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Treatment of malignant lymphoma has for years been represented by many
cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic
irradiation. Although they are in clinical practice for decades, the precise
mechanism of cardiotoxicity and effective prevention is still part of the research.
At this article we discuss most routinely used anti-cancer drugs in
chemotherapeutic regiments for malignant lymphoma with the focus on novel
insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at
molecular levels may unveil possible targets of cardioprotective supportive
therapy or optimization of current therapeutic protocols. Additionally, we review
novel specific targeted therapy and its challenges in cardio-oncology.
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1. Introduction

Malignant lymphomas are neoplasms where the tumor cells are of lymphoid or

histiocytic origin. 21st-century advances in understanding molecular pathology and

immunephenotyping led to an important update in its WHO classification (1).

Lymphomas are categorized into two main diagnostic subgroups according to their

biological characteristics: Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma

(NHL) (2). In NHL, one of the common treatment regimens used is R-CHOP consisting of

rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) and there are various

other regimens depending on molecular and antigenic properties of neoplastic elements

(3). The most used regimens for HL are ABVD (doxorubicin, bleomycin, vinblastine,

dacarbazine), BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide,

vincristine, procarbazine, prednisone) and escalated BECOPP with higher doses of

cyclophosphamide, doxorubicin, etoposide and with granulocyte colony-stimulating factor

(4, 5). Anti-cancer treatment regularly combines chemotherapy with local irradiation (5).

Wide range of other regimens are available, and selection depends on the type and severity

of the disease, the clinical condition of a patient, or the presence of relapse.

Cardiovascular adverse events related to anti-cancer therapy generally include heart

failure, myocarditis, vascular toxicities, hypertension, cardiac arrhythmias, corrected QT

prolongation, and pericardial vascular heart disease. Association between therapeutic
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modality (anti-cancer drugs or radiotherapy) and adverse events is

either established or still being investigated (see Table 1). The exact

definitions of entities listed above are defined in ESC Guidelines on

cardio-oncology 2022 (6). According to the meta-analysis of Boyne

et al., both HL and NHL long-term survivors suffer from increased

risk of death from cardiovascular disease (7.3 and 5.35 times

higher, respectively) compared to the general population (7).

Among HL survivors treated before the age of 25, the risk of a

cardiovascular event was even higher and the 40-year cumulative

incidence of cardiovascular disease was 50% in this population

(7, 8). With regards to a high survival rate of HL patients, this

topic has become an emerging issue in after-care, especially for

HL patients treated at a younger age. Treatment-related

cardiotoxicity is classified as acute and chronic, where chronic is

divided into two main subcategories: early-onset (type I) and

late-onset (type II). Type I occurs within one year after

chemotherapy cessation. Type II cardiotoxicity is detected after

the first year with an unlimited timeframe and sometimes may be

observed even decades after discontinuation of chemotherapy (9).
1.1. Anthracyclines

Anthracycline drug family discovery is dated in the 1950s with

daunorubicin isolation from Streptomyces peucetius (10).

Subsequently, a derivative of daunorubicin called Adriamycin,

later renamed doxorubicin (DOX), was synthesized and both of

them proved to be effective anti-tumor agents (11, 12). DOX is

one of the most potent drugs used in the treatment of both NHL

and HL (13).

Anthracycline anti-tumor effect depends on several

mechanisms such as apoptosis induction via inhibition of

topoisomerase II (TOP2), intercalation into the deoxyribonucleic

acid (DNA) leading to an inhibition of macromolecules

synthesis, or production of reactive oxygen species (ROS) causing

DNA damage or lipid peroxidation (14).

Anti-tumor effect of anthracyclines is accompanied by dose-

dependent cardiac toxicity that has been thoroughly investigated
TABLE 1 Association between therapeutic modality (anti-cancer chemothera

Valvular
damage

Arrhythmia Takotsubo
cardiomyopathy

My
infa

DOX (24) (19) (20, 21)

CTX (92)

Rituximab (140) (137)

Platinum-based
drugs

(130, 131)

Vinca alkaloids

Bleomycin

Dacarbazine

Etoposide (164, 165)

Procarbazine

Prednisone (171)

Thoracic
irradiation

(182) (191) (192)

The relation was determined either in clinical trials (pink squares) or in case reports (y

Frontiers in Cardiovascular Medicine 02
in studies trying to establish a safe dose of anthracyclines (15).

Cardiotoxic properties are the main limit of its use in elderly

lymphoma patients and in patients with history of cardiac

disease (13).

Cardiotoxicity of DOX clinically presents as both acute and

chronic. Acute cardiotoxicity may emerge as acute and usually

reversible heart failure and/or acute arrhythmogenicity which

usually manifests as premature ventricular beats observed after

10 min to 24 h following infusion of DOX (12, 16). Clinical

manifestation of acute cardiotoxicity includes toxic myocarditis

with cardiomyocyte impairment, inflammatory reaction and

interstitial edema (17). Vascular toxicity may be caused by

increased platelet adhesion with endothelial cells leading to

formation of microthrombi and compromised blood flow (18).

Anthracyclines reduce myocardial repolarization reserve which

increases the risk of Torsade de Pointes (especially in

combination with other QT-prolonging agents and hypokalemia)

(19). Furthermore, takotsubo cardiomyopathy in a 24-year-old

and 53-year-old man treated with anthracyclines was reported

(20, 21).

Regarding chronic anthracyclines cardiotoxicity, a large study

from the year 2003 revealed that 5%, 16%, and 26% of patients

experienced DOX-related heart failure at cumulative doses of

400, 500, and 550 mg/m2 respectively. Also, the authors

postulated age as a risk factor for DOX-related heart failure (22).

Based on this study the upper limit for a cumulative dose of

anthracyclines 400–450 mg/m2 was established. In a prospective

study of 120 patients treated for advanced breast cancer,

epirubicin induced a slowly progressing decrease of cardiac

function continuing years after treatment cessation, 20% of

patients progressed into chronic heart failure in 3 years after

cumulative dose 850–1,000 mg/m2 of epirubicin (23).

Chronic cardiotoxicity represents a growing concern, especially

in childhood cancer survivor cohort. Survivors were significantly

more likely to develop congestive heart failure, myocardial

infarction, pericardial disease, or even valvular pathology than

their healthy siblings (cumulative dose of DOX 250 mg/m2 or

higher increased relative hazard o cardiac adverse event by 2–5
py or radiotherapy) and adverse events.

ocardial
rction

↓LVEF Myocarditis Pericardial
disease

Vascular
toxicity

(24) (22) (18) (24) (18)

(99) (90, 93,
95)

(90, 91) (90)

(141) (144)

(136) (135) (125)

(148, 149)

(155, 156) (153)

(162, 163)

(180) (193) (180) (184)

ellow squares) or not evaluated/discovered (white squares).
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times) (24). Another study consisting of 830 children treated with a

cumulative dose of DOX 300 mg/m2 presented a 10% incidence of

anthracycline-induced chronic heart failure (25). All these data

support long-term close cardiac monitoring after discontinuation

of anthracycline therapy. Risk factors for anthracycline-induced

cardiotoxicity include anthracycline dose, female gender,

concomitant irradiation, age, genetic factors, concomitance with

trastuzumab administration, and anticancer treatment during

childhood (22, 26–28).

1.1.1. Mechanisms of anthracycline cardiac toxicity
Anthracycline cardiotoxicity has been a subject of research for

more than 70 years, however, the exact mechanism has not yet

been clarified. Early research focused on ROS-mediated cell and

DNA damage. Antineoplastic agents exert their main toxic effects

in tissues composed of rapidly dividing cells, however,

myocardial cells have limited regenerative capability resulting in

irreversible damage (29). Initial studies showed that the main

cause of cardiotoxicity is oxidative stress caused by iron-

anthracycline complexes that resulted in lipid peroxidation and

cell membrane damage. The high sensitivity of myocardium to

oxidative stress may be attributed to lower activities of ROS

depleting protective mechanisms such as catalase, DOX-induced

depletion of glutathione peroxidase, high myocardial metabolic

activity, and high concentration of cardiolipin with positive

affinity to anthracyclines (30–33).

Cardiotoxicity of anthracyclines was thought to be based on

inhibition of the reduction of NAD+ to NADH+H+ during

reverse electron transport in mitochondrial respiratory complex

I. Furthermore, DOX caused a reduction of molecular oxygen (to

O2−) followed by the rise of oxygen consumption by

anthracycline semiquinone radicals (34). Oxidative stress leads to

the activation of several apoptotic pathways such as the p53

pathway and p38 mitogen-activated protein kinase (MAPK) (35,

36). Cytochrome c is located in the inner membrane of

mitochondrion and administration of DOX is causing

cytochrome c release, which leads to activation of procaspase-9

and generating caspase-9 which proteolytically activates caspase-3

responsible for DNA fragmentation and apoptosis. According to

many studies, DOX can trigger intrinsic, extrinsic, and

endoplasmic reticulum-associated apoptotic pathways (37, 38).

Furthermore, adaptive responses to DOX were discovered.

Administration of DOX increases copper-zinc superoxide

dismutase (supporting the theory about DOX-induced superoxide

radical production). Additionally, an increase in BCL2:BAX ratio

was observed (as an adaptation to antioxidant stress). All these

findings support the theory that DOX induces oxidative stress

and mitochondria-mediated apoptosis which goes hand in hand

with adaptive responses to protect cardiac myocytes (39).

Mechanisms of anthracycline-induced cardiotoxicity with

possible therapeutic targets are displayed in Figure 1.

1.1.1.1. Mitochondrial dysfunction
The proposed mechanism of chronic cardiotoxicity is a qualitative

and quantitative injury of mitochondrial DNA (via impaired

respiratory chain and increased production of ROS). These
Frontiers in Cardiovascular Medicine 03
effects accumulate over time even in the absence of anthracycline

exposure (40). DOX also stabilizes DNA-TOP2 cleavable

complexes, resulting in double-strand breaks (41). This

mechanism may lead to a decrease of mitochondrial DNA

content and a rise in lactate concentration (42). Altering

mitochondrial function may result in cardiomyocyte death and

impairment of high-energy phosphate metabolism even in the

absence of cardiomyopathy (43, 44).

1.1.1.2. Role of topoisomerase II beta
Type II topoisomerases are divided into two subfamilies (α and β)

(41). More recently, studies were focused on the possible role of

Topoisomerase II β (TOP2β) in DOX-induced cardiotoxicity.

While Topoisomerase II α (TOP2α) is present dominantly in

proliferating cells, TOP2β is found mostly in quiescent cells

including cardiomyocytes (45). Peroxisome proliferator-activated

receptor gamma coactivator-1 α and β (PGC1α and PGC1β) play

an important role in energy processes in mitochondria (46).

Expression of PGC1α is decreased in failing human hearts (47).

DOX-TOP2β complexes inhibit transcription of the genes

PGC1α and PGC1β, which may result in impairment of energy

and antioxidative metabolism according to several studies, and

lead to mitochondrial damage (48, 49).

Mice with cardiomyocyte-specific deletion of the TOP2β do

not develop DOX-induced heart failure, therefore, it is suggested

that TOP2β plays a key role in DOX-mediated cardiotoxicity

(48). Furthermore, according to mice models, ROS production

and p53 activation seem to be TOP2β-dependent (50). To

conclude, the presence of TOP2β is essential for DOX-mediated

double-strand breaks, activation of apoptotic pathways, and

impairment of mitochondrial function and ROS production(51).

1.1.1.3. Role of muscle ring finger −1 and myocardial
atrophy
Recently, several new studies focused on a myocardial mass

evaluated by cardiovascular magnetic resonance (CMR). These

studies discovered that left ventricular (LV) mass declines after

anthracycline chemotherapy. However, this observation was not

confirmed in patients receiving chemotherapy without

anthracyclines (52). It seems that the decline in LV mass results

from cardiomyocyte atrophy (reduction in a cardiomyocyte size)

(53). MuRF1 (muscle ring finger −1) is a ubiquitin ligase

marking defective proteins for degradation in proteasome and is

essential for the development of cardiac atrophy (54, 55). DOX-

treated mice developed dose-dependent upregulation of the

ubiquitin ligase MuRF1 that was responsible for cardiac atrophy

(55). MuRF1 pathway may therefore be regarded a candidate

target to prevent DOX-mediated cardiac atrophy.

1.1.1.4. Specifics of DOX-mediated cardiotoxicity in
childhood
Pathophysiological mechanisms underlying cardiac damage during

anthracycline therapy in childhood result from organ system

development and growth. One of these proposed mechanisms of

chronic cardiotoxicity in childhood cancer survivors is through

DOX-mediated reduction of proliferation and differentiation of

the progenitor cells and impairment of vascular development
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with decreased capillary density. These conditions may result in the

heart being more susceptible to stress during adulthood (58).
1.1.1.5. Other possible mechanisms of anthracycline
cardiotoxicity
Other mechanisms of cardiotoxicity include direct DNA damage,

disruption of the sarcomere protein titin (involved in force

regulation of sarcomeres), and alterations in phospholipid

content (32, 59). Electron microscopic examination shows a

myofibrillar loss, vacuolar degeneration, and nuclei exhibit

chromatin disorganization leading to cell death (60).
1.1.2. Prevention of cardiotoxicity
1.1.2.1. Antioxidants, apoptotic pathway inhibitors,
angiotensin converting enzyme inhibitors (ACE-i), beta
blockers
Initial preventive measures were focused on decreasing oxidative

stress in cardiomyocytes. Various animal and cell culture studies

have tried to exploit relevant pathways of anthracycline-mediated

cardiotoxicity. Carvedilol is an adrenergic-blocking agent with

antioxidant activity. Possible cardioprotective properties of

carvedilol were studied in cultured cardiac muscle cells and pre-

treatment with carvedilol significantly attenuated the production

of ROS and DNA fragmentation but atenolol (with no

antioxidative effect) did not possess cardioprotective properties

(61). DOX induces cyclooxygenase-2 activity, which is associated

with a cardiac injury that could be prevented by an

administration of prostacyclin according to an in vivo study by

Down et al. (62) on murine models.

Apoptosis of bovine aortic cells exposed to DOX was

accompanied by a significant increase in cellular iron uptake and

activation of iron regulatory protein 1, the latter mediated by the

transferrin receptor. Iron uptake, cell apoptosis, and intracellular

oxidant formation were significantly reduced in the presence of

an anti-transferrin receptor antibody. Similar effects were

observed with iron chelators (63). Another possible target is

Protein kinase B (also known as Akt), which is a serine/

threonine kinase promoting anti-apoptotic signals (64). In animal

models, intracoronary adenoviral vector Akt 1 gene delivery

resulted in the inhibition of DOX-induced reduction in cardiac

function (65, 66).

The administration of probucol, a molecule with an antioxidant

effect, prevented the decline of cardiac function caused by DOX.

Probucol prevented changes (phosphorylation) of pro-

apoptotically acting MAPK (67).

Unfortunately, from many possible cardioprotective agents

(N-acetylcysteine, phenethylamine, coenzyme Q10, vitamin E,

C, L-carnitine, carvedilol, amifostine, and dexrazoxane) only

dexrazoxane statistically proved cardioprotective effect in

humans (68).

In a prospective, randomized, controlled study possible

cardioprotective long-term effects in lymphoma patients treated

with ACE-i (enalapril) or beta-blocker (metoprolol) or placebo

were examined, but they did not prove statistically significant

effects (69).
Frontiers in Cardiovascular Medicine 04
Another randomized, controlled, double blind clinical trial was

PRADA study on candesartan and metoprolol effect on cardiac

dysfunction during adjuvant breast cancer therapy. Patients in

the control group had 2.6% decrease in LVEF. On the contrary,

patients receiving candesartan had 0.8% decline in LVEF.

Surprisingly, there was no effect on global longitudinal strain,

diastolic LV function, brain natriuretic peptide or troponin levels.

Metoprolol did not provide positive effect on LVEF (70).

Currently, another clinical trial investigating possible

cardioprotective properties of betablockers and ACE inhibitors in

breast cancer patients treated with anthracyclines, is running

(SAFE study) (71). However, clinical studies fail to provide

strong evidence on benefits of ACEi and BB in prevention of

anthracycline cardiotoxicity.
1.1.2.2. Natural bioactive compounds (NBACs)
Natural bioactive compounds (NBACs) have recently been of high

interest for their possible medical effects. On contrast of synthetic

drugs, this class of molecules is of natural origin (e.g., terpenes,

flavonoids, alkaloids etc.). Elfadadny et al. (72) reviewed possible

relationship between DOX and various NBACs regarding anti-

tumour regulatory effects and toxicity protection. Through the

reduction of ROS synthesis and increased activity of antioxidant

enzymes, NBACs could mitigate DOX-induced cardiotoxicity.

Moreover, via NBACs high affinity to TOP2α, NBACs may

augment the anti-tumor effect. However clinical application of

these compounds in therapeutic protocols should be supported

by randomized clinical trials in the future (72).
1.1.2.3. Dexrazoxane
Considering that cardiotoxicity is mediated by the Fenton reaction,

many studies were focused on studying chelating agents with an

assumption of their cardioprotective properties. In the study by

Swain et al. (73), dexrazoxane (chelating agent) was administered

after a cumulative doxorubicin dose of 300 mg/m2 in patients

treated for advanced breast cancer (in combination with 5-

fluorouracil and cyclophosphamide). The overall incidence of

heart failure was 3% in the group receiving dexrazoxane vs. 22%

in the placebo group. Moreover, dexrazoxane was confirmed to

reduce troponin elevation and late cardiotoxicity in children

treated for acute lymphoblastic leukemia (74).

Interestingly, another chelating agent deferasirox did not

possess cardioprotective properties, suggesting that iron chelation

might not be the main pathophysiological mechanism

responsible for dexrazoxane’s protective effect (75). It has been

proposed that the main effect may be exerted through blockage

of DOX interference with TOP2β (76). According to Lyu et al.

(76), dexrazoxane changes the configuration of TOP2β thus

preventing binding of DOX. Consequently, these findings may

result in an apprehension of dexrazoxane mitigating anticancer

effects, but in the meta-analysis, dexrazoxane did not alter the

time to disease progression or survival rate. Current

recommendations include dexrazoxane following DOX dose of

300 mg/m2 or higher (77, 78).
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1.1.2.4. Liposomal doxorubicin
Using liposomal encapsulation of DOX affects its pharmacokinetics

and tissue distribution. Liposomal DOX cannot pass through the

vessel wall with tight capillary junctions in healthy organs such

as the heart but passes easily through the leaky endothelium in

tumor tissue. Additionally, tumor tissue lacks functional

lymphatic drainage, which results in liposomal DOX

accumulation (79). Liposomal doxorubicin may be used in

pegylated (more frequent) and non-pegylated forms. These forms

increase the half-life of the original drug (80). These forms

proved to be comparably efficient with significantly reduced

cardiotoxicity, but their applicability is limited by the cost (81).
1.1.3. Secondary prevention
Cardiac damage may be diagnosed or monitored by laboratory

parameters or imaging methods (CMR, echocardiography).

Laboratory parameters for early detection of left ventricular

dysfunction include troponin and N-terminal pro B-type

natriuretic peptide (NT-proBNP) (82–84).

Many parameters obtained from imaging methods were

evaluated with promising results including a new parameter, the

myocardial work which integrates cardiac deformation and LV

pressure. In a study of 130 patients with NHL scheduled for

R-CHOP, myocardial work proved to be appropriate for

diagnosing subclinical cardiotoxicity and predicting left ventricle

ejection fraction (LVEF) decline (85). Current standards for the

identification of DOX-induced cardiotoxicity include an evaluation
FIGURE 1

Mechanisms of anthracycline-induced cardiotoxicity with highlighted possibl
alterations [direct damage and processing alterations through inhibition of
apoptosis [via casp3, p53 and p38 pathway (25, 35, 39)], and decreased
degradation (56, 57)]. Cell parts illustrations were implemented from free Serv
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with LVEF and global longitudinal strain. However, other

parameters are discussed including LV mass [in the study from

Jordan et al. (52) evaluated from CMR] which proved to

be a better predictor of heart failure symptomatology than

LVEF (52, 86). The study of Jordan et al. (52) also proposed

that myocellular dysfunction may not be pathophysiologically

linked to impaired adaptive remodeling during anthracycline

chemotherapy.

1.1.3.1. Prompt initiation of heart failure therapy
According to study of 201 patients with anthracycline-induced

cardiomyopathy, early detection of decreased ejection fraction

(LVEF below 45%) with prompt initiation of heart failure

therapy with ACE-i (enalapril) and carvedilol led to LVEF

recovery and cardiac event reduction. On the contrary, the

initiation of treatment of CHF in the time greater than 6 months

after discontinuation of chemotherapy resulted in permanently

reduced LVEF in all patients (87).
1.2. Cyclophosphamide

Cyclophosphamide (CTX) acts as an alkylating agent with

antineoplastic, immunosuppressive, and immunomodulatory

properties. CTX is a part of many therapeutic protocols used

during stem cell transplantation, anti-cancer therapy, and several

refractory autoimmune conditions treatment (88). CTX is used in

the treatment of advanced stages of malignant lymphoid
e therapeutic targets. Anthracycline cytotoxic effects in cell include DNA
cardiac TOP2beta (14)], energy metabolism impairment, induction of

contractility [involvement of MURF1 pathway and myosin heavy chain
ier repository available at: https://smart.servier.com/.
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FIGURE 2

Mechanism of CTX-induced cardiomyopathy and its possible pharmacoprevention. CTX cytotoxic properties are similar to those of anthracyclines to a
certain degree as both drugs direct several similar cellular compartments including mitochondria (energy metabolism) (99) and myosin heavy chains
(MURF1) (111). Moreover, CTX cardiac adverse events are mediated through signal impairment (METTL3 downregulation), vasospasm (inhibition of
NOS), interstitial haemorrhage (induced through direct cell damage and formation of microthrombi), inflammation (upregulation of NF-kappa-B),
oxidative stress and apoptosis (103–105). Cell parts illustrations were implemented from free Servier repository available at: https://smart.servier.com/.
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neoplasms. These may include HL and NHL (e.g., lymphocytic

lymphoma, small lymphocytic lymphoma, Burkitt lymphoma),

and multiple myeloma (89).

High-dose CTX may cause pericardial effusions, pericardial

tamponade, CHF, and acute hemorrhagic myopericarditis with

myocardial thickening (caused by intramyocardial extravasation

of blood, fibrin, or fibrin-platelet microthrombi in capillaries, and

fibrin strands in interstitium—see Figure 2) and progressive

ventricular dysfunction (90, 91). In addition, in a case study,

CTX administration led to atrial fibrillation with rapid

ventricular rate was described (92). Systolic dysfunction may

develop from a single dose of high-dose CTX and is less

dependent on a cumulative dose. Systolic dysfunction usually

occurs 5–16 days after initiation of CTX therapy and is

potentially reversible (90, 93–97),. Depression of ECG voltage, ST

abnormalities, systolic dysfunction, or increase in left ventricle

diastolic/systolic diameter on echocardiography and troponin

elevation may predict cardiac injury (90, 95).

Cardiotoxic properties are mainly associated with high doses of

CTX 120–200 mg/kg usually administered over 2–5 days (90, 98,

99). Dose calculation based on body surface area proved to be a

better cardiotoxicity predictor than a calculation based on weight.

The predicted safe dose of CTX is 1,55 g/m2/dose (93).

High-dose CTX regimens around 200 mg/kg are included in

bone marrow transplantation, as escalation to the upper limit

significantly reduces the risk of relapse (100). However, the
Frontiers in Cardiovascular Medicine 06
incidence of heart failure following bone marrow transplantation

with CTX regimen reaches 20% and mortality about 8% (95).

In refractory autoimmune conditions such as refractory

systemic lupus erythematosus (with or without subsequent stem

cell transplant), rheumatoid arthritis, multiple sclerosis or

hemolytic anemia etc., high-dose CTX (200 mg/kg) is a part of

several treatment protocols (101–106). Risk factors for CTX-

mediated cardiotoxicity include lymphoma patients, concomitant

use of anthracyclines, mediastinal irradiation, and patients in

higher risk of developing ischemic heart disease (88).

1.2.1. Mechanism of cardiotoxicity
CTX is a prodrug metabolized by hepatic cytochrome C 450

into 4-hydroxycyclophosphamide and aldocyclophosphamide,

which decomposes into cytotoxic phosphoramide mustard and

acrolein (107). While phosphoramide is responsible for

therapeutic effect (acts on seven-guanine residues of DNA

leading to intrastrand and interstrand cross-links and cell death),

acrolein may act as toxic mainly in the cardiovascular system

interfering with the antioxidative metabolism resulting in

elevated ROS production and drop of endothelial nitric oxide

(NO) formation (99, 108–110). Additionally, toxic acrolein

potential includes hemorrhagic cystitis and other toxicities linked

to CTX such as gonadal toxicity, carcinogenesis, and bone

marrow suppression (111). Some authors suggest that CTX

metabolites may even cause direct damage to the endothelial cells
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and myocardium resulting in edema, interstitial hemorrhage and

the formation of microthrombi (88). Endothelial cells are

susceptible to CTX toxic effects, possibly due to their high

proliferation rate and CTX -induced drop of production of

endothelial NO leading to endothelial dysfunction (88).

1.2.2. Molecular pathways impaired
There are studies demonstrating activation of the p38-MAPK

pathway, through which acrolein may act as an upregulator of E3

ligases and MuRF1. This results in the degradation of myosin heavy

chain (56, 57). Acrolein preferentially binds to nucleolar ribosomal

DNA and induces oxidative stress-mediated damage and provokes

ribosomal stress responses by activation of p53 (112). CTX also

triggers various proinflammatory and proapoptotic mediator

responses such as those mediated by nuclear factor-kappaB (NF-

κB), cyclooxygenase-2, tumor necrosis factor-α (TNF-α) and

interleukin-1β (IL-1β) (113). These pathways are potential targets to

antagonize CTX -induced cardiotoxicity (114, 115).

CTX therapy is associated with reduced expression of heart-

type fatty acid-binding proteins (H-FABP) with a consecutive

decrease of mitochondrial transport and the oxidation of long-

chain fatty acid (LCFA) (116). Oxidative metabolism of free fatty

acids (FFA) provides about 70% of the energy required for the

normal function of the myocardium and its decline leads to

energy deficiency with subsequent accumulation of FFA toxic

metabolites (117). Nevertheless, daily supplementation of

L-carnitine might possibly reverse these effects (117).

By these mechanisms CTX and its main metabolite acrolein

cause vasospasm, myocyte dysfunction, and necrosis/apoptosis

which may lead to heart failure (109). Recently Zhu et col.

demonstrated that CTX induces RNA N6-methyladenosine

(m6A) modification by upregulating methyltransferases METTL3

expression and suppressing junktophillin-2 (JPH2) expression. By

this mechanism CTX causes calcium signaling dysregulation and

cardiac dysfunction and this pathway may possibly represent

target for cardioprotective therapy (118).

Nuclear factor erythroid 2-related factor 2 pathway (Nrf2)

impairs both oxidative stress and inflammation response) and

according to some authors it is one of the main pathways by

which CTX could cause cardiotoxicity (119).

1.2.3. Prevention
Several molecules exhibited antioxidative properties that

mitigated CTX -induced cardiotoxicity in in vivo animal models.

Kolaviron (mixture of flavonoids with antioxidant and membrane

stabilizing effect) administered 14 days prior to CTX treatment

reduced CTX -mediated alteration of cardiac structure and

metabolism (108). Furthermore, the combination of curcumine

(cardioprotective phytoconstituent) and piperine (bio-enhancer)

exhibited significant protection against CYP-induced myocardial

toxicity and pre-treatment with N-acetylcysteine provides some

cardioprotective effect with no alteration of CTX metabolism and

its therapeutic efficacy (120, 121).

According to the preclinical studies above, the use of

antioxidants to reduce ROS generation may suppress cardiotoxic

adverse events. However, further human in vivo studies are needed
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to show their potential therapeutic efficacy (111). Another

potential cardioprotective agent seems to be nicoradil which

possess potassium channel opening effect, stimulates eNOS gene

expression and has anti-inflammatory and antiapoptotic properties

(122). Stern et col published a study on a multicellular coculture

[hepatocytes, cardiomyocytes, triple negative breast cancer (TNBC)

cells] with CN06 dual activator of Nrf2 and constitutive

androstane receptor for TNBC. Via selectively activation of NrF2

antioxidant signaling in cardiomyocytes but not in TNBC cells

they repressed DOX induced cardiotoxicity (with reduced

apoptosis and enhanced kinetics of contraction) (123).
1.3. Platinum-based chemotherapy agents

These agents possess anti-tumor properties through

crosslinking of DNA and formation of DNA adducts that

activate apoptotic pathways including p53, p73, and MAPK

(124). One of the main adverse effects is vascular toxicity linked

to obesity and hypertension (125). Cisplatin-based chemotherapy

impairs endothelial function and causes elevation of endothelial

and pro-inflammatory acting proteins [C-reactive protein, von

Willebrand factor, plasminogen activator inhibitor (PAI-1), and

tissue-type plasminogen activator], whereas patients with elevated

PAI-1 are in a higher risk of developing metabolic syndrome

(126). These pathophysiological changes may result in intima-

media thickening, endothelial injury, and dysfunction (127, 128).

Animal model studies indicated that cisplatin may exhibit its

own cardiotoxic properties by an increase in caspase-3 activity

that leads to apoptosis of cardiomyocytes and subsequent drop of

cardiac muscle contraction (129). Recently published study

pointed out possible arrhythmogenic potential of cisplatin. In

large retrospective study patients who received cisplatin had 4

times increased risk of developing atrial fibrillation (130). And in

addition, at least three case reports of cisplatin induced

bradycardia were reported, in two cases even with a necessary

pacemaker implantation for atrioventricular block (131, 132).

More studies are needed to prove arrhythmogenic potential of

cisplatin. Although several studies have not confirmed cisplatin-

related depression of cardiac systolic function (133, 134), few case

reports describing the cardiotoxic potential of cisplatin are

documented—a case report of a 27-year-old man presenting with

acute anterior myocardial infarction after chemotherapy with

cisplatin and a case of a 53-year-old woman whose ejection fraction

dropped from 70% to 48% after the third cycle of cisplatin-based

chemotherapy. These reports suggest that, in rare cases, cisplatin

may cause depression of the systolic function of a left ventricle by

the mechanism documented in animal models (135, 136).
1.4. Rituximab

Rituximab is a monoclonal anti-CD20 antibody used for the

treatment of hematooncological malignancies originating from

CD20-expressing B-cells, such as chronic lymphocytic leukemia

(CLL), diffuse large B cell lymphoma, follicular lymphoma, or for
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selected autoimmune diseases (rheumatoid arthritis or systemic

lupus erythematosus) (137–139).

Administration of rituximab may potentially lead to

arrhythmias, as it was reported in the European phase II study

of rituximab. In this study cardiac arrhythmia was detected

in 8.3% of patients (140). Observed arrhythmias included

supraventricular tachycardia or ventricular tachycardia. The

proposed underlying mechanism of rituximab-induced

arrhythmias is due to the release of cytokines such as IL-6 and

TNF-α. A case report documented rituximab treatment-related

release of cytokines, that led to vasoconstriction, platelet activation,

and rupture of atherosclerotic plaque in coronary arteries resulting

in myocardial infarction (137, 141). Nevertheless, according to a

retrospective study of 2,350 patients, therapy with rituximab was

not associated with increased occurrence of cardiotoxicity (142).

The incidence of any cardiac event during treatment with

CHOP vs. R-CHOP was 35% vs. 47% respectively, however, the

incidence of severe cardiac events did not differ between both

groups that is in accordance with the assumption of no

significant cardiac toxicity of rituximab (143). However, a case

report of a 66-year-old man who developed Takotsubo

cardiomyopathy after receiving rituximab for CLL, or a case of a

51-year-old man, who developed non-ischemic cardiomyopathy

after rituximab intravenous administration for membranous

nephropathy, are documented (137, 144). Both cases point out

the necessity of close monitoring cardiotoxicity during treatment.
1.5. Vinca alkaloids

Vinca alkaloids are anti-cancer drugs that have been widely used

since 1963. These include vincristine, vinblastine, and vindesine (145).

Vincristine acts as a mitosis blocker by inhibiting the

polymerization of tubulin and incorporation into microtubules,

which leads to programmed cell death. Its anti-neoplastic effect is

followed by dose-limiting neurotoxicity (145). Cardiac toxicity of

vincristine remains unexplored. Interestingly, according to a mice

study, vincristine may prevent DOX-induced cardiomyopathy

through activation of pro-survival signal mediated through Akt

and diminished cytochrome C release (146).

On the contrary, patients on long-term vincristine treatment

had a higher incidence of an abnormal global longitudinal strain

than controls (147). Moreover, few case reports of adverse

cardiovascular events after administration of vincristine such as

coronary spasm or vinorelbine-related non-ST elevation acute

coronary syndrome were published (148, 149). Vinca alkaloid

neurotoxicity may impair the cardiac autonomic nervous system

affecting the regulation of heart rate and blood pressure (150).
1.6. Bleomycin

Bleomycin belongs to a family of glycopeptide antibiotics with

anti-neoplastic activity based on the incorporation of thymidine

into deoxyribonucleic acid (DNA). Its main adverse event is

pulmonary toxicity (151). Especially in small vessels, bleomycin
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may be responsible for the endothelial cell injury resulting in the

development of Raynaud phenomenon (152). Endothelial toxicity

may be mediated via bleomycin-induced E-selectin expression on

the endothelial cells that triggers inflammatory response (153).

Clear evidence about the potential cardiovascular toxicity of

bleomycin is missing because the majority of studies of cardiotoxic

effects include bleomycin in combination with various other

antineoplastic agents (154). However, few case reports have been

published describing acute chest pain syndrome after bleomycin

infusion (155, 156). In 2021 Gozhenko et al. published a study on a

rat model in which two weeks after bleomycin administration

myocardial weight decreased and repeated administration led to

irreversible changes in the myocardium and endothelial

dysfunction, which resulted in myocardial infarction. This study

proposed a possible link between bleomycin and cardiotoxicity (157).
1.7. Dacarbazine

Dacarbazine is a methylating drug used for the treatment of

malignant melanoma, sarcoma, or HL (158). Dacarbazine side

effects include vomiting, neutropenia, myelosuppression, or

alopecia. Any evidence on the cardiotoxic effects of this agent

has not yet been reported (159).
1.8. Etoposide

Etoposide anti-neoplastic effect is mediated by targeting TOP2

leading to DNA breaks. Etoposide is used for the treatment of lung

cancer, lymphoma and leukemia (160, 161).

Althoughetoposide isnotgenerallyrecognizedasacardiotoxicdrug,

associationsbetweenetoposideandcardiacdamagehavebeendescribed.

Main cardiac adverse events include myocardial infarction with

vasospasm, direct injury to the myocardial wall, or immune system

dysregulation as a proposed mechanism (162, 163).

Several case reports showed that treatment with etoposide is

associated with arrhythmogenic potential. Current literature describes

a case of a 57-year-old man who suffered from a reversible atrial

fibrillation episode a few minutes following etoposide infusion or a

case of bradycardia andQTc shortly after etoposide infusion (164, 165).

Cardiotoxicity of high-dose etoposide compared to high-dose

CYP in patients undergoing stem cell mobilization was assessed

according to the levels of NT-proBNP in a study from Ozkan

et al. and results showed that high-dose etoposide was 5,25 times

more cardiotoxic than CTX (166). On the contrary, etoposide is

regularly used in combination with DOX. According to in vitro

study on cardiomyoblasts, DOX-induced cardiotoxicity was not

increased in the presence of etoposide. This result favored DOX

and etoposide combination therapy (167).
1.9. Procarbazine

Procarbazine is an alkylating anti-neoplastic agent used for the

treatment of HL, malignant melanoma, and brain tumors in
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children (168). No evidence has yet been published regarding

procarbazine cardiotoxicity.
1.10. Prednisone

Prednisone acts as an immune-mediating agent and has wide use

in therapeutic protocols in hematopoietic malignancies originating

from lymphopoiesis (NHL, ALL). Glucocorticoids possess direct

and indirect effects on the heart and cell signaling pathways and

are essential for normal cardiac function at physiological levels

(169). Adrenalectomy in mice leads to deficit in left ventricular

function and ECG abnormalities and primary adrenal

insufficiency may even lead to cardiogenic shock (169, 170).

Nevertheless, high-dose intravenous corticosteroids were

associated with a higher incidence of atrial fibrillation,

ventricular tachycardia and bradycardia events (171). Sinus

bradycardia was not only described after high intravenous or oral

doses, but cases have been reported where sinus bradycardia

developed after daily 40 mg oral prednisone (172–175). The

underlying mechanism of cardiac arrhythmias remains unclear.

Proposed mechanisms include suppression of the cytokine

production, modification of the function of the sympathetic

nervous system, or through alteration of potassium flux across

the cell membrane (176, 177).
1.11. Thoracic irradiation

Thoracic irradiation may cause direct damage to any part of the

heart and most commonly affects valves, followed by coronary

arteries, myocardium, heart conduction system and pericardium

(178). The mean irradiation dose to the heart is significantly lower

using involved node radiotherapy than the mantle field technique (179).

1.11.1. Valvular dysfunction
Valvular susceptibility is higher in the left ventricle

(predominantly on the aortic valve) due to higher pressure.

Irradiation-induced aortic regurgitation is more common than

stenosis. This is in contrast with myocardial damage and fibrosis,

that are more frequently manifest in the right heart

compartments, possibly due to the position of the right ventricle

and anterior radiation fields (178, 180, 181).

Severe valvular disease during a median follow-up of 13 years was

diagnosed in 24,5% of HL survivors withmediastinal radiotherapy vs.

3,4% without mediastinal radiotherapy. Up to 18% of monitored

patients were indicated to have valvular surgery in the group which

received mediastinal irradiation vs. none in the group without

mediastinal radiation (182). Irradiation induces degenerative

changes and the absence of valvular disease early after radiation

does not indicate a low risk of late-onset valvular disease (decades

after therapy discontinuation) (183).

1.11.2. Coronary artery involvement
Significant coronary artery disease developed in 18% of

patients in 10 years follow-up after radiotherapy in the study by
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Horimoto et al. (180). Radiotherapy in patients with HL leads to

the formation of macrophage-rich inflammatory atherosclerotic

lesions with a tendency to intraplaque hemorrhage. This

pathophysiological process directly increases the risk of

atherosclerotic events (184). Radiation-associated coronary artery

disease (CAD) predominantly manifests in proximal parts of the

left main and right ostial coronary arteries due to higher

radiation doses to the anterior surface of the heart and often

affects women with low-risk factors for CAD (185, 186).

Manifestation of CAD is further promoted by radiotherapy-

induced chronic inflammatory state and higher prevalence of

diabetes (or metabolic syndrome) (125, 187, 188). The risk of

CAD manifestation was directly proportional to the mean heart

dose, however, according to the study of Maazen et al., an

increased level of physical activity decreased the risk of coronary

artery disease in a similar manner to the general population (189).

1.11.3. Myocardial damage and conduction
abnormalities

Main adverse effects of irradiation result in microcirculatory

damage and altered collagen concentration. These changes may

be responsible for defective diastolic distensibility of the

ventricles and marked fibrosis may cause arrhythmia such as AV

block (190, 191). Defective diastolic distensibility may lead to

restrictive cardiomyopathy and cause CHF which can be even

more potentiated by radiation-induced coronary artery disease,

pericardial or valvular disease. Moreover, case reports of

takotsubo cardiomyopathy following chest radiation have been

reported (192, 193).

1.11.4. Pericardium involvement
Extensive fibrous thickening and excessive pericardial fluid

were predominantly associated with older radiotherapy

techniques (44). Acute pericarditis often presents in the first year

after irradiation (180). Acute pericarditis results from small blood

vessels proliