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Using RNA-based therapies to
target the kidney in cardiovascular
disease
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Edinburgh, United Kingdom, 2Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh,
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RNA-based therapies are currently used for immunisation against infections and to
treat metabolic diseases. They can modulate gene expression in immune cells and
hepatocytes, but their use in other cell types has been limited by an inability to
selectively target specific tissues. Potential solutions to this targeting problem
involve packaging therapeutic RNA molecules into delivery vehicles that are
preferentially delivered to cells of interest. In this review, we consider why the
kidney is a desirable target for RNA-based therapies in cardiovascular disease
and discuss how such therapy could be delivered. Because the kidney plays a
central role in maintaining cardiovascular homeostasis, many extant drugs used
for preventing cardiovascular disease act predominantly on renal tubular cells.
Moreover, kidney disease is a major independent risk factor for cardiovascular
disease and a global health problem. Chronic kidney disease is projected to
become the fifth leading cause of death by 2040, with around half of affected
individuals dying from cardiovascular disease. The most promising strategies for
delivering therapeutic RNA selectively to kidney cells make use of synthetic
polymers and engineered extracellular vesicles to deliver an RNA cargo. Future
research should focus on establishing the safety of these novel delivery
platforms in humans, on developing palatable routes of administration and on
prioritising the gene targets that are likely to have the biggest impact in
cardiovascular disease.
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Introduction

RNA-based therapies are emerging as an effective and versatile class of medications in a

range of diseases. So far, they have been largely limited to small interfering RNAs (siRNAs)

that mediate gene silencing in hepatocytes and mRNA vaccines. Their full potential will be

unlocked when we learn how to target them effectively to other cell types. In this review, we

consider recent progress towards developing RNA-based therapies that can selectively target

kidney cells and in particular renal tubular epithelial cells (rTECs). Given the central role of

the renal tubules in maintaining cardiovascular homeostasis, such novel therapies could have

the greatest impact in treating cardiovascular disease (CVD).

We begin by briefly introducing the concepts of RNA-based therapy and reviewing the

causative relationship between kidney disease and CVD. We then discuss attempts to deliver

RNA-based therapies selectively to rTECs in animal models and humans. We conclude by

positing the potential clinical impact that these novel therapeutics could have in

cardiovascular disease.
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The advantages of RNA-based drugs

How RNA-based drugs work

There are several different classes of RNA therapeutic,

including mRNAs, siRNAs, RNA aptamers and CRISPR guide

RNAs (1). In principle, any class of coding or non-coding RNA

could form the basis of a drug (2), as could novel engineered

RNAs such as self-amplifying RNAs (3). However, three

strategies are currently most advanced in terms of their clinical

development.

In the first, siRNA, shRNA (short hairpin RNA) or anti-sense

oligonucleotides (ASOs) silence the expression of a pathogenic

mRNA through RNA interference (RNAi). These molecules

directly bind their cognate mRNA and inhibit protein synthesis.

This process is the mammalian correlate of a phenomenon that

was first characterised in plants and C elegans (4). In the second,

ASOs are used to inhibit microRNAs (miRNAs): the endogenous

negative regulators of mRNA expression. Such “antagomirs” thus

de-repress expression of beneficial mRNAs. In the third major

class, mRNA molecules increase the expression of a gene of

interest (5). This can be a successful strategy for immunisation,

as the Moderna Covid-19 vaccine powerfully demonstrated (6). It

could also restore expression of deficient protein or mediate gene

editing in a range of diseases.
Why RNA-based drugs offer advantages
over conventional small molecule drugs

Our current approach to treating kidney and cardiovascular

disease relies almost entirely on conventional small molecule

drugs. These drugs have been developed over decades, often

more by accident than design. They tend to have rapid

metabolism—and so require daily or twice-daily dosing—and to

target receptors that have been chosen predominantly because

they are easily “druggable”, rather than because they are

necessarily the most important points in a disease pathway. Drug

development is slow, in part because of the relatively

unpredictable safety profile of small molecules.

RNA-based therapies could potentially solve all of these

problems (7, 8). RNA-based therapies can be designed to target, in

principle, any gene of interest. Defined therapeutic classes, such as

siRNA, have standard pipelines for development and manufacture,

allowing for rapid, relatively inexpensive drug development. They

also have predictable pharmacokinetic properties. Fortuitously,

liver-targeting siRNAs appear to induce long-lasting therapeutic

gene silencing (9, 10), so that dosing might be required every few

months, potentially improving drug adherence.

