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Introduction: Patients from developing countries who require heart valve surgery
are younger and have less access to open heart surgery than those from
developed countries. Transcatheter heart valves (THVs) may be an alternative
but are currently unsuitable for young patients because of their inadequate
durability. We developed and tested a THV utilizing two new types of
decellularized bovine pericardial leaflets in an ovine model.
Methods: The two decellularized tissues [one with a very low dose (0.05%) of
monomeric glutaraldehyde (GA) fixation and detoxification (DF) and the other
without glutaraldehyde (DE)] were compared to an industry standard [Glycar—
fixed with the standard dose (0.625%) of glutaraldehyde]. THVs were
manufactured with the three tissue types and implanted in the pulmonary
position of nine juvenile sheep for 180 days. Baseline and post-explantation
evaluations were performed to determine the hemodynamic performance
of the valves and their dynamic strength, structure, biological interaction,
and calcification.
Results: Heart failure occurred in one animal due to incompetence of its Glycar
valve, and the animal was euthanized at 158 days. The gradients over the Glycar
valves were higher at the explant than at the implant, but the DE and DF valves
maintained normal hemodynamic performance throughout the study. The DF
and DE tissues performed well during the mechanical testing of explanted
leaflets. Glycar tissue developed thick pannus and calcification. Compared to
Glycar, the DF tissue exhibited reduced pannus overgrowth and calcification and
the DE tissue exhibited no pannus formation and calcification. All tissues were
endothelialized adequately. There was a striking absence of host ingrowth in the
DE tissue leaflets, yet these leaflets maintained integrity and mechanical function.
Conclusion: In the juvenile sheep THV model, Glycar tissue developed significant
pannus, calcification, and hemodynamic deterioration. Using a very low dose of
monomeric GA to fix the decellularized bovine pericardium yielded less pannus
formation, less calcification, and better hemodynamic function. We postulate
that the limited pannus formation in the DF group results from GA. Bovine
pericardium decellularized with our proprietary method resulted in inert tissue,
which is a unique finding. These results justify further development and
evaluation of the two decellularized tissue types in THVs for use in
younger patients.
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Introduction

Transcatheter aortic valve implants (TAVIs) have

revolutionized the management of elderly patients with severe

aortic stenosis (AS) and have now surpassed surgical aortic valve

replacement (SAVR) as the preferred treatment modality in First

World countries (1). They provide a less invasive and more

durable alternative for patients who may well otherwise have

struggled to cope with the trauma of SAVR. TAVI, as an

alternative procedure to SAVR, has proven to be safe and

efficient for the whole risk spectrum of patients, including

patients deemed to be inoperable (2), high risk (3, 4),

intermediate risk (5, 6), or even low risk (7, 8). All TAVIs and

other transcatheter heart valves (THVs) are biological valves of

either porcine or bovine origin. These materials have been shown

to deteriorate and calcify in younger patients in large surgical

series (9–11). Hence, a crucial caveat in all these randomized

TAVI trials was that the participants were elderly, with mean age

ranging from 74 to 83 years. In view of this, the European

Society of Cardiology (ESC) guidelines recommend that TAVIs

be reserved for patients ≥75 years or with high surgical risk and

mechanical valves should be used in patients younger than

60 years when SAVR is performed (12). In the United States,

only 18% of SAVR procedures and 30% of mitral valve

replacements utilize mechanical valves, as the mean age of

surgical valve recipients is 67 years (13, 14). This is in stark

contrast to studies from Africa, where the average age of heart

valve surgery candidates was 19 years in Ethiopia (15) and

Uganda (16), 26 years in the Côte d’Ivoire (17), 27 years in

Nigeria (18), and 42 years in South Africa (19). In these age

groups, the recommendation is that all patients receive

mechanical prostheses, but the problems associated with lifelong

anticoagulation treatment are well documented (20–22). If one

adds to this the fact that rheumatic heart disease (RHD) remains

the most prevalent cause of significant heart valve disease in the

world (23) and that there is a huge unmet need for surgery for

these patients (24), there is a lot of potential for improved THVs

to address these needs (23, 24). In this context, a durable

bioprosthetic transcatheter valve with reliable and reproducible

deployment is an attractive future alternative. Although

transcatheter valve implantation in younger patients faces design,

deployment, and structural challenges, the durability of

bioprosthetic or tissue-engineered leaflet alternatives remains the

Achilles’ heel of this concept. The durability of bioprosthetic

valves in patients under 40 years is poor (25–27) and therefore

makes this type of valve inappropriate for the largest group of

potential recipients of heart valves in the world (23). Improved

durability of bioprosthetic material is therefore imperative. Since

the very first valve replacements (28, 29), the only landmark

improvement in bioprosthetic tissue fixation has been the switch

from formaldehyde to glutaraldehyde (GA) (30). However, GA

fixation has been plagued with valve deterioration and

calcification, both as a result of ongoing immune processes and

toxicity associated with the aldehydes. Various anti-calcification

techniques have been investigated (31–33), but an ideal process

for producing durable biological valves remains elusive. The
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process of biological valve deterioration is complex and includes

