
TYPE Review
PUBLISHED 21 December 2023| DOI 10.3389/fcvm.2023.1263864
EDITED BY

Márton Tokodi,

Semmelweis University, Hungary

REVIEWED BY

Réka Faludi,

University of Pécs, Hungary

Tetsuji Kitano,

University of Occupational and Environmental

Health, Japan

Luigi P. Badano,

University of Milano Bicocca, Italy

Csaba Jenei,

University of Debrecen, Hungary

*CORRESPONDENCE

Karima Addetia

kaddetia@bsd.uchicago.edu

RECEIVED 20 July 2023

ACCEPTED 22 November 2023

PUBLISHED 21 December 2023

CITATION

Randazzo M, Maffessanti F, Kotta A, Grapsa J,

Lang RM and Addetia K (2023) Added value of

3D echocardiography in the diagnosis and

prognostication of patients with right

ventricular dysfunction.

Front. Cardiovasc. Med. 10:1263864.

doi: 10.3389/fcvm.2023.1263864

COPYRIGHT

© 2023 Randazzo, Maffessanti, Kotta, Grapsa,
Lang and Addetia. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Cardiovascular Medicine
Added value of 3D
echocardiography in the diagnosis
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Recent inroads into percutaneous-based options for the treatment of tricuspid
valve disease has brought to light how little we know about the behavior of the
right ventricle in both health and disease and how incomplete our assessment
of right ventricular (RV) physiology and function is using current non-invasive
technology, in particular echocardiography. The purpose of this review is to
provide an overview of what three-dimensional echocardiography (3DE) can
offer currently to enhance RV evaluation and what the future may hold if we
continue to improve the 3D evaluation of the right heart.

KEYWORDS

3D echocardiography, right ventricle, prognosis, echocardiography, tricuspid valve

Introduction

The diagnostic and prognostic importance of RV size and function is being increasingly

appreciated owing both to the advent of percutaneous procedures targeted to pathologies

involving the right heart and the growing interest in prognostication of various disease

states that compromise the RV (1). In spite of this, reliable, non-invasive assessment of

RV size and function remains elusive.

Despite being the current reference standard for RV size and function assessment,

cardiovascular magnetic resonance imaging (CMR) suffers from several critical drawbacks

which prevent its ubiquitous use in the clinical space. These drawbacks include, high cost,

limited availability, non-portability, dependence on patient cooperation as well as

numerous key contraindications and relative contraindications. Echocardiography,

therefore, remains the workhorse for initial cardiac evaluation; it is cost-effective, safe,

widely accessible, portable and without contraindications. It can be flexibly incorporated

across multiple clinical settings. Accurate, reproducible evaluation of the RV, however,

with current two-dimensional echocardiography (2DE) techniques is hindered by its

anatomical location in the anterior mediastinum, irregular crescentic geometry, complex

mechanics, and asymmetric remodeling. Recent advancements in 3DE have helped

overcome many of these limitations by avoiding the geometrical assumptions inherent to

2D size and function assessments (2). Using 3DE, a pyramidal dataset of the RV which

contains all of the structural components of the chamber including the inflow, outflow,

body and apex as well as the tricuspid and pulmonary valves is acquired (Figure 1).

Access to this data enables comprehensive, quantitative volumetric analysis of the RV (3).

RV volume and ejection fraction (RVEF) derived from 3D datasets have been shown to
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FIGURE 1

3d echocardiographic analysis of the right ventricle. Far left, 3D dataset of the right ventricle depicting the apical four-chamber and short-axis planes
using multi-planar reconstruction. Middle panel shows endocardial tracings overlying the diastolic and systolic phases of the 2D short and long-axis
cut-planes obtained from the 3D right ventricular dataset. Far right, top panel shows the 3D endocardial rendered surface while bottom panel shows
the volumes obtained after automated software analysis throughout the cardiac cycle.
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strongly correlate with measurements obtained with CMR as well

as adverse cardiopulmonary outcomes (4–6). These findings have

recently prompted considerable exploration into the potential

utility of 3DE in a vast array of clinical applications. The

objective of this review is to describe 3DE acquisition and

analysis methods for the RV, summarize their established

diagnostic and prognostic value, and outline potential novel

utilities for 3D RV imaging on the horizon and for the future.
2D echocardiography: analysis and
limitations

2D echocardiographic evaluation of the RV requires integration

of multiple imaging planes to enable optimal evaluation of RV size

and function (Figure 2). Even when all views can be adequately

acquired, quantitative analysis remains a regional assessment at

best. RV chamber size is typically classified as normal or

abnormal according to basal, mid-ventricular, and longitudinal

dimensions obtained at end-diastole from the RV-focused apical

4-chamber view (Figure 3) (7). Despite this standardized

approach, measurements can still vary widely based on minor

differences in transducer positioning. Indeed, RV size and

functional measurements have been shown to be consistently

different in the RV focused view when compared with the apical

4-chamber view (8). Furthermore, volumetric estimations derived

from geometric assumptions based on linear dimensions

correlate poorly with volumes calculated from CMR and are

discouraged (9).

