377 AHTno þ 0:872 AMI

þ 1:153No1 þ 0:310 No3 � 2:136 LocCA

� 0:474 LocAIVA0:77 LocCT � 1:65 LocO þ 1:097 Culno

þ 0:38Gen1 � 1:877 Gen2 � 2:638 Gen3 � 2:28 Genx

þ 0:0 PreDyes � 0:356 PreDno � 0:226 PostDno

þ 0:555Cno þ 10 SCx � 0:088 SCno � 0:416 Atno

þ 0:0F � 0:360 M (2)

From this set of predictors only 3 predictors were statistically

significant (p < 0.05) at a confidence interval of 95%, precisely,

the number of affected arteries, stent generation and diameter.

Corroborating the information from Table 1 and Equation 2, it

can be concluded that stents from older generations increase the

risk of in-stent restenosis, while generations 2 and 3 diminish the

probability of this condition. In our study, 62.07% of in-stent

restenosis occurred in patients with BMS, whereas generations 2
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TABLE 1 The clinical, angiographic, and stent predictors considered for in-stent restenosis probability.

Variables All cohort
n = 492

In-stent restenosis
n = 87

Non
In-stent restenosis

n = 405

p-value Chi-square

Age, years 61.31 ± 10.83 61.68 ± 10.23 61.23 ± 10.97 0.594 0.28

Gender, n (%)
Female 134 (27.24) 28 (32.18) 106 (26.17) 0.390 0.74

Male 358 (72.76) 59 (67.82) 299 (73.83)

Clinical predictors

Reason for admission, n (%)
UA 183 (37.20) 31 (35.63) 152 (37.53) 0.051 3.81

AMI 309 (62.80) 56 (64.37) 253 (62.47)

Dyslipidemia, n (%) 371 (75.40) 63 (72.41) 308 (76.05) 0.560 0.34

Diabetes mellitus, n (%) 151 (30.69) 20 (22.99) 131 (32.35) 0.088 2.91

Arterial hypertension, n (%) 395 (80.28) 74 (85.06) 321 (79.26) 0.220 1.51

Smoking, n (%) 169 (34.35) 27 (31.03) 142 (35.06) 0.473 0.51

Smoking compliance, n (%) 108 (21.95) 18 (20.69) 90 (22.22) 0.621 0.24

Angiographic predictors

Number of affected arteries, n (%)
1 136 (27.64) 20 (22.99) 116 (28.64) 0.032 6.86

2 205 (41.67) 23 (26.44) 182 (44.94)

3 151 (30.69) 44 (50.57) 107 (26.42)

Stent location, n (%)
RCA 187 (38.00) 42 (48.27) 145 (35.80) 0.108 7.59

LCx 74 (15.04) 8 (9.20) 66 (16.30)

LM 17 (3.46) 3 (3.45) 14 (3.46)

LAD 184 (37.40) 30 (34.48) 154 (38.02)

Others 30 (6.10) 4 (4.60) 26 (6.42)

Multiple stents, n (%) 267 (54.26) 39 (44.82) 228 (56.29) 0.172 1.67

Severity of stented lesion, n (%)
Occlusion 141 (28.66) 30 (34.38) 111 (27.41) 0.183 1.78

95–90% 251 (51.02) 37 (42.53) 214 (52.84)

80% 67 (13.62) 12 (13.79) 55 (13.58)

75–70% 22 (4.47) 5 (5.75) 17 (4.20)

<70% 11 (2.23) 3 (3.45) 8 (1.97)

Culprit lesion, n (%) 423 (85.98) 79 (90.80) 344 (84.94) 0.157 2.00

Calcification, n (%) 80 (16.26) 11 (12.64) 69 (17.04) 0.316 1.01

Stent pre-dilatation, n (%) 332 (67.48) 64 (73.56) 268 (66.17) 0.533 0.35

Stent post-dilatation, n (%) 169 (34.35) 30 (34.48) 139 (34.32) 0.712 0.14

Stent predictors

Stent length, n (%)
2 1 (0.20) 0 (0.00) 1 (0.25) 0.606 0.27

8 18 (3.66) 6 (6.90) 12 (2.96)

9 2 (0.41) 1 (1.15) 1 (0.25)

10 3 (0.61) 1 (1.15) 2 (0.49)

11 11 (2.24) 4 (4.60) 7 (1.73)

12 19 (3.86) 3 (3.45) 16 (3.95)

13 6 (1.22) 1 (1.15) 5 (1.23)

14 27 (5.49) 3 (3.45) 24 (5.93)

15 20 (4.07) 4 (4.60) 16 (3.95)

16 16 (3.25) 2 (2.30) 14 (3.46)

17 3 (0.61) 2 (2.30) 1 (0.25)

18 71 (14.43) 7 (8.05) 64 (15.80)

19 7 (1.42) 0 (0.00) 7 (1.73)

20 24 (4.88) 1 (1.15) 23 (5.68)