remnant tissue immunogenicity, inflammatory cell infiltration,

toxicity of GA fixation, mechanical damage, calcification, lack of

repair, and pannus overgrowth (34). Therefore, the development

of tissue-engineered alternatives and biological or artificial

scaffolds has become a major research focus (35).

The Robert W M Frater Cardiovascular Research Centre

(Frater Centre) at the University of the Free State (UFS) has

been involved in the development of a biological tissue scaffold

with reduced immune response from the host while maintaining

sufficient dynamic strength to survive in the harsh mechanical

stress environment to which heart valves are exposed. These

processes can be broadly divided into decellularization, fixation,

and detoxification. After evaluating the contributions of various

decellularization steps and combinations, we have developed a

unique method to decellularize bovine pericardium (BP) without

significantly altering its strength and collagen structure (36, 37).

This decellularized (DE) tissue performed well in 6-month

implants in ovine aortas and pulmonary arteries, with less

pannus formation, limited calcification, and adequate strength

(38). Despite these results, it is not known whether the DE tissue

would be strong enough to function in a high mechanical stress

environment such as a THV. Therefore, additional cross-linking

with GA may be required, and we have developed an additional

decellularized, fixed, and detoxified (DF) tissue. The hypothesis is

that GA has detrimental effects on tissue and should be limited

as much as possible. This tissue was therefore fixed with a very

low dose of GA, which was combined with a proprietary amino

acid detoxification process, which in turn indicated no toxicity,

excellent cross-linking, resistance to calcification, and porosity,

allowing host cell recellularization in a subcutaneous rat model

(39). To improve cross-linking, we utilized monomeric GA,

which has been shown to produce less calcification (40).

We have developed a balloon expandable THV designed to be

manufactured with bovine pericardial leaflets (41–45). This THV

provided the platform on which we tested the different

pericardial leaflets.

This study aimed to test DE, DF, and an industry standard

bovine pericardium (Glycar, Glycar Pty Ltd, Irene, South Africa)

in THVs implanted in the right ventricular outflow tract (RVOT)

of juvenile sheep for 180 days. We compared the hemodynamic

performance, structural degeneration and tissue strength, host

tissue repopulation, inflammatory response, and calcification.
Materials and methods

Study design

The study was conducted as a prospective analytical cohort

experimental study. Baseline and post-explantation tissue data

were documented and compared between groups. Three THVs

per group were constructed from bovine pericardium: either

decellularized (DE) according to our proprietary method (n = 3)

(37, 38) or decellularized, fixed, and detoxified (DF) (n = 3) or an

industry standard (Glycar) (n = 3). The valves were then
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implanted as interposition grafts in the main pulmonary artery

(MPA) of juvenile Merino sheep (n = 3 per group) for 180 days.

Echocardiography was performed at implantation and after 3 and

6 months to monitor valve function. Valve leaflet tissue at the

explant was evaluated macroscopically and radiographically.

Dynamic strength testing was performed using tensile strength

(TS) and flexibility [Young’s modulus (YM)] analyses, and

morphological evaluation included hematoxylin and eosin (H&E)

staining, von Kossa staining, Verhoeff–Van Gieson elastic

staining (EVG), scanning electron microscopy (SEM), and

transmission electron microscopy (TEM). A schematic

representation of the study design is presented in Figure 1.