Evaluation of RV systolic function on 2DE involves the

integration of multiple parameters, of which the most commonly

used include tricuspid annular systolic excursion (TAPSE), tissue
Frontiers in Cardiovascular Medicine 02
Doppler-derived tricuspid lateral annular systolic velocity (S’),

fractional area change (FAC), free-wall and four-chamber (free-

wall + septal) longitudinal strain (FWS and 4CHLS respectively),

and myocardial performance index (MPI) (7). Indeed, utilization

of a single, global assessment of function is hindered by the

complex mechanism of RV contraction that is unique from the

left ventricle. In comparison to the left ventricle, the RV wall is

thinner and composed of two muscular layers with longitudinally

oriented myocytes in the sub-endocardium and circumferentially

oriented myocytes in the sub-epicardial layer. Together, these

layers contribute to RV contraction by respectively drawing the

tricuspid annulus towards the apex and inwardly moving the free

wall (2). Given that there is not one single accepted method for

RV quantification, qualitative interpretation is often also used in

clinical practice, characterizing dysfunction as mild, moderate, or

severe despite poor sensitivity and notable interobserver

variability (9). Routine metrics such as TAPSE and S’ have

demonstrated modest agreement with global RV systolic function

obtained by CMR (10). These measures predominantly assess

longitudinal excursion of the RV free-wall and thereby omit the

contribution of other determinants of RV function. In many

instances, longitudinal excursion is the most important

determinant of systolic RV function. However, altered

contraction mechanics and adverse remodeling in various disease

states may result in under- or over-estimation of function using

these methods such as in the setting of some types of pulmonary

hypertension, post-cardiac surgery where systolic motion is

concentrated in the transverse plane, or significant tricuspid

regurgitation (TR) which produces exaggerated motion of the

base (2). FAC provides a percentage estimate of global function,

improving the correlation with CMR but it is highly dependent

on identifying a suitable tomographic view that avoids cavity
frontiersin.org
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FIGURE 2

Collection of all 2D standard imaging planes used on routine transthoracic echocardiography to assess the right ventricle. A 3D right ventricle endocardial
surface is superimposed on top (in green).
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foreshortening. This limitation results in poor reproducibility.

Additionally, since FAC is measured in the RV focused view, it

excludes much of the RV body as well as the RV outflow tract

which in itself contributes to 25%–30% of the RV volume (3, 7).

Similar to FAC, FWS, a measure of myocardial shortening in the

longitudinal plane, fails to incorporate the RV outflow tract and

focuses on longitudinal deformation. Unlike TAPSE and RV S’,

FWS incorporates the entire RV free wall (or free and septal

walls in the case of 4CHLS), and therefore correlates better with

CMR measurements than either TAPSE or RV S’ (11). Finally,

MPI, or Tei index, defined as the sum of RV iso-volumetric

contraction and relaxation times divided by the RV ejection time,

has the ability to account for both systolic and diastolic

components of RV function; however, situations such as

tachycardia, elevated right atrial pressures, atrial fibrillation, and

conduction system disorders prevent its consistent use (2).

Overall, conventional 2D parameters (Figure 3) necessitate

leveraging limited sections of the RV endocardial surface to

extrapolate global function, which may subject these measures to
Frontiers in Cardiovascular Medicine 03
inaccuracies. See Table 1 for an overview of advantages and

disadvantages of each 2D parameter.
3D echocardiography of the right heart

Acquisition and analysis of the right
ventricle

Acquisition of the 3D RV pyramidal dataset can be achieved

using either a single or multi-beat approach from the RV-focused

apical 4-chamber view (Figure 4). Notably, RV volumes and

ejection fractions derived from 3D datasets acquired in the apical

four-chamber view strongly correlate with measurements from

the RV-focused view providing that the entire RV can be

captured within the 3D dateset (12). Four to six beat acquisitions

allow for higher temporal and spatial resolution enabling more

optimal identification of end-diastolic and end-systolic phases for

volumetric calculations (2). Prior validation studies with CMR in
frontiersin.org
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FIGURE 3

Guideline-recommended right ventricular size and function assessment. All measurements are performed in the RV focused apical 4-chamber view (far
left panel). (A) RV mid-ventricular and basal dimensions obtained at end-diastole in the RV-focused view; (B) tricuspid annulus diameter obtained at end-
diastole starting at the hinge-point of the non-septal TV leaflet and ending at hinge-point of the septal TV leaflet; (C) depiction of doppler-derived
tricuspid lateral annular systolic velocity (S’) or peak systolic velocity (PSV); (D) m-mode is used to measure longitudinal displacement of the lateral
tricuspid annulus in systole to yield tricuspid annular systolic excursion (TAPSE); (E) region of interest used to guide free-wall and global RV strain
assessment; (F) RV areas obtained at end-diastole and end-systole to compute fractional area change; (G) Calculation of the myocardial performance
index (MPI) defined as the sum of isovolumic contraction time the (IVCT) and isovolumic relaxation time (IVRT) divided by ejection time (ET) obtained
from the right ventricular outflow tract initial velocity (RVOT V1). The sum of IVCT and IVRT is equal to the difference between the interval from
cessation to onset of the tricuspid inflow (TCO) and ET.
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both children and adults have demonstrated sufficient frame rates

ranging between 20 and 50 volumes per second to ensure reliable

identification of cardiac timing (13, 14). Moreover, adequate

patient cooperation with breath holding is critical to reduce

stitch and dropout artifacts (2). Various clinical factors can

adversely impact 3DE data collection including irregular cardiac

rhythms, morbid obesity, inability to breath-hold, marked

structurally abnormal RVs, mechanical ventilation, and

mechanical support devices. In spite of these limitations on

acoustic windows, transthoracic 3DE has exhibited exceptional

feasibility in several large highly experienced cohorts ranging

from 75% to 85% (15–17). The addition of ultrasound-enhancing

agents has been shown to further augment performance with

respect to reproducibility and correlation with CMR (18). In the

World Alliance Society of Echocardiography (WASE) study, a

worldwide cohort of centers with variable experience with 3D

RV acquisition and analysis, feasibility of 3D RV acquisition

dropped to 50%–60% with incomplete RV capture, typically

anterior wall or apical drop-out being some of the main reasons

for unanalyzable 3D RV data (Figure 5) (19). The ability to

adequately capture the RV for 3D analysis is highly dependent

on individual expertise to both acquire and analyze the 3D

dataset. This expertise can vary widely from center to center as

shown in the WASE study (Figure 6). According to this graph,

the feasibility for RV analysis ranged anywhere from 20% to 95%
Frontiers in Cardiovascular Medicine 04
and was dependent on the center in which the data was

acquired, suggesting that it is possible to attain a level of

expertise such that >80% of captured 3D RV data can be

analyzed in patients with adequate 2D images. The major

advantage of using 3D RV datasets for size and functional

assessment is that this parameter represents the first

echocardiography-based global method for RV functional

assessment. Current 3D analysis software employs a volumetric

approach to compute the total quantity of pixels within the RV

endocardial surface in systole and diastole to obtain the

respective volumes. This technique removes geometric

assumptions and minimizes variability due to acquisition.