21 1 (0.20) 0 (0.00) 1 (0.25)

22 6 (1.22) 2 (2.30) 4 (0.99)

23 29 (5.89) 7 (8.05) 22 (5.43)

24 59 (11.99) 8 (9.20) 51 (12.59)

(Continued)
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TABLE 1 Continued

Variables All cohort
n = 492

In-stent restenosis
n = 87

Non
In-stent restenosis

n = 405

p-value Chi-square

25 5 (1.02) 2 (2.30) 3 (0.74)

26 3 (0.61) 0 (0.00) 3 (0.74)

27 4 (1.22) 1 (1.15) 3 (0.74)

28 55 (2.24) 7 (8.05) 48 (11.85)

29 3 (0.61) 0 (0.00) 3 (0.74)

30 6 (1.22) 1 (1.15) 5 (1.23)

32 11 (2.24) 5 (5.75) 6 (1.48)

33 26 (5.28) 8 (9.20) 18 (4.44)

34 2 (0.41) 1 (1.15) 1 (0.25)

36 9 (1.83) 1 (1.15) 8 (1.98)

37 2 (0.41) 0 (0.00) 2 (0.49)

38 29 (5.89) 6 (6.90) 23 (5.68)

40 1 (0.20) 1 (1.15) 0 (0.00)

48 13 (2.64) 3 (3.45) 10 (2.47)

Stent diameter, n (%)
2 3 (0.61) 1 (1.15) 2 (0.49) 0.014 6.03

2.25 13 (2.64) 2 (2.30) 11 (2.72)

2.5 60 (12.20) 8 (9.20) 52 (12.84)

2.7 1 (0.20) 0 (0.00) 1 (0.25)

2.75 79 (16.06) 14 (16.09) 65 (16.05)

3 152 (30.89) 30 (34.48) 122 (30.12)

3.5 139 (28.25) 27 (31.03) 112 (27.65)

4 36 (7.32) 4 (4.60) 32 (7.90)

4.5 6 (1.22) 0 (0.00) 6 (1.48)

5 2 (0.41) 1 (1.15) 1 (0.25)

5.5 1 (0.20) 0 (0.00) 1 (0.25)

Stent generation, n (%)
BMS 158 (32.11) 54 (62.07) 104 (25.68) <0.001 27.42

DES 1 18 (3.66) 4 (4.60) 14 (3.46)

DES 2 125 (25.41) 12 (13.79) 113 (27.90)

DES 3 132 (26.83) 11 (12.64) 121 (29.88)

Maximum pressure, n (%)
8 3 (0.61) 0 (0.00) 3 (0.74) 0.470 0.52

10 9 (1.83) 0 (0.00) 9 (2.22)

11 1 (0.20) 0 (0.00) 1 (0.25)

12 41 (8.33) 3 (3.45) 38 (9.38)

13 5 (1.02) 0 (0.00) 5 (1.23)

14 75 (15.24) 13 (14.94) 62 (15.31)

15 11 (2.24) 2 (0.41) 9 (2.22)

16 86 (17.48) 17 (4.20) 69 (79.31)

17 1 (0.20) 0 (0.00) 1 (0.25)

18 72 (14.63) 17 (4.20) 55 (13.58)

20 18 (3.66) 4 (4.60) 14 (3.46)

22 4 (0.81) 0 (0.00) 4 (0.99)

24 2 (0.41) 0 (0.00) 2 (0.49)

28 1 (0.20) 0 (0.00) 1 (0.25)

AMI, acute myocardial infarction; BMS, bare metallic stents; DES, drug-eluting stents; LAD, left anterior descending artery; LCX, left circumflex; LM, left main coronary

artery; UA, unstable angina.
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and 3 generated 13.79%, and respectively, 12.64% of the restenosis

cases. Furthermore, reduced diameter of the stent, precisely less

than 3.5 mm related with the risk of ISR.

Concerning the ML results, as described in the subsection

Experiment setup we aimed to assess the effect of increasing the

number of training samples on the model performance. Figure 2

shows the mean AUCs for each experiment.
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All algorithms have shown a statistically significant (p-value <

0.05) improvement in AUC when increasing the data fraction from

25% to 100%, but none of them has reached a statistically

significant improvement when increasing the fraction of data

from 75% to 100%.

As depicted in Table 2, when using the entire training set to

train the models, in terms of AUC scores, the best performing
frontiersin.org
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FIGURE 2

Machine learning performance as a function of the dataset size. y-axis shows the ROC-AUC while the x-axis shows the fraction of data used for training a
DNN (blue), a LLR (orange), a SVM (green) and a RF (red) prediction model.

TABLE 2 Machine learning experiment area under the curve (AUC) score
results.