The Animal Ethics Committees of the University of the Free

State (UFS-AED2016/0008/2020/21) and the University of

Stellenbosch (SU-ACUD15-00120) approved the project.
Experimental animals

The juvenile ovine model was selected for testing the valve in

vivo because of the similarity of the animal’s anatomy and

hemodynamics to humans (46, 47) and because the model is

approved by both the FDA and CE Mark (48). The exact

definition of what constitutes a juvenile sheep is lacking, and in

line with others (49–51), we elected to use animals that were 6

months of age. This negates the excessive growth of younger

animals while still providing an accelerated calcification model

for the valves. Furthermore, they are considered the ideal valve

calcification model (52). Nine juvenile Merino sheep of 6 months

of age and weighing between 40 and 45 kg were used to achieve

a satisfactory match between valve size and pulmonary artery
FIGURE 1

Schematic representation of the study design.
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size. All animals were vaccinated, treated against ecto- and

endoparasites, and subjected to a complete blood count prior

acceptance for surgery. All animal experiments and surgical

procedures were performed in compliance with the Guide for the

Care and Use of Laboratory Animals published by the US

National Institutes of Health (53) and guided by the South

African National Standard 10386:2021 for the care and use of

animals for scientific purposes.
Tissue processing

Three groups of bovine pericardial leaflet constructs were used

in the study:

(i) Glycar bovine pericardial tissue: Using EnCap technology,

Glycar bovine pericardial tissue was selected as the industry

standard since it has an established track record in the field

(54, 55). Furthermore, we have used Glycar as a comparator

in our previous work (37, 38) and deemed it the most suitable

tissue available for use as a control. This tissue was GA-

tanned (0.625%), formaldehyde (4%)-sterilized, detoxified with

propylene glycol (100%), and stored in propylene oxide (2%).

(ii) Decellularized (DE) tissue: A decellularized bovine pericardial

scaffold was prepared by decellularizing fresh bovine

pericardium using a proprietary process developed by our

group. This process combines the use of osmotic shock, a

multi-detergent solution, delipidation with ethanol, and

sterilization in an antibiotic and anti-mycotic solution

according to a patented method (Patent: 16702008.0-1455,

EU, 2017) (38).
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(iii) Decellularized-fixed (DF) tissue: Bovine pericardium

decellularized as in (ii), then fixed with 0.05% monomeric

GA (Polysciences, Inc., USA), and detoxified with an amino

acid solution containing 0.1 M glycine (39).
Decellularization was evaluated by measuring the DNA content

and inspecting H&E staining to confirm acellularity. DNA was

extracted from the tissue using a Quick-DNATM Miniprep Plus

Kit (Zymo Research, USA), and the complete decellularization of

the tissue was confirmed by measuring the DNA content (ng

DNA/mg tissue) using a BioDrop spectrophotometer (Biochrom

Ltd., Cambridge, UK). After processing, the tissue was confirmed

to be culture-negative (anaerobic and aerobic bacteria, fungi, and

yeast) by a registered pathology laboratory (PathCare Veterinary

Laboratory Bloemfontein, South Africa).
Valve construction

A stainless-steel stent platform for the THV prosthesis was

developed and tested in vitro and virtually to optimize the design

and geometry of the leaflets (41–45). The valves were constructed

in an ISO 14385-compliant clean room (Next Biosciences,

Johannesburg, South Africa). A hemostatic cuff made from

braided PTFE (Bard, Tempe, AZ, USA) was sutured onto the

inside of the stent with individual self-locking sutures using

CV-7 monofilament Gore-Tex (W.L. Gore & Associates, DE,

USA). Three sets of valves were prepared for comparison using

leaflet tissue supplied by Glycar and DE and DF pericardium

scaffolds supplied by the Frater Centre. A leaflet template was

manufactured to cut three identical-sized leaflets from a single

sheet of pericardium, and the leaflets were then sutured with

CV-7 Gore-Tex sutures onto the stent frame. A 22-mm THV

valve was constructed according to the design parameters

developed by our group (Figure 2).

Swabs for microbiology testing were taken from the covered

stent and the completed valve before final storage in 2%

propylene oxide (Glycar leaflets) or an 85% glycerol/15% ethanol

solution (decellularized leaflets), as well as a tissue sample from

the pericardial tissue used for the construction of the valve leaflets.
FIGURE 2

THV. On the left is a computer design of the valve that was developed using fini
pericardial leaflets and a braided PTFE hemostatic cuff on the inside of the st
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Surgical implantation of transcatheter heart
valves

The THV prosthesis was aseptically removed from the storage

solution in the theater and rinsed in sterile 0.9% saline solution for

3–5 min. To expose the tissue to the mechanical forces of a

transcatheter implant, it was crimped onto a 23-mm Z-Med

balloon (Numed, NY, USA) using a commercially available

crimping tool. The crimped diameter was confirmed to be small

enough to fit through an 18-French sheath by inserting it into a

dedicated Perspex tube with a 6 mm inner diameter. The

crimped valve was then fully deployed with balloon inflation

within a 22-mm Jotec FlowWeave Bioseal woven polyester

vascular graft (JOTEC GmbH, Germany), secured with three

polypropylene sutures at each end to prevent migration. The

vascular graft was 3 mm longer than the THV on either side

(total length ± 24 mm) to enable suturing and was then

implanted as an RVOT conduit.