Accordingly, volumes obtained from 3DE have demonstrated

incremental improvements in accuracy and reproducibility

compared to 2DE although they still underestimate volumes in

comparison to CMR (5, 20). Fully automated methods of

volumetric quantification based on machine-learning algorithms

have been explored showing accurate, reproducible measurements

following minimal revision (21).

The volumetric dataset provides multiple opportunities for

post-processing analysis. Particular regions of the wide-angle

acquisition can be visualized and interrogated for wall motion

abnormalities, hypertrophy, or masses (3). 3D RV datasets enable

better characterization of the complex contraction pattern of the

RV including alterations caused by various pathologies. One
frontiersin.org
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TABLE 1 Advantages and limitations of one- and two-dimensional analysis techniques for right ventricular functional assessment.

Definition Advantages Limitations
Doppler-derived tricuspid lateral
annular systolic velocity (S’)

Assessment of the longitudinal excursion
velocity of the lateral tricuspid annulus

• Reproducible
• Easy to perform
• Correlated with radionuclide

angiography for functional
discrimination

• Validated in population-based studies
• Does not depend on 2D image quality
• Minimal required post-processing

• Assumes regional function is
representative of the entire chamber

• Angle dependent
• Lack of normative data across sex and age

Tricuspid annular systolic
excursion (TAPSE)

Measurement of longitudinal displacement
of the tricuspid annulus in systole

• Reproducible
• Reduced dependence on image quality
• Correlated with Simpson’s biplane right

ventricular ejection fraction
• Easy to perform
• Minimal required post-processing

• Assumes regional function is
representative of the entire chamber

• Angle dependent
• Varies with loading conditions

Free-wall and global longitudinal
strain (FWS & 4CHLS
respectively)

Percentage of myocardial shortening in the
longitudinal plane

• Accounts for several RV segments
• Correlated with CMR assessments
• Feasible despite abnormal RV geometry
• Load independent

• Angle dependent
• High degree of variability across

platforms
• Requires post-processing with limited

accessibility
• Lack of normative data
• Poor signal-to-noise ratio
• Excludes RV outflow tract

Fractional area change (FAC) Percentage difference between end systolic
and end diastolic areas divided by end
diastolic area

• Correlated with CMR assessments
• Prognostic for heart failure, stroke, and

death

• Excludes outflow tract and most of the
RV body

• High inter-observer variability
• Varies with loading conditions
• Tedious and time-consuming

Myocardial performance index
(MPI)

Summation of RV iso-volumetric
contraction and relaxation times divided by
the RV ejection time

• Accounts for systolic and diastolic
function

• Well validated in healthy patients
• Feasible despite abnormal RV geometry
• Reduced dependence on image quality

• Reduced accuracy in the setting of
tachycardia, irregular heart rhythms, and
elevated RA pressures

FIGURE 4

Obtaining the right ventricular focused view. The patient should be in the left lateral decubitus position with the left mid-clavicular, fifth intercostal region
(approximate apex of the heart) positioned over the cut-out area of the bed if available. The top right shows the apical 4-chamber view as acquired from
the probe position at top middle. The bottom left shows the RV-focused view as acquired from a more lateral location as shown in the bottom middle
panel. The 3D dataset should be acquired from the RV-focused view to maximize capture of the RV free wall. See Figure 5 for the characteristics of an
optimal 3D dataset. RV, right ventricle.

Randazzo et al. 10.3389/fcvm.2023.1263864
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FIGURE 5

Top row illustrates cut planes through the optimal 3D right ventricular dataset. Note that the free-wall and right ventricular outflow tract borders (blue
arrows) are well demarcated. Sometimes the pulmonary valve (red arrow) can be seen). Bottom row depicts a less than optimal 3D right ventricular
dataset. The right ventricular outflow tract borders (blue arrows) are poorly seen.

FIGURE 6

Feasibility of adequate 3D right ventricular dataset acquisition around the world. Data from the World Alliance Society of Echocardiography (WASE) study.
Each bar represents one of the centers enrolled in the WASE study.
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increasingly popular method of 3D RV functional analysis involves

the decomposition of the RV ejection fraction into longitudinal,

radial, and anteroposterior components in order to investigate

modifications in RV function with disease, which cannot be

appreciated when studying its longitudinal performance alone.
Frontiers in Cardiovascular Medicine 06
These contraction components have been investigated in patients

with left ventricular dysfunction (22), pulmonary hypertension

(23), and systemic right ventricles due to transposition of the

great arteries (24) using the ReVISION software package (Argus

Cognitive Inc., Lebanon, NH) (25, 26).
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Conventional echocardiographic measures of RV function

including 2D RV functional parameters (TAPSE, S’, FAC, RV

strain) and 3D RVEF (even if obtained using CMR) are highly

load dependent and do not provide a clinically useful assessment

of RV function in patients with secondary tricuspid regurgitation

or significant pulmonary hypertension. Recent data on outcomes

have identified measures of right ventricle-to-pulmonary artery

coupling, which better estimate the impact of loading conditions

on the RV, as important prognostic markers in these patients. In

a recent study, RV volumes from 3D echocardiography were

used to compute a surrogate of right ventricle-to-pulmonary

artery coupling using the formula total RV forward stroke

volume/end-systolic volume. This measure, when applied to

patients with more than moderate tricuspid regurgitation,

successfully predicted outcomes (including all cause death and

hospitalization for heart failure) with better accuracy than RV

ejection fraction and other measures of right-ventricle-to-

pulmonary artery coupling using combinations of 2D and

Doppler parameters raising the possibility that this marker could

have a role in the assessment of RV function in patients

undergoing percutaneous procedures for the tricuspid valve (27).
Normal reference values for 3D right
ventricular size and function parameters