However, for the successful clinical application of RNA-based

therapies in kidney disease, we must first learn how to direct

these drugs selectively to kidney cells. After intravenous injection,

naked RNA is widely distributed amongst different body tissues

(11). There are also additional challenges: ensuring biological

safety, determining the most effective route of administration and

overcoming off-target effects.
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The kidney is a therapeutic target in
cardiovascular disease

The kidneys maintain cardiovascular
homeostasis

The kidneys maintain cardiovascular homeostasis by regulating

the circulating volume and blood pressure (12). Therefore, many

extant drugs used for preventing or treating cardiovascular

disease target the kidney and specifically the most abundant

kidney cell, the renal tubular epithelial cell (rTEC). Renin-

angiotensin system inhibitors, sodium-glucose co-transporter

inhibitors (SGLT2i), diuretics and mineralocorticoid inhibitors,

which have all been shown to reduce cardiovascular disease in

various clinical contexts, act predominantly by altering kidney

solute transport (13). Therefore, the concept of targeting the

kidney to treat or prevent cardiovascular disease is well-established.
Kidney disease causes cardiovascular disease

The other rationale for targeting the kidney to treat

cardiovascular disease, is that chronic kidney disease (CKD) is a

leading risk factor for cardiovascular disease. Therefore, treating

kidney disease per se will reduce cardiovascular disease.

CKD is the eighth leading cause of death worldwide (14), with just

over 10% of the adult population affected to some degree (13, 15). It is

associated with excess morbidity and mortality, an association that is

not fully explained by confounding from co-morbid cardiovascular

disease (CVD), diabetes and hypertension (16). The leading cause of

death in CKD is cardiovascular disease (CVD), accounting for 40%–

50% of deaths (17), compared to ∼33% of deaths in the general

population (18). Both GFR and albuminuria are independent risk

factors for mortality and myocardial infarction (19). The

mechanisms whereby loss of glomerular filtration (GFR) or

albuminuria cause cardiovascular disease are still relatively poorly

understood, but likely involve volume expansion, increases in cardiac

pre-load and after-load, perturbed calcium-phosphate homeostasis

and increased exposure to circulating “uraemic” metabolites (20).
How could RNA therapies treat kidney and
cardiovascular disease?

RNA-based therapies are already being used in the clinic to treat

kidney disease, but not by directly targeting kidney cells. For example,

Lumasiran is an siRNA that targets glycolate oxidase in hepatocytes

that is effective at treating primary hyperoxaluria (21). Similarly,

RNA-based therapies for cardiovascular disease target gene expression

in the liver: angiotensinogen for hypertension, or PCSK9 or

apolipoprotein B-100 for hypercholesterolaemia (22–24).

Underscoring the tight association between kidney and cardiovascular

health, liver-targeting angiotensinogen siRNA protected against

kidney damage in a rat subtotal nephrectomy model of CKD (25).

There are some other metabolic diseases in which targeting gene

expression in the liver will improve kidney outcomes, but for the vast
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majority of kidney diseases, it will be necessary to develop therapies

that can directly regulate gene expression in kidney cells. The

capacity for treating cardiovascular disease will be hugely

augmented if we can develop drugs that target the kidneys, given

their central role in cardiovascular homeostasis. Therefore, potential

strategies for kidney-specific RNA delivery are being tested

extensively in pre-clinical models. These are summarised in Table 1

and we chose some interesting examples to discuss in the text below.
How can we target kidney cells with
siRNA?

The challenge

Naked RNA is a negatively-charged macromolecule that does not

easily cross the hydrophobic, negatively-charged cell membrane. In

the absence of modifications, naked RNA is subject to nuclease
TABLE 1 Kidney-targeting siRNA-based therapies in pre-clinical and clinical d

Pre-clinical trials Reference Cell/tissue type targeted

siRNA target
Trp53 Molitoris et al. (26) Proximal tubular epithelial cells

Egfp and Tgfb1 Takabatake et al. (27) Glomeruli

Mapk1 Shimizu et al. (28) Glomeruli

Smad4 Morishita et al. (29) Tubulointerstitium and tubule
Epithelial cells

Cox2 Yang et al. (30) Peritoneal macrophages recruited to
the kidney

Fas, C3 and RelB Zheng et al. (31) Glomeruli and medullar tubule cells

Ctr1, Trp53 and Mep1b Alidori et al. (32) Cortex and PTECs

Cd40 Narváez et al. (33) Tubulointerstitium

p38a MapK and p65 Wang et al. (34) Glomerular mesangium and
peritubular endothelial cells

Trp53 Thai et al. (35) Tubular epithelial cells

Caspase-3 and
complement-3 siRNA

Zheng et al. (36) Proximal tubular epithelial cells

HSP47 Xia et al. (37) Proximal tubular epithelial cells

P53 Thai et al. (35) Proximal tubular epithelial cells

miR-21 Gomez et al. (38),
Rubel et al. (39)

Tubular epitheilial cells and
podocytes

miR-17 Lee et al. (10) Tubular epithelial cells

Clinical trial/FDA

approved

Reference Tissue type targeted

siRNA target
Glycolate oxidase Liebow et al. (40, 41) Liver

Lactate dehydrogenase Lai et al. (41, 42) Liver

p53 Thompson et al.
(41, 43)

Proximal tubule

QPI-1002 Thielmann et al. (44) Proximal tubule

Trp53, transformation related protein 53; Egfp, epidermal growth factor protein; Tgfb

Smad4, suppressor of mothers against decapentaplegic homolog 4; Cox2, cyclooxy

homolog B; Ctr1, copper transporter 1; Mep1b, meprin A subunit beta; CD40, cluste

transcription factor p65/nuclear factor NF-kappa-B p65 subunit; HSP47, heat shoc

Pharmaceuticals); IV intravenous; IP, intraperitoneal; SC, subcutaneous; AKI, acute kid
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degradation and clearance by the kidneys and reticuloendothelial

system (45, 46). The challenge is to learn how we can modify RNA

molecules, or package them within delivery vehicles, so as to enhance

delivery to kidney cells. An ideal delivery vehicle would selectively

deliver its RNA cargo to rTECs and preserve the functional effects of

the RNA in recipient cells (e.g., gene silencing). It should be able to

deliver RNA across the cell membrane and not into endosomal

degradation pathways. It should also be non-immunogenic, non-

toxic, biologically inert, cheap to manufacture and delivered through

a patient-friendly route (e.g., subcutaneous injection) (47).

Broadly, RNA can be delivered as “naked” nucleic acid or in

delivery systems that are classified as viral or non-viral (Figure 1).
Naked RNA

Nakednucleic acids, injected systemically, are excreted in the urine

and accumulate within the kidney, particularly in renal tubular cells
evelopment.

Disease model Carrier and route of
administration

Cisplatin-induced and ischemic AKI
models in rats

Naked; IV

Glomerulonephritis model in rats Naked, renal artery

Glomerulonephritis model in mice and rats Polyion complex nanocarriers; IP

Renal fibrosis model in mice Naked; IV

UUO model in mice Chitosan NPs; IP

Ischemic AKI in mice Naked; renal artery

AKI model in mice Fibrillar carbon nanotubes (fCNT); IV

UUO model in mice Naked; IV

Glomerulonephritis model in mice Liposomal NPs, IV

AKI model in mice DNA nanostructure; IV

Renal ischaemia reperfusion injury Naked; IV

Tubulointerstitial fibrosis Gelatine microspheres; intraurethral

AKI (polymicrobial-induced) DNA tetrahedron nanovehicle; IV

Alport nephropathy Naked, SC

Autosomal dominant polycystic kidney
disease

Naked, SC

Kidney disease Carrier, administration and status

Oxaluria GalNAc; Sc; FDA Approved on 11/20/
2019 (Lumasiran)

Oxaluria GALNAc; SC; Phase 3 Clinical trial
(Nedosiran/NCT04042402)

Delayed graft function and acute kidney
injury after cardiac surgery

Naked; IV; Phase 3 Clinical trial
(Teprasiran (NCT02610296)

ARF, AKI delayed graft function post
transplantation

Phase I- NCT00554359 Phases I/II-
NCT00802347

1, transforming growth factor beta 1; Mapk1, mitogen-activated protein kinase 1;

genase-2; C3, complement factor 3; RelB, reticuloendotheliosis viral oncogene

r of differentiation 40; p38a MapK, p38a mitogen-activated protein kinase; p65,

k protein 47; P53, p53 tumour suppressor gene; QPI-1002, teprasiran (Quark

ney injury; UUO, unilateral ureteral obstruction.
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FIGURE 1