Recipient sheep were sedated (morphine sulfate 1 mg/ml, 0.2–

0.5 mg/kg IM; ketamine hydrochloride 100 mg/ml, 5–15 mg/kg

IM; Robinul 4 mg/2 ml, 0.005–0.01 mg/kg IM), anesthetized

(Propofol 10 mg/ml, 2–6 mg/kg IV, Esmeron 50 mg/5 ml,

0.5 mg/kg IV), intubated, and ventilated (Isofor 2.5%, 1%–3%

inhalation). A central venous line (CVP) was inserted in the left

jugular vein, an arterial line was placed in the left carotid artery

for hemodynamic monitoring, and the left carotid artery was

cannulated for bypass. A left thoracotomy was performed, and

the fourth rib was removed. Removal of the rib allows for a

wider field of view during surgery and better echo windows at

the follow-up. The right atrium was cannulated to achieve

cardiopulmonary bypass (CPB), allowing the surgical procedure

to be performed on a beating heart. The main pulmonary artery

was clamped and transected, native pulmonary valve leaflets were

removed, and the THV conduit was implanted as an

interposition graft using continuous 4/0 prolene sutures in the

pulmonary artery. The animal was weaned off CPB, hemostasis

was secured, and an intrathoracic sonar was performed to

confirm adequate valve functioning. The pressure gradient across

the conduit was measured through needle insertion on either

side of the conduit. A single chest drain was inserted on the left

side, and all incisions were closed. The animal was extubated
te-element analysis (41–44). Note the balloon expandable stent frame with
ent. On the right are two photographs of a manufactured valve.
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when awake and breathing on its own, and the chest drain and

monitoring lines were removed soon after. The sheep were

moved back to the indoor holding pens with companion sheep

in adjacent pens. Precisely, 5 ml of Depomycin (MSD Intervet)

as a broad-spectrum antibiotic and 0.1–0.2 mg/kg morphine

sulfate (Fresenius Medical Care, South Africa) as pain medication

were administered intramuscularly twice daily for 5 days after

surgery, and the animals were followed up and monitored daily

for 6 months until they were killed; the valves were explanted for

further analysis of the leaflet tissue. A piece of the adjacent

pulmonary artery was excised and sent for microscopy and

culture to exclude infection (negative in all cases).
Clinical performance of implanted valves

Echocardiography was performed just after implanting the

conduit, at days 30 and 90 post-surgery, and just before killing

them using a GE Vivid-Q portable sonar machine. Over the

study period, implanted valves were evaluated for transvalvular

gradients, valve regurgitation, calcification, and possible

aneurysm formation.

At the end of the study period, the animals were again

anesthetized as described above and analgesia was administered

(morphine sulfate 0.1–0.2 mg/kg); the chest was opened,

hemodynamic pressures were measured over the valve by needle

insertion, and intrathoracic echocardiography was performed.

Animals were then killed by injecting a bolus of 10 ml of 15%

hyperosmolar potassium chloride directly into the right atrium to

cause cardiac arrest and then exsanguinated, and the valves were

removed for further analyses.
Tissue analysis

Mechanical properties, tissue histology, and ultrastructure of a

representative piece of pericardium used to manufacture each valve

were analyzed (baseline analysis) and compared to results of

similar analyses on the tissue leaflets after 180 days in the sheep

(explant analysis).

Mechanical properties
Pericardial thickness was measured prior to surgical implantation

and repeated after explantation using an ElectroPhysik MiniTest

thickness gauge (Cologne, Germany). Samples were cut into 5-

mm-wide strips, three to five thickness measurements were taken

over the central section of the test strip, and then the average

was calculated.

The dynamic strength test (tensile strength and Young’s

modulus analyses) of the bovine pericardium tissue was

uniaxially performed at room temperature by an automated and

computerized TS testing apparatus (Lloyds LS100 Plus, IMP,

South Africa). Preimplantation tissue (5 cm × 5 mm) and tissue

at the explant (5 mm wide) were cut. The average thickness was

then measured, and the tissue sample was gradually stretched

between two grips until the breaking point was achieved. Force
Frontiers in Cardiovascular Medicine 05
was calculated using a 500-N load cell. The tensile strength

(MPa) and Young’s modulus (MPa) were calculated from the

stress–strain curve using Nexygen Plus 3 software (Lloyd

Instruments, IMP, Johannesburg, South Africa).