Since its inception, numerous studies have sought to establish

reference values for 3D chamber volumes and EF. Initial efforts

displayed heterogenous findings, which could be attributed to

inconsistencies in frame rates, volumetric analysis algorithms,

and 3D imaging technology (28, 29). Recently, a large,

multicenter investigation of 507 healthy volunteers evenly

distributed across age and sex (17) showed for the first time,

using 3DE, that men had larger right ventricular end-diastolic

and end-systolic volumes compared to women even after

indexation to body surface area, and that aging correlated with a

consistent decline in volumes by decade. These results parallel

those obtained from CMR in large populations of normal

subjects (30, 31). From these findings, normative equations with

allometric scaling were derived to assist with recognition of

abnormal values. Even more recently, the World Alliance Society

of Echocardiography (WASE) study also published normal values

for 3D RV size and function parameters on 1,051 healthy

volunteers, adding to the repertoire of 3D RV normal values

with the added distinction of being the first 3D normal values

study on a worldwide multi-ethnic cohort (19) (Table 2).
3D tricuspid annulus imaging and
analysis

The tricuspid annulus (TA) forms the junction between the

right atrium and the right ventricle. Its complex anatomy and

dynamic behavior preclude systematic characterization with 2DE.

Current guidelines recommend that the TA be measured in the

apical 4-chamber view on transthoracic echocardiography. TA
Frontiers in Cardiovascular Medicine 07
size and dynamics, however, are much more complicated (32).

With 3DE, comprehensive static and dynamic assessment of the

TA is possible (33). Visualization of the TA with 3DE begins

with optimization of the RV-focused apical view. Narrow-angle

or full volume acquisition from this plane adequately captures

the TA. Accurate measurement of TA size and function even

with current multi-planar reconstruction techniques is difficult

due to the nonplanarity of the annulus necessitating manual or

automated initialization of the leaflet hinge points with

automated interpretation throughout the cardiac cycle (33, 34).

Various programs are in existence or in development to assist

with this step. One commercially available 3DE software package

dedicated to the tricuspid valve was validated and utilized to

develop sex-specific reference ranges for the TA. Importantly, TA

sizes were shown to be underestimated by 2DE (35). See

Figure 7 for results from an example software package.
3D of the right atrium

Right atrial (RA) assessment is of paramount importance in

patients with diseases affecting the RV including pulmonary

hypertension, heart failure (both reduced and preserved

etiologies), and tricuspid regurgitation. The RA has been

heralded as both “first chamber to live and the last to die” (36).

With 3DE, it is possible to assess RA volumes, phasic function,

and even remodelling (36, 37). In one study, increasing 3D RA

sphericity index was found to be associated with clinical

deterioration in patients with pulmonary arterial hypertension

(36). Similar to the left atrium, RA physiology can be divided

into 3 parts: (1) the reservoir phase, which corresponds to

tricuspid valve closure and ventricular systole; (2) the conduit

phase which corresponds to tricuspid valve opening and early

ventricular diastole, and (3) the contractile or booster phase

which reflects right atrial contraction (38). 3D RA volumes have

been shown to be larger than the corresponding 2D volumes

(37, 39, 40). Normal vales for 3D RA volumes are summarized

in Table 2 (41).
Diagnostic value of 3D
echocardiography of the right ventricle

Characterization of tricuspid valve disease

Etiology of tricuspid regurgitation (TR) is closely coupled with

right atrial and RV remodeling. Secondary or functional TR

represents greater than 80% of TR in clinical practice and can be

associated with or without pulmonary hypertension (PH) (42).

These two TR categories have distinctive RV remodeling patterns

which can be characterized using 3DE. Increases in RV afterload

due to elevated pulmonary pressures can lead to spherical RV

remodeling, papillary muscle displacement, tricuspid valve leaflet

tethering, diminished leaflet coaptation surface, and tricuspid

valve incompetence. The TA in these patients is often minimally

dilated and may in some cases be normal in size. Flattening of
frontiersin.org
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FIGURE 7

One example of customized software used to measure the 3D tricuspid annulus. Purple dots represent the initialization points from which the 3D annulus
depiction (left panel, top right) is derived. The annulus is non-planar and therefore better assessed using 3D echocardiography. Dynamic analysis of the
annulus allows calculation of changes in area and other parameters throughout the cardiac cycle (see graph right). Images courtesy of Federico Veronesi,
PhD.