Fraction of data used for training DNN SVM LLR RF
25% 0.629 0.573 0.659 0.678

50% 0.647 0.636 0.675 0.712

75% 0.687 0.660 0.698 0.726

100% 0.695 0.660 0.694 0.721

DNN, deep neural network; LLR, linear logistic regression; RF, forest; SVM, support

vector machines.
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algorithm is the random forest, achieving a mean AUC of 0.721

[95% CI (0.709–0.733)]. In terms of the algorithm performance

trend, although not statistically significant (p-value = 0.47), the

DNN is the only one that seems to maintain an ascending

trendline when increasing the fraction of data used for

optimization from 75% to 100%, while all other algorithms seem

to saturate. When assessing the impact of increasing the fraction

used for training from 50% to 100%, random forest algorithm

still shows no statistically significant improvement (p-value =

0.32) while the DNN does (p-value = 3.87 × 10−5).
Discussions

The implementation of specific recommendations in a

personalized approach is a desirable goal for any disease.

Machine learning algorithms aiming to predict high vs. low risk

subjects for ISR could avoid unnecessary follow-ups and

consequently costs.

The primary aim of the study was to investigate the risk factors

for in-stent restenosis considering multiple clinical and
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angiographic variables from both a classic statistical perspective,

but also from a ML approach.

The statistical analysis pinpointed three elements increasing the

risk for ISR: stent generation and diameter, as well as the number

of affected arteries, subjects with multiple coronary lesions being at

a higher risk. Similarly to findings from literature (23), the majority

of ISR cases were registered in subjects with BMS, compared with

second and third generation of DES. Moreover, ISR was more

frequently in small diameter stents and in multi-vessel coronary

disease patients; 94.25% of the total individuals with ISR had

stents with diameters between 2 and 3.5 mm in agreement with

the other reports (9). Compared with previous studies that

revealed a relation between ISR and other risk factors, such as

smoking, DM, HTN, dyslipidemia, impaired renal function, etc.,

this was not identified in our cohort (24). Referring to the

angiographic morphologic classification of ISR, 60% of our cases

were Mehran pattern I or II. Besides the Mehran classification

applied in the present study that has some inconvenient as it was

designed in the BMS area, there are other methods of ISR

classification, such as the use of intracoronary imaging, such as

intravascular ultrasound (IVUS) or optical coherence tomography

(OCT), Waksman classification (25), that allows the

determination of the underlying mechanisms involved in the

development of ISR, for guidance and optimization of the results.

Unfortunately, in the current study only a minority of patients

(around 20%) beneficiated of intracoronary imaging, reason for

which this predictor could not be included in our model.

Starting from the same cohort we have built four ML

algorithms to predict ISR, from which RF showed the best areas

under the curve with increasing fraction of data used for

training, but even if DNN seem to perform worse on small
frontiersin.org
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datasets as compared to simpler ML algorithms such as LLR or

RF, it has greater potential in achieving a better performance

when the number of samples available for training increases.

Compared with the only study that utilized ML to predict

restenosis (18), our models have external validation at least for

the subjects that presented with another ACS and the RF

algorithm from the present research displayed better AUCs

compared with GRACIA-3, EVENT or PRESTO studies. It is to

emphasize that ML models work properly when extensive

balanced data are provided. Nevertheless our models included

small, unbalanced data sets that reflect better the daily clinical

scenarios, but impacting the generality of the model.

Furthermore it is also important to compare ML algorithms

with conventional methods of ISR risk assessment, such as

coronary angiography or intracoronary imaging (optical

coherence tomography-OCT and intravascular ultrasound-

IVUS). Proper stent expansion is a well-known factor for

preventing ISR and several studies showed that smaller minimal

stent area at IVUS are relative good predictor for ISR (26)

(AUC varying around 0.8 depending on the coronary artery

location) mainly in left main stenting, but less studied for other

locations, reason for which it is a 2a recommendation only for

left main and complex coronary artery stenting in the 2021

American Heart Association/American College of Cardiology,

and Society of Cardiovascular Angiography and Interventions

(AHA/ACC/SCAI) Guideline for Coronary Artery

Revascularization. Even if intracoronary imaging has many

advantages in predicting ISR its use is recommended for

optimizing stenting mainly in the left main and its wide

application restricted due to increased costs. The proposed ML

model combining of clinical and angiographic characteristics

offers clinicians a tool for early identification of high-risk

patients for ISR allowing clinicians to early detect risk factors.
Limitations

Firstly, our study is limited by its retrospective, single-center

design. The indication for repeating the coronary angiography

was based on new ischemic events, therefore the patients

included could represent a selected high-risk group questioning

the validation of our cohort. Secondly, there are other predictors,

such as intravascular imaging, biomarkers, genetic elements that

were not included into our model. Thirdly, there are patients

with asymptomatic ISR that have not been included into our

study, bias inducing an underestimation of the accuracy of the

displayed model.
Conclusions

Using routine clinical and angiographic data in a retrospective

analysis we have built 4 machine learning models to predict the risk

factors of ISR with good prediction scores for RF model that could

help clinicians in deciding coronary stenting.
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