Histology
A tissue sample from each pericardial patch used for leaflet

construction was collected in 4% buffered formalin, dehydrated in

graded alcohol steps, cleared in xylene, embedded in a paraffin wax

block, sectioned, and stained according to standard protocols for

H&E, von Kossa, and Verhoeff–Van Gieson staining for

histological evaluation (56). The H&E-stained samples were

evaluated for pannus formation, which was classified into three

categories: none, non-confluent, and confluent pannus (covering

the whole segment evaluated and both sides of the leaflet).

Pericardial tissue samples for electron microscopy evaluation

were collected in 3% buffered GA and processed according to

standard protocols for SEM and TEM evaluations (57).
Statistical analysis

Due to the limited sample size, non-parametric analysis was

used. Statistical analyses were performed using GraphPad Prism

version 9.3.1. Continuous values were subjected to a Kruskal–

Wallis (KW) multiple comparison analysis with Dunn’s post-hoc

test to compare individual groups. For two group comparisons,

the Mann–Whitney U-test was used to measure differences

between independent groups, and the Wilcoxon singed-rank test

was used to measure differences between dependent groups.
Results

Adequate decellularization was confirmed for both DE and DF

tissues prior to implantation (Figure 3).

Valves were successfully implanted into 10 animals. One

animal developed acute respiratory decompensation immediately

post-operatively and was sacrificed. The other nine animals

(three per tissue type) survived the procedure. All animals

survived for 180 days except for one sheep with the Glycar valve,

which developed heart failure and was euthanized at 158 days.

The heart failure was due to a calcified prosthetic pulmonary

valve with one of its leaflets overgrown by pannus and fixed in

the open position (Figure 4). Endocarditis was excluded with

blood cultures, c-reactive protein (CRP), and histology of this

valve. The other valves were found to function adequately and

competently, as observed by echocardiography (Supplementary

Video S1). Obtaining accurate transvalvular gradients on

echocardiography proved unreliable, and this parameter was

obtained with direct invasive measurement prior to euthanasia.

As can be observed in Figure 5, the gradients remained

unchanged from implantation to explantation except for the

Glycar valves, where the gradient increased numerically from a

mean of 12 to 37 mmHg, although this was not statistically

significant.
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FIGURE 3

Confirmation of decellularization of bovine pericardium. (A) Representative light microscope images for H&E-stained tissue, indicating the presence of
cells in the native BP and the complete removal of cells following decellularization (magnification 100×, scale 200 µM). (B) DNA content of the native and
decellularized bovine pericardium (n= 6). * p < 0.05. The DNA content was well below the required 50 ng/mg tissue (71).
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Macroscopic evaluation of the valves indicated that the

stents remained structurally unchanged from implantation.

Glycar leaflets were rigid with nodules of calcifications and

thickened by pannus overgrowth. DE leaflets were soft, pliable,
FIGURE 4

Representative X-ray images and photographs of the three differently process
Glycar valve. The outflow view of this valve shows extensive pannus overgrow
visible on the inferior leaflet in the image. The decellularized (DE) and de
pericardium leaflets show no overt calcification, although there are possibly p
represent suture trauma. Glycar is the commercially available Glycar bovine p
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and non-calcified. DF leaflets were pliable, non-calcified, and

of the same thickness as at implantation. An X-ray of the

explanted valves showed calcification of the Glycar leaflets.

The DE and DF leaflets were generally free from calcification,
ed valves at explantation. Note the calcification visible on the X-ray in the
th, which has fixed one leaflet in the open position. Calcified nodules are
cellularized, low-dose glutaraldehyde-fixed, and detoxified (DF) bovine
unctuated calcium spicules near the sewing margin (arrows), which may
ericardium fixed with conventional high-dose GA.
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FIGURE 5

Invasively measured gradients (means and ranges) across the valves at
the time of implantation compared to just prior to explantation. Note
the unchanged gradients in DF and DE tissue valves. The change in
gradients over the Glycar tissue valves was not statistically significant
(p= 0.5671). DE denotes decellularized bovine pericardium; DF
denotes decellularized, low-dose glutaraldehyde-fixed, and detoxified
bovine pericardium; Glycar is the commercially available Glycar
bovine pericardium fixed with conventional high-dose GA.
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although there were a few spots next to the stent frame

that could represent calcification due to suture trauma

(Figure 4).