FIGURE 8

Right ventricular morphology changes associated with functional
tricuspid regurgitation with and without pulmonary hypertension
compared with a normal right ventricle (left panel). Middle panel
illustrates the spherical right ventricular remodeling seen in patients
with tricuspid regurgitation and pulmonary hypertension. In these
patients there is often tricuspid valve leaflet tethering with some right
atrial dilatation. The tricuspid annulus is typically minimally dilated and
may in some cases be normal in size. The right panel illustrates
ventricular remodeling in patients without pulmonary hypertension.
This type of remodeling is typically seen in older adults with atrial
fibrillation. There is notable right atrial and tricuspid annulus dilatation
without leaflet tethering. Tricuspid annular dilation results in a
diminished leaflet coaptation surface and increased rates of leaflet
malcoaptation. In these patients, the RV dilates at the base, a
phenomenon known as conical remodeling. PH, pulmonary
hypertension; RV, right ventricle; TA, tricuspid annulus; RA right
atrium. (Modified from Muraru D et al. Eur Heart J Cardiovasc
Imaging. (2021) May 10;22(6):660−669).
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the interventricular septum, a finding often seen in significant PH,

likely also contributes to distortion of the tricuspid apparatus and

TR. RV eccentricity index, quantified as the ratio between the long

and perpendicular short-axis lengths at the mid- ventricular level

in short-axis view has been shown to predict TR severity with

high accuracy (43). Functional TR with PH has also been called

ventricular functional TR, because the morphological changes in

the right heart which sustain TR are seen mostly in the RV

(Figure 8) (44, 45).

Functional TR without PH is typically seen in older adults with

a high incidence of associated atrial fibrillation resulting in RA

dilatation with subsequent TA dilatation without leaflet tethering

(Figure 8). TA dilation results in a diminished leaflet coaptation

surface and increased rate of leaflet malcoaptation. In these

patients, the RV maintains its normal length but dilates at the

base loosely labeled as conical remodeling (42, 44–46).

Restoration of sinus rhythm has been shown to improve the

degree of TR in some of these patients (47).

Detailed analysis of functional and morphologic changes

associated with RV remodeling with 3DE can help to

differentiate between the different causes of functional TR and

the impact on the RV (44–46). Regional quantitative curvature

analysis has previously been implemented to characterize

alterations in RV shape attributed to PH using a quantitative

approach, demonstrating bulging of the interventricular septum

into the left ventricle and greater convexity of the RV free wall

throughout the cardiac cycle compared to normal controls. This

bulging phenomenon is also known as the “D-shaped left

ventricle” or “D-sign”, a finding that can also be appreciated on

the 2D parasternal short-axis view (Figure 8) (48).
Implantable device lead complications

Device-lead related interference with the tricuspid valve

apparatus is a potential complication that is incompletely
Frontiers in Cardiovascular Medicine 09
described by 2DE as the device-lead is really only seen in its

entirety in less than 20% of cases (49). The addition of 3D RV

imaging has improved non-invasive assessment of the

relationship between the tricuspid apparatus and device leads
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FIGURE 9

3D full volume dataset of the right ventricle (far left) and adjacent cut planes through the 3D dataset (left, middle and right, middle) showing device-lead
(white arrows) impinging on the septal leaflet and sub-tricuspid apparatus in the region of the right ventricular septum resulting in tricuspid regurgitation
(far right). Note that the tricuspid leaflet coaptation zone (red arrow) is not the origin of tricuspid regurgitation in this case. In fact, tricuspid regurgitation is
originating at the point of device-lead contact with the septal leaflet.
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enabling direct visualization of the both the TV leaflets and the

sub-tricuspid apparatus making it possible to determine the

presence or absence of interference in select cases (50–52).

According to one study, leads demonstrating leaflet impingement

on 3DE were associated with a greater degree of TR with a

median vena contracta of 0.62 cm compared to 0.27 cm in

patients without 3DE evidence of lead-related leaflet interference.

Importantly, positioning of the lead in the commissure resulted

in less frequent interaction, suggesting that echocardiographic

guidance of or follow-up after lead placement may be beneficial

in some cases (52). More recent data suggests that lead-related

tricuspid valve interference can be associated with the tricuspid

valve leaflet(s) alone, the sub-tricuspid apparatus alone, or both

the leaflet(s) and the sub-tricuspid apparatus (Figure 9) (53).

Given the increasing interest in percutaneous tricuspid valve

repair in patients with heart failure, it is likely that there will be

a parallel need to better diagnose lead-related interference with

the tricuspid valve apparatus as any associated interference may

impact the success of any procedure chosen to repair the

tricuspid valve. 3DE shows promise in this area of diagnosis.
FIGURE 10

Example of right ventricular free-wall aneurysm detection with 3D (left)
compared to 2DE in a patient with arrhythmogenic right ventricular
cardiomyopathy (ARVC). Two-dimensional cut-planes from a full-
volume 3D dataset enables visualization of the apical aneurysm (left)
with targeted interrogation of the right ventricular free-wall (left, top)
on short-axis imaging planes (left bottom). Here the aneurysm is
noted to be on the infero-lateral free wall (white dotted line and
yellow arrow). In the same patient the aneurysm is not visualized in
the 2D right-ventricular focused view (right, top). Cropping into the
3D full volume also allows visualization of the apical aneurysm (black
arrow on right, bottom).
Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

Echocardiography represents a common first-line imaging

modality for both diagnosis and follow-up of ARVC (54).

Although CMR is considered the gold standard for meeting the

imaging criteria for diagnosis, recent investigations have

demonstrated a high concordance in diagnostic performance

between 3DE and CMR when either is combined with 2DE.

Moreover, 3DE enhances the ability to diagnose wall motion

abnormalities and aneurysms which are critical to meeting

imaging criteria for the diagnosis of the disease (Figure 10)

(55, 56). 3DE specifically outperformed 2DE in detection of wall

motion abnormalities and exhibited comparable detection rates to

CMR (56). These suggest the possibility of 3D echocardiography-
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guided diagnosis and follow-up of these patients especially in

those instances where CMR is not easy to obtain.
Congenital heart disease

The asymmetrical remodeling of the RV often observed in

patients with congenital heart disease can limit the efficacy of

conventional 2D size and function assessment of the RV due to

inaccurate geometric assumptions. These geometric assumptions
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may be overcome by 3DE. Volumes and ejection fractions acquired

from 3DE datasets have been shown to correlate well with CMR

measurements in addition to demonstrating lower interobserver

variability than corresponding measurements obtained on 2DE

(57, 58). However, in conditions with progressive RV

enlargement including repaired tetralogy of Fallot (TOF) and

transposition of the great arteries 3DE has been shown to

systematically underestimate volumes while overestimating RVEF

(59, 60). These studies were notably performed using earlier

software versions that may impact their current applicability.