Strategies for selective delivery of siRNA to kidney cells. siRNA can be packaged into lipid-based, polymer-based, viral-based systems or extracellular
vesicles. Viral vectors or nanoparticles conjugated to different targeting ligands, such as antibodies, aptamers, peptides or small molecules, form
different carrier systems that are preferentially internalised by kidney cells. These targeting delivery vehicles bind to their cognate receptor on kidney
cells and are endocytosed. Exogenous siRNA enters the cytosol by endosomal escape. siRNA is then cleaved by dicer enzyme into a passenger
strand, which is recycled, and the guide strand loaded onto the RISC complex. siRNA degrades mRNA strand by full complementarity and inhibits
protein synthesis. Diagram created in Biorender.
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(48–51). This kidney delivery is not selective; naked RNA is also

delivered to liver, spleen, lung, heart and adipose tissue (11, 48, 49,

52, 53). Nor is naked RNA very stable: the systemic half-life of

unmodified siRNA is measured in seconds to minutes (11, 53).

The stability and biodistribution of siRNA can be altered by

chemical modification of the RNA backbone. Phosphorothioate

siRNA accumulates preferentially in the kidneys, relative to

other organs (11). Phosphorothioate modification enhances uptake

from the peritubular capillaries in isolated perfused rat kidneys (54).

There is also uptake from the urinary space. This might, in part, be

mediated through endosomal receptors in proximal rTECs; in

monkeys, 2′-O-methyl phosphorothioate oligonucleotides appear to

compete with low-molecular proteins for uptake into rTECs (55).

In contexts where rapid clearance and off-target RNA delivery

is not problematic, naked RNA could be used to therapeutic effect.

Naked siRNA targeting the tumour suppressor gene p53 has been

tested in pre-clinical and clinical trials of acute kidney injury.

Intravenous administration gave effective delivery to rTECs and

prevented kidney injury in rat models of ischemia-reperfusion

injury and cisplatin toxicity (26). This siRNA is now in phase

three clinical trials for the treatment of delayed graft function

after transplantation (NCT02610296), and acute kidney injury

after cardiac surgery (NCT03510897) (43).
Frontiers in Cardiovascular Medicine 04
Some oligonucleotides appear to be selectively delivered to

kidney cells when delivered in their naked form. For example, an

ASO directed against miRNA-17 performed well in pre-clinical

trials of polycystic kidney disease (ADPKD) (10). Intriguingly, this

oligonucleotide was preferentially delivered to the kidney as

opposed to the liver, and specifically delivered to renal tubular

epithelial cells. The mechanism directing this specific delivery is

unknown, although the authors of that study speculate that it may

be related to the short length of the ASO (9-nucleotides). This is

now being tested in a phase I human trial (NCT04536688).

Similarly, the miR-21 antagomir, Lademirsen, accumulates in kidney

cells and was effective in mouse models of Alport nephropathy

(38, 39). However, a phase 2 clinical trial was terminated after a

futility analysis (NCT02855268), highlighting the need for careful

selection of candidate oligonucleotides for clinical testing and

appropriate trial design—as for any other drug class.
Viral systems

Viral vectors are highly effective at delivering genetic material to

target cells (56). Viral vectors can be chosen based on an inherent

tropism for a target cell type or tissue or, engineered to enhance this
frontiersin.org
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tropism. For example, delivery of shRNA to kidney cells has been

achieved using AAV2 in rats (57). Viral vectors may be inactivated

by removing the viral genome to generate a non-infectious delivery

vector, circumventing the safety concerns of live virus. One such

envelope vector, derived from the haemagglutinating virus of Japan

(HVJ) delivered cDNA for a mitochondrial membrane protein to

glomerular and renal tubular cells in diabetic mice (58).

Whilst the risks of cellular toxicity and immune reactions are

minimised with third generation adenoviral vectors (59), there is

a concerted effort to develop synthetic carriers for RNA such as

nanoparticles or extracellular vesicles. These could eliminate the

safety concerns of viral vectors and offer advantages in terms of

cheap, scalable manufacturing and flexibility in design.
Lipid-based nanoparticles

Lipid-based nanoparticles (LNPs) are the most established non-

viral RNA delivery system (60–63). These are typically <100 nm in

diameter, can be engineered to traverse the phospholipid cell

membrane and have very little toxicity and immunogenicity (63).

One issue that has faced investigators developing LNPs to target

organs other than the kidney, is that renal elimination is the major

route of LNP clearance. Therefore LNPs are typically modified,

e.g., by including PEG-lipids, to minimise renal clearance (63).