There was no difference in thickness, tensile strength, and

Young’s modulus from baseline to explantation in either of the

two decellularized tissues (DE and DF). The Glycar tissue

presented a significant reduction in tensile strength. This was

caused by one of the tissues of the Glycar valve that fractured at

low traction forces (Figure 6).
FIGURE 6

Physical properties of the tissue expressed as medians and ranges. (A) TS. Note
explantation. This is due to a single Glycar sample that was severely calcified an
differences from baseline to explantation. (B) YM analysis with no differences be
tissue showing a significant (*p= 0.0249) change from baseline to explantat
measured (physically with calipers) in four places on the leaflet; therefore, a
shown in Figures 7, 9, and 11. DE denotes decellularized bovine perica
detoxified bovine pericardium; Glycar is the commercially available Glycar bo

Frontiers in Cardiovascular Medicine 07
H&E staining demonstrated pronounced pannus overgrowth of

the Glycar leaflet tissue. Of seven sections evaluated, six (86%) had

confluent pannus and one (14%) had non-confluent pannus. No

pannus was observed in the DE group and the DF group; of four

sections, three (75%) had non-confluent pannus and one (25%)

had none. In DE explants, no inflammatory process could be

identified. There were no inflammatory infiltrates in DF explants,

apart from the pannus mentioned previously. In fact, apart from

the endothelium and the non-confluent pannus in the DF tissue,

these explants were acellular. All tissues had good endothelial

coverage, although the endothelium covered the pannus in the

Glycar leaflets (Figures 7, 8) and in some portions of the DF

leaflets. Scanning electron microscopy confirmed good

reendothelialization of all three tissue types at the explant

(Figure 8).

Evaluation of the elastin content of the tissues with Verhoeff–

Van Gieson staining revealed a dense presence in the Glycar tissue

pre-implant while limited presence in the DE and DF tissues. All

tissues showed little or no elastin upon explantation (Figure 9).

Transmission electron microscopy demonstrated a well-preserved

collagen framework in all tissues, closely resembling

preimplantation (Figure 10).

The Von Kossa staining results demonstrated marked

calcification in the Glycar tissue and none in the DE and DF

groups (Figure 11).
Discussion

We aimed to develop bioprosthetic THV leaflets with improved

durability and potential use in younger patients. Both the

decellularized tissues (DE and DF) showed promising results

when implanted for 180 days in juvenile sheep. The structure of

the DE tissue remained intact, elicited no detectable
the significant (*p= 0.033) difference between the Glycar baseline and at
d fractured with minimal traction. The other tissues all had non-significant
tween baseline and explantation. (C) Tissue thickness, with only the Glycar
ion. As detailed in the Materials and Methods section, the thickness was
more representative of actual thickness than the single histology slices is
rdium; DF denotes decellularized, low-dose glutaraldehyde-fixed, and
vine pericardium fixed with conventional high-dose GA.
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FIGURE 7

Results of H&E staining of the pericardial tissue at baseline (left) and
explantation (right). At the explant, the Glycar tissue has a thick layer
of pannus (white arrows), the DF has minimal pannus, and the DE
tissue has no pannus. DE denotes decellularized bovine pericardium;
DF denotes decellularized, low-dose glutaraldehyde-fixed, and
detoxified bovine pericardium; Glycar is the commercially available
Glycar bovine pericardium fixed with conventional high-dose GA.

FIGURE 9

Results of EVG (highlighting elastin) of pericardial tissue at baseline (left)
and explantation (right). All tissues had elastin at baseline, but at the
explant, DE and Glycar had none and DF had minimal elastin (white
arrows). DE denotes decellularized bovine pericardium; DF denotes
decellularized, low-dose glutaraldehyde-fixed, and detoxified bovine
pericardium; Glycar is the commercially available Glycar bovine
pericardium fixed with conventional high-dose GA.
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inflammatory response, and showed no calcification. When a very

low dose of GA was added, the DF tissue developed small non-

confluent areas of pannus. No calcification was seen during
FIGURE 8

Results of scanning electron microscopy of the pericardial tissue at
baseline (left) and explantation (right). All three tissue types were well
covered with endothelium at the explant. DE denotes decellularized
bovine pericardium; DF denotes decellularized, low-dose
glutaraldehyde-fixed, and detoxified bovine pericardium; Glycar is the
commercially available Glycar bovine pericardium fixed with
conventional high-dose GA.
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histological examination of the DF valve, and the small spots of

calcification seen on an X-ray were near the stent frame and

interpreted as a consequence of suture trauma. Elastin, as

expected from previous work by others (58), was largely absent

from all tissues at the explant.