More recent versions of the 3D RV analysis software are easier to

use and provide short-axis cut-planes for tracing volumes. A

recent investigation in patients with systemic RVs, revealed

alterations in contractile mechanisms between patients with

transposition of the great arteries (TGA) and congenitally

corrected TGA, with motion along the anteroposterior plane

dominating RV contraction in TGA and while all components

(anteroposterior, longitudinal and radial) contribute equally to

ventricular ejection fraction in congenitally corrected TGA (24,

61). 3DE has also facilitated characterization of RV shape and

strain changes in conditions that result in chronic pressure and/

or volume overload. Patients with TOF exhibited less curvature

of the free wall, a more convex intraventricular septum, and

significantly impaired RV strain compared to controls (62, 63).
Prognostic value of 3D
echocardiography of the RV

Mixed population studies

RV function is reported to have prognostic significance in a

variety of cardiovascular diseases including heart failure, PH, and

coronary artery disease (Table 3) (1, 64–70). Importantly, 2D RV

functional assessment can sometimes be inaccurate when used in

these disease states. In post-cardiac surgery patients, for instance,

due in part to geometrical changes associated with RV protection

during bypass or alterations in interventricular septal motion after

surgery, the longitudinal excursion of the RV is typically reduced

despite preservation of overall RV function (71–74). TAPSE and

RV S’, therefore, underestimate RV function in this population and

cannot be used to assess RV function. This phenomenon extends

to at least 1 year post operatively. Global assessment of RV

function with 3DE, however, can more accurately measure RV

function in these patients suggesting that 3D RV assessment likely

has wider applicability than 2DE in the remodeled or abnormal RV

(75). 3D RV size and function parameters have been shown to

have incremental value in the prediction of outcomes independent

of left ventricular ejection fraction (67). In one study, the

prevalence of patients with systolic LV dysfunction (left ventricular

ejection fraction <52%) increased with worsening 3D RV ejection

fraction across a population of consecutive patients with various

cardiac conditions who had 3D RV acquisitions performed (68). In

another retrospective study of 446 patients over a median follow

up of 4.1 years, the authors showed that 3D RV ejection fraction

offered incremental value over clinical risk factors and other
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echocardiographic parameters, including left ventricular systolic

and diastolic function, for predicting future adverse outcomes

including cardiac death and major adverse cardiac events (MACE)

(1). The 3D RV ejection fraction cut-off values to stratify worsened

prognosis were 35% for cardiac death and 41% for MACE. A

prospective study of 50 patients, with a median follow-up of 16

months, found that 3D RV ejection fraction remained the only

independent predictor of MACE after controlling for both clinical

and echocardiographic variables, including age, New York Heart

Association class, E/e’ ratio, and left atrial volume index. By ROC

analysis, the optimal RV ejection fraction cut-off value for event

prediction was 43.4% (AUC = 0.77, p = 0.001), and RV ejection

fraction remained an independent predictor in multivariable

models when treated as a categorical variable using the cut-off of

43.4%. Categorization of 3D RV ejection fraction into the following

partition values: 45%, 40%, and 30% (i.e., very low risk for

mortality (RV ejection fraction >45%), low risk (40%< RV ejection

fraction ≤45%), moderate risk (30%< RV ejection fraction ≤40%),
and high risk (RV ejection fraction ≤30%), stratified the

population into high, moderate, and low risk of cardiac death and

MACE (68). Furthermore, a recent meta-analysis of ten studies

including 1,928 patients identified a robust association between a

one standard-deviation reduction in 3D RV ejection fraction and

adverse outcomes that was stronger than 2D measures including

TAPSE, FAC, and FWS (6).

3D RV parameters have also been shown to have utility in

predicting adverse events in patients with heart failure with

preserved ejection fraction. Meng et al. found that lower RV

ejection fraction and 3D RV longitudinal strain of free wall were

associated with heart failure, hospitalization, or death (69).
Pulmonary hypertension

Pulmonary hypertension has garnered a great deal of interest in

the study of 3D RV applications, because the entire spectrum of RV

remodelling can be documented in this cohort of patients (76).

Together with 3D volumes, 3D deformation indices have an

important role in the prognosis of PH patients. Specifically,

changes in RV function and 3D RV area strain have been shown

to be of prognostic importance and correlate more strongly with

hemodynamics in RV failure than conventional echo indices

(77, 78). In the pediatric PH population, 3D volumes, 3D RV

ejection fraction, FAC, and free wall RV longitudinal strain were

significantly associated with outcome (79). The ratio of 3D RV

stroke volume to end-systolic volume (ESV) ratio as an estimate

of RV-arterial coupling correlated with RV strain and was found

to be a strong predictor of adverse clinical events in pediatric

patients with PH (80).
Secondary tricuspid regurgitation

The ability of 3DE to characterize patterns of chamber

remodelling resulting in secondary TR has prompted

investigation into the prognostic impact of atrial and
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TABLE 3 Studies using RV volumes, EF and strain as prognostic indices.