This might of course be a counterproductive strategy in the

development of any kidney-targeting therapy. Indeed, there are

very few examples of LNPs that have been developed to deliver

RNA to kidney cells, and certainly to rTECs. As proof of principle

that this could be possible, one group were able to effect gene

silencing in mesangial and glomerular endothelial cells in a mouse

model of IgA nephropathy, using polyethyleneimine-containing,

octa-arginine-coated liposomes (34).
Polymer-based nanoparticles

Synthetic polymers have been used to stabilise and deliver RNA

(64). Negatively charged nucleic acids coupled with positively

charged polymers to form polyplexes (60). Polymers that have

been employed include polyethylenimine (PEI), poly-(ethylene-

glycol)-poly-(L-lysine) (PEG-PLL), poly (lactide-co-glycolide)

(PLGA), poly-amidoamine dendrimers (PAMAMs) and the

fungal polysaccharide chitosan (47, 65).

Many polymer particles are sufficiently small (<20 nm) that

they ought to cross the glomerular filtration barrier. In mice, a

PEG-PLL carrier significantly enhanced delivery of fluorescently-

tagged siRNA to kidneys in mice, compared to a naked siRNA

control (28). A MAPK-targeting siRNA delivered through this

system mediated gene silencing in glomerular cells and exerted a

therapeutic effect in a glomerulonephritis model.

Chitosan particles showed promise as a kidney-targeting strategy

in an early murine biodistribution study, with siRNAs accumulating

in the kidney, 24 h after intravenous administration (11). The likely

mechanism of this effect was subsequently demonstrated using an

elegant transgenic model. AQP1-targeting siRNA delivery was
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restricted to megalin-expressing rTECs in a mosaic megalin

knockout mouse, providing compelling evidence that these

nanoparticles cross the glomerular filtration barrier and are then

internalised by the multi-ligand endocytic receptor megalin (66).

Branched, symmetrical “dendrimers” are a polymer subclass

with particularly attractive properties with respect to RNA

delivery (67). They have multiple surface groups to which

targeting ligands could be attached. For example, dendrimers

decorated with folic acid or the small cyclo peptide cRGDfC have

been used to deliver siRNA selective to proximal tubular cells

(expressing the folic acid receptor) or podocytes (expressing αvβ3
integrin) respectively in murine kidney disease models (68, 69).

Recent developments in kidney-targeting RNA delivery vehicles

have involved nanoparticles with sophisticatedmolecular structures.

In mice, modified carbon nanotubules have been used to deliver

siRNA into rTECs: a strategy that induced therapeutic effects when

silencing p53 and the metalloprotease Meprin-1β in cisplatin-

induced AKI (32). The authors of that study speculate that carbon

nanotubes are able to traverse the glomerular filtration barrier by

virtue of being long and thin, whereas more globular nanoparticles

tend to accumulate in the liver. Nanosized tetrahedra, constructed

from DNA (10 bp per side), were able to deliver siRNA specifically

into rTECs and again conferred protection from cisplatin injury

via p53 silencing (35). Although these strategies clearly show great

promise, as selective delivery relies on the physiochemical

properties of the delivery vehicle—rather than recognition of a

specific ligand by a cell-surface receptor—they may be limited in

their ability to target specific rTEC subtypes.
Extracellular vesicles

Extracellular vesicles are released by all cells into the extracellular

space. They are either derived from the plasma membrane or the

endosomal pathway (“exosomes”) and carry with them a subset

of cellular macromolecules, including RNA (47, 70, 71). Their

cellular origin endows them with inherently low toxicity and

immunogenicity. They may also offer a natural solution to the

targeting problem as they are preferentially internalised by cells of

the same type from which they were derived (72).

Furthermore, EVs can be readily engineered to express surface

receptors to enhance delivery to specific target cells. For example,

EVs engineered to express the rabies virus glycoprotein (RGV)

peptide gave enhanced delivery of an siRNA cargo to kidney cells

(73, 74), because kidney cells express the RGV ligand, the

nicotinic acetyl choline receptor (75). Similarly, EV delivery can

be directed by modulating surface immunoglobulin (76) or

integrin expression (77).

One elegant demonstration of the power and flexibility of this

approach was provided by an experiment designed to deliver

siRNA specifically to diseased rTECs. When erythrocyte-derived

vesicles were engineered to express a KIM-1 ligand, they delivered

cargo siRNA preferentially to injured rTECs in murine ischaemia-

reperfusion and ureteral obstruction models (78). Delivery of

siRNAs targeting p65 and Snail ameliorated tubulointerstitial

fibrosis. The ability to target a defined subset of tubular epithelial
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cells (or indeed other kidney cell types) would open up a range of

subtle therapeutic options with minimal off-target side-effects. For

example, depletion of senescent rTECs has been shown to improve

recovery from ischaemia-reperfusion injury in a mouse model

(79); could a selective senolytic therapy be achieved by delivering

pro-apoptotic RNAs selective to senescent rTECs?

As RNA carriers can be engineered to express surface ligands that

direct them to kidney cells, the obvious question is: which ligands will

deliver these vehicles most effectively to kidney target cells (e.g.,

rTECs)? A variety of ligand classes have been tested: peptides,

antibodies, aptamers, carbohydrates, and small molecules

(Figure 1). Ligands for the major proximal rTEC receptors

megalin, cubulin and transferrin are obvious candidates (and we

have already discussed some above). Antibodies or antibody-like

molecules have been used to target kidney endothelial cells (anti-

VCAM1) and proximal tubular cells (anti-CD11b and anti-CD163);

however, their use may be limited by their large size which leads to

deposition of immune complexes on the glomerular basement

membrane and therefore a risk of glomerulonephritis (60, 80–85).
Administration routes for
kidney-targeting RNA therapies

Nanoparticles delivered into the systemic circulation face

significant hurdles to reaching the kidney. They may be degraded

by the reticuloendothelial system or—depending on their chemical

composition—be preferentially delivered to the liver. Furthermore,

there is uncertainty as to the extent to which nanoparticles can

cross an intact glomerular filtration barrier. Some provocative

studies suggest that fluorescently-labelled extracellular vesicles can

traverse this barrier in healthy mice and humans, even though

their size and charge profile ought to be prohibitive (86, 87).

In pre-clinical models, direct administration into the renal

artery, renal vein, ureter or kidney parenchyma have been used

to deliver RNA to the kidney, but the translational potential of

these routes is obviously limited (37, 60). One intriguing research

question is whether physical methods could be used to enhance

selective delivery of a systemically-administered RNA drug. It

may be possible to modify delivery of RNA vehicles using

ultrasound, electromagnetic stimuli or light (60, 88). For

example, after systemic delivery of the drug delivery vehicle,

focussed ultrasound beams can direct the vehicle to specific cell

types and, via acoustic cavitation, induce localised cargo release.

This approach was successful for enhancing kidney delivery of a

DNA plasmid in mice (89). Alternatively, electroporation of the

kidney also enhanced delivery of siRNA and shRNA in mice,

after intra-arterial administration (27, 90).
Conclusions and perspectives

RNA-based therapies offer a powerful opportunity to target

new pathways in cardiovascular disease. Existing RNA-based
Frontiers in Cardiovascular Medicine 06
therapies largely target gene expression in hepatocytes and are

therefore limited in their ability to treat cardiovascular disease.

The kidney is an attractive target in cardiovascular disease

because the kidney plays a central role in maintaining

cardiovascular homeostasis and because CKD is a leading risk

factor for cardiovascular disease.

Various approaches to delivering RNA selectively to kidney cells

are being tested in pre-clinical models. Polymer and vesicle-based

delivery systems show promise, particularly in their ability to

deliver siRNA selectively to rTECs, without inciting toxicity or

immune activation. Extracellular vesicles can be engineered to

express surface ligands that interact with receptors on specific

kidney cells, permitting highly selective delivery of RNA to target

cells. Several lines of evidence suggest that megalin (and perhaps

also cubulin) mediates uptake of exogenous RNA from the tubular

space, whether the RNA is delivered as naked nucleic acid or

complexed to polymeric delivery vehicles. Delineating the precise

molecular details of this pathway and its relative contribution to

total kidney RNA uptake will be important areas of study.

Future research should also focus on establishing the safety of

these novel delivery platforms in humans and on developing

palatable routes of administration. In particular, strategies that

induce long-lasting gene silencing could offer advances in drug

adherence, which would help to reduce the prevalence of

cardiovascular disease. Therefore, the potential targets of novel

RNA-based therapies include established targets of conventional

small-molecule drugs (e.g., renin-angiotensin and SGLT2

inhibitors) as well as a theoretically unlimited array of novel targets.
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