During preparation of bovine pericardial leaflets, we focused on

three aspects that are deemed important in the search for more

durable tissues for bioprosthetic THVs in younger patients,

namely, lower-dose GA exposure, detoxification, and

decellularization.

GA has been used in the fixation of pericardium for

bioprosthetic heart valves since the 1970s (59) and has remained

a crucial step in the preparation of tissues for heart valves.

Currently, bovine pericardium is fixed with GA to provide

greater mechanical stability, improve tissue handling, and reduce

antigenicity, with a standard concentration of 0.625% used (60).

Despite the beneficial effects of GA fixation, it is also implicated

in various detrimental effects on the durability of the tissue,

including reduced endothelial coverage (61), increased calcium

influx into cells (62), inflammatory cell infiltration into tissues

(61), and pannus formation (38). We hypothesized that a

reduced concentration and the use of monomeric GA will at least

partially mitigate some of these effects while providing adequate

cross-linking. During the development of our proprietary fixation

technique, it was found that the degree of cross-linking reduced

with reducing doses of GA. Cross-linking was calculated as the

ratio of the bound amino groups in the cross-linked (fixed)

samples to the free amino groups from unfixed tissues and was

determined using the ninhydrin assay (63). However, when the

tissue was exposed to H2O2, the cross-linking with a very low

dose of monomeric GA (0.05%) was similar to that with
frontiersin.org
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FIGURE 10

Results of transmission electron microscopy of pericardial tissue at
baseline (left) and explantation (right). Note the preservation of
collagen structure in all tissues at explantation. DE denotes
decellularized bovine pericardium; DF denotes decellularized, low-
dose glutaraldehyde-fixed, and detoxified bovine pericardium; Glycar
is the commercially available Glycar bovine pericardium fixed with
conventional high-dose GA.

FIGURE 11

Representative von Kossa-stained samples (indicating calcification in
black) of pericardial tissue at baseline (left) and explantation (right).
Note the dense calcification in the Glycar tissue (white arrow) at the
explant and none in the decellularized tissues. DE denotes
decellularized bovine pericardium; DF denotes decellularized, low-
dose glutaraldehyde-fixed, and detoxified bovine pericardium; Glycar
is the commercially available Glycar bovine pericardium fixed with
conventional high-dose GA.
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standard 0.625% GA fixation. Further support that our cross-

linking process was adequate can be deducted from the fact that

the tensile strength of the DF tissue remained unchanged from

baseline to explantation. We have previously shown that Glycar

tissue developed pannus in the ovine aorta and ovine pulmonary

artery, but in these vascular locations, the Glycar tissue did not

calcify excessively (38). Although Glycar tissue is suitable for use

in vascular and valvular repair and congenital repair, the current

study suggests that it is not suitable for constructing leaflets for a

THV. The major differences that the tissues are exposed to in

the two locations include the initial potential injury caused by

the crimping and balloon expansion of the THV and the

repetitive motion and associated mechanical strain experienced

by the valvular leaflets, forces that do not occur in vascular

grafts. Furthermore, the pannus observed in the Glycar tissue

may also have reduced the flexibility of the leaflets, thereby

placing more mechanical stress on them, leading to calcification.

The lack of calcification in the DF and DE tissues, where

minimal or no pannus developed, is in keeping with this

interpretation. Although the exact mechanism of calcification in

the Glycar tissue remains speculative, this study supports the

notion that reducing the exposure to GA limits calcification,

particularly when the tissue is exposed to high mechanical

stresses such as crimping and expansion of a THV and

functioning as a valve leaflet in vivo.

Inflammation is widely viewed as an important contributor to

bioprosthetic heart valve degeneration (64–67). Pannus tissue

contains a variety of chronic inflammatory cells (lymphocytes,
Frontiers in Cardiovascular Medicine 09
plasma cells, macrophages, and foreign body giant cells) and

represents a host reaction against a foreign material (67). We did

not see an acute inflammatory response to any of the tissues, but

the extent of pannus formation was significant in Glycar (with

high-dose GA exposure), very little in DF tissue (with a very low

dose of GA exposure), and absent in DE (with no GA exposure).

Since there were other differences in tissue preparation, we

cannot conclude that GA exposure was the sole explanation for

this finding. The results would however suggest that any use of

GA might have to be avoided, or alternatively, the fixation

technique requires further refinement to avoid pannus formation,

which could alter hemodynamics and ultimately lead to valve

degeneration and calcification. Another factor that has been

shown to contribute to the immunogenic response to implanted

bioprosthetic leaflets is cellular remnants of bacteria on the tissue

(65). However, we did not test for this prior to implantation.

Decellularization in bioprosthetic tissues has been utilized and

evaluated with the potential benefit of removal of immunogenic

components and reducing stimulus for calcium influx into the

tissue (68–72). Decellularized allografts (without GA fixation)

have been evaluated in humans (73) with good midterm results.

In this cohort of younger patients, one patient required a

reoperation after 18 months for another indication and a small

portion of the allograft tissue was removed at the time. Histology

revealed well-preserved collagen fibers in the media and intimal

hyperplasia of moderate intensity. There were a limited number

of fibroblasts in the media and minimal inflammatory cells. The

concept of utilizing decellularization without fixation is therefore

not new, but its utility for xenografts is less well established, with

some discouraging results described (74). Our two decellularized
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tissues showed very encouraging results, but because of the

proprietary preparation process, these results should not be

generalized to other decellularization protocols or other

implantation techniques and animal models. Decellularization

can be obtained through various methods (physical, enzymatic,

or chemical) but needs to be tailored for each tissue type

depending on cellularity, density, lipid content, and thickness

(75). Each step of the process has different effects on the

outcome (36), and related techniques may yield different results

depending on small variations in the technique. Our

decellularization methodology has been developed over various

iterations, and the results reported here are from tissues with

encouraging performance in the subcutaneous rat model and

aortic and pulmonary artery ovine implants (38). However, the

durability of the unfixed DE tissue after 6 months in the high

mechanical stress environment of a THV in sheep is somewhat

surprising. No host fibroblast ingrowth was seen in this tissue,

which implies that the collagen structure from the implant was

still sufficiently stable, as seen from the TEM images, and

remained functional, as demonstrated by the tensile strength and

Young’s modulus evaluation. This is contrary to the current view

that regenerative tissue engineering supplies a scaffold for the

host tissue to infiltrate, produce new structural elements, and

eventually take over the functioning of the original xenograft

(76). Although recellularization is an accepted endpoint in most

tissue-engineered scaffolds, no one has been able to stimulate

pericardial tissue to regenerate into the complex and specialized

three-layered structure of native aortic valve leaflets. Although

researchers have been able to populate scaffolds with the

appropriate cells (in vivo and in vitro), they have been unable to

stimulate them to produce a new extracellular matrix with

mature composition, distribution, and conformation (76). Our

decellularized tissue, conversely, was essentially inert despite 6

months of exposure to an accelerated calcification model

(juvenile sheep). This finding is unique and challenges

conventional dogma. Further research is required to fully

understand this finding and its potential impact on future

transcatheter valves. Each tissue was tested on three animals

only, which makes the data preliminary and exploratory at best.

However, because of the encouraging results, they justify

expanding it to a larger cohort. The results were obtained in the

lower-pressure environment and must be validated with aortic

implants. The encouraging results in the RVOT, however, raise

the question of whether the tissue is suitable for pulmonary

THVs in younger patients. To evaluate long-term mechanical

integrity of the tissue, our valves are currently being fatigue-

tested to 200 million cycles per ISO 5840 standards. Longer-term

implants will be required to prove durability, especially for the

unfixed DE tissue. Finally, the response of the tissue to anti-Gal

antibodies was not tested, and primate implants or in vitro

exposure to human tissue must be performed.

Another feature of our work that is relatively unique is that

valves were implanted in a synthetic tube and therefore

(although exposed to host blood) not in direct contact with host

tissue. This may be part of the explanation for the lack of host
Frontiers in Cardiovascular Medicine 10
cell infiltration in the decellularized tissues, although it did not

protect the Glycar tissue from pannus formation nor the DF

group from limited non-confluent pannus formation. Applying

this concept of limiting host tissue contact to aortic valves will

be difficult because of the coronary ostia, but it may have utility

in pulmonary valve implants where the recipients also tend to be

younger.
Conclusions

In the juvenile sheep THV model, Glycar tissue (with high-

dose GA fixation) developed significant pannus, calcification, and

hemodynamic deterioration. Using a very low dose of

monomeric GA to fix decellularized bovine pericardium yielded

less pannus formation, less calcification, and better hemodynamic

functioning. We postulate that the limited pannus formation in

the DF group results from GA, as no cellular response or pannus

formation was demonstrated when GA was omitted in the

similarly decellularized DE tissue. Bovine pericardium

decellularized with our proprietary method resulted in essentially

inert tissue, which is a unique finding. These results justify

further development and evaluation of the two decellularized

tissue types in THVs for use in younger patients.
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