Publication Study aim (s) Parameters
studied

Population and methods Prognostic parameters

Li et al. (86) To predict adverse clinical outcomes in
CTEPH patients with 3D RV indices

RV volumes and EF • 151 consecutive CTEPH pts

Median follow up: 19.7 months

3D analysis of RVEF was a predictor of
adverse clinical outcomes [hazard ratio,
1.576; 95% confidence interval (CI), 1.046–
2.372; P = 0.030]

Meng et al. (69) To determine whether 3D-STE
parameters were the more powerful
predictors of poor outcomes in HFpEF
patients compared with 2D-STE
indices

3D RV volumes, EF
and 3D-RVFWS

• 81 consecutive patients with HFpEF

After a median follow-up period of 17
months, 39 (48%) patients reached the
end point of cardiovascular events

3D-STE parameters are powerful predictors
of poor outcomes, providing a similar
predictive value as 2D-STE indices in patients
with HFpEF

Vîjîiac et al.
(66)

To evaluate role of 2D RV strain and
3D RVEF in predicting adverse
outcome in patients with non-ischemic
dilated cardiomyopathy.

RV global longitudinal
strain, RV FWS,
3DRVEF

• 50 eligible patients

Median follow-up of 16 months, 29
patients reached the primary endpoint

3D RVEF is an independent predictor of
major adverse cardiovascular events in
patients with dilated cardiomyopathy

Wang et al.
(103)

To investigate whether 2D strain and
3DE could identify impaired RV
function after anthracycline exposure

RV 4CHLS, RV FWS,
3D RVEF

61 patients with diffuse large B-cell
lymphoma treated with anthracycline
were studied

2D STE and 3D echocardiography are
valuable methods for evaluating
anthracycline-related impairment of RV
function in DLBCL patients receiving
chemotherapy. RV FWLS and RVEF are
reliable predictors of RV systolic dysfunction

Liu et al. (104) To explore the value of RV parameters
detected by 3DE in risk stratification in
PAH patients

RV volumes, EF, RV
FWS

91 PAH patients (34 ± 12 years, 25
males) were enrolled, among which, 42
were classified into low-risk group, while
49 were intermediate-high risk group

RV volumes, EF and free wall strain detected
by 3DE were independent predictors of
intermediate-high risk stratification in PAH
patients, among which, RVEF showed the
best predictive capacity

Tokodi et al.
(73)

To explore the association between RV
contraction patterns pre mitral valve
surgery and post-operative RV
dysfunction

3D RVEF, radial and
longitudinal
components of
function

• 42 patients (63 ± 11 years)
undergoing MV surgery

Patients had pre-operative, at-discharge,
and 6-months post-operative TTE’s

There was a shift in RV contraction
mechanics from longitudinal contraction
predominance pre- and radial pre-dominance
in the first 6 months post MV surgery. Pre-
operative LVEF predicted post-operative RV
dysfunction in patients undergoing MV
surgery

Nagata et al. (1) To determine whether 3DRVEF
predicts future cardiovascular events

RV volumes, EF 446 patients with various cardiovascular
diseases

3D TTE-determined RV EF was
independently associated with cardiac
outcomes. 3D RVEF offered incremental
value over clinical risk factors and other
echocardiographic parameters including LV
systolic and diastolic function for predicting
adverse outcome

Tamborini et al.
(105)

To assess RA, RV and TA geometry
and function in patients undergoing
MV repair +/− TV annuloplasty

3D RA, RV volumes
and tricuspid annulus

103 patients undergoing MV surgery
without (54 cases) or with (49 cases)
concomitant TV annuloplasty and 40
healthy controls

Patients undergoing MV surgery and TV
annuloplasty had an increased TA
dimensions and a more advanced
remodelling of right heart chambers
reflecting more advanced disease

Vitarelli et al.
(70)

To investigate whether 2D, 3D RV
assessment could result in better
correlation with hemodynamic
variables indicative of heart failure

2D and 3D volumes,
EF and strain

• 73 patients (53 ± 13 years; 44% male)
with chronic PH of different
etiologies were studied by cardiac
catheterization and echocardiography

25 precapillary PH, 23 obstructive
pulmonary heart disease, 23 postcapillary
PH from mitral regurgitation and 30
healthy controls

ROC curves: detecting hemodynamic signs of
RV failure were 39% for 3D-RVEF (AUC
0.89), −17% for 3DGFW-RVLS (AUC 0.88),
−18% for GFW-RVLS (AUC 0.88), −16% for
apical-free-wall longitudinal strain (AUC
0.85), 16 mm for TAPSE (AUC 0.67), and
38% for RV-FAC (AUC 0.62)

3D, 3-dimensional; CTEPH, chronic thromboembolic pulmonary hypertension; DLBCL, doxorubicin chemotherapy; HFpEF, heart failure with preserved ejection fraction;

EF, ejection fraction; MV, mitral valve; RA, right atrial; RV, right ventricular; RVFWS, right ventricular free wall strain; STE, strain echocardiography; TA, tricuspid annulus; TV,

tricuspid valve; TTE, transthoracic echocardiography; PAH, pulmonary arterial hypertension.
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ventricular TR. In a population of patients with moderate-severe

TR, patients with atrial TR comparably exhibited a lower rate of

all-cause death and hospitalization due to heart failure (81).

Categorization of TR severity as mild, moderate, and severe

based on 3DE-derived regurgitant volume and effective

regurgitant orifice area (82) revealed progressively higher rates
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of all-cause death and hospitalization due to heart failure with

increasing TR severity, imparting the importance of the severity

grading (81, 83). As aforementioned, estimation of right

ventricular-to-pulmonary artery coupling in these patients can

be challenging and therefore surrogate measures derived from

3DE have been investigated. In one study, a ratio between RV
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forward stroke volume and end-systolic volume less than 0.40

was associated with a higher risk of death and heart failure

hospitalization (27).

It is important to note that structural tricuspid valve

procedures and trials do not yet employ 3D indices of the right

ventricle or tricuspid valve for decision-making (84). Data on the

utility of 3D RV analysis in this space should become available

shortly from the TRILUMINATE trial imaging sub-study.

Additionally, there are two other studies incorporating 3D of the

tricuspid valve which are currently recruiting patients:

NCT05130775 and NCT05747404. The results of these studies

are highly anticipated.
Pulmonary embolism/chronic
thromboembolic pulmonary hypertension

Understanding the impact of a pulmonary embolism on the

RV is essential in determining severity and in assessing recovery

in follow-up. Here, 3DE of the RV has been shown to have the

potential to serve as a useful adjunctive tool in both the acute

and chronic settings. In the case of acute sub-massive

pulmonary embolism, a reduced 3D RV ejection fraction was

noted to be the most sensitive predictor of adverse events and

signified a longer time for recovery of function at follow-up

compared to 2D parameters (85). In an adult population of

patients with chronic thromboembolic disease, a machine

learning-based calculation of RV ejection fraction from 3D RV

datasets, with a determined cut-off of approximately 31%, was a

significant predictor of adverse events these in patients (86).

Multiple studies utilizing 3DE have sought to characterize RV

function before and after pulmonary thromboendarterectomy

for management of chronic thromboembolic pulmonary

hypertension. Findings revealed a consistent trend of

significantly reduced chamber volume and improved systolic

performance post-operatively that persisted at long-term follow-

up (87–89).
Future directions

While, in the last decade, speckle tracking analysis of left

ventricular performance has significantly fueled the

investigation of LV mechanics and its prognostic value, the

exploration of 3D RV strain has not advanced. The complex

morphology of the RV chamber, the difficulty associated with

imaging this chamber and the lack of dedicated software are all

factors that have contributed to the sparse interest in 3D RV

mechanics. More recently, with the development of different

software solutions, characterization of 3D RV mechanics in

healthy volunteers (90), and a variety of cardiac diseases (91)

has been initiated by some investigators. 3D RV strain has been

shown to be independently associated with short-term

outcomes in patients undergoing cardiac surgery (73, 92), the

severity of obstructive sleep apnea (93), prognostication in heart
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failure with preserved ejection fraction (69) and pulmonary

hypertension (94, 95).

Studies performed on the left ventricle have indicated that its

shape carries information independent from conventional

functional measurements and is related to prognosis (96, 97).

Alterations in 3D left ventricular shape have also been cited as

an early manifestation of remodeling in patients with severe

mitral regurgitation and normal left ventricular ejection

fraction (98). Unlike the left ventricle, the peculiar

morphology of the RV does not allow its shape to be

simplified to resemble a simple geometrical model. For this

reason, RV shape has largely been studied in terms of regional

curvedness. Subtle changes in the physiological condition is

reflected by local adaptation of the RV wall which can be

quantitatively measured by its curvature, for example, a more

locally convex or concave wall. RV curvature is altered as a

consequence of the remodeling induced by pathological

conditions, such as pulmonary hypertension (48, 99), volume

overload (62), but also in the settings of congenital heart

disease (63) and in patients with mechanical circulatory

support (100).

While it has been established that 3D RV measurements are

more accurate and prognostic than 2D parameters, it is notable

that in the vast majority of centers around the world 3D RV

dataset acquisition is not able to meet the requirements to

perform a reliable quantitative analysis (19). Indeed, even

when data is adequate, quantitative analysis is usually time

consuming and requires well-trained echocardiographers to

ensure adequate accuracy and reproducibility. This paradox

produces a challenge for image-guided artificial intelligence

systems of the future to predict, display, and guide

echocardiographers and sonographers during image acquisition

with the goal to increase the feasibility rate of subsequent 3D

RV analysis. This ability already exists in a rudimentary form

to guide novices to acquire and display diagnostic quality 2D

images (101). Artificial intelligence solutions could also be

developed with the potential to fully automate the

identification and segmentation of the RV. Fusion of data

obtained from different imaging planes/probe positions could

theoretically be used to, for instance, address the problem of

acquiring a complete dataset in abnormal and large RVs. Deep

learning algorithms have already shown promise in accurately

predicting 3D RV ejection fractions from two-dimensional

images, identifying RV dysfunction with an accuracy equivalent

to an expert (78%) and with the additional potential to predict

major adverse cardiac events (102). If this combination of

AI-guided algorithm allowing quality controlled acquisition,

automated segmentation and multiparametric—functional,

morphological and mechanical and even hemodynamic

(if acquisition of invasive RV pressures and 3D

echocardiographic datasets could be acquired simultaneously to

develop pressure-volume loops)—quantitative analysis becomes

available, it would become an important, accurate and

reproducible tool for the assessment and understanding of RV

pathophysiology (Figure 11).
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FIGURE 11

A look into the future of right ventricular assessment by 3D echocardiography: after the acquisition of the 3D dataset of the RV chamber, eventually
supported by artificial intelligence (AI)-guided systems, a machine learning (ML) algorithm will be able to obtain a rapid, accurate and reproducible
segmentation of the RV cavity. Based on these time-evolving surfaces, a comprehensive analysis of the RV will be automatically carried out, from
conventional functional analysis (volumes and ejection fraction) to more sophisticated quantitative analyses, including morphological analysis in terms
of local curvature or local mechanical function, as assessed by displacement and strain measurements.

Randazzo et al. 10.3389/fcvm.2023.1263864
Conclusions

3D echocardiography offers substantial advantages for

comprehensively evaluating the right ventricle compared to

conventional 2D echocardiographic assessment. The growth of

3DE has corresponded with an increasing number of diagnostic

applications requiring global chamber assessments as well as

considerable investigation into the prognostic significance of 3DE

measures. Novel analysis techniques including RV strain and

shape combined with automated interpretations may further

expand the role of 3DE in clinical practice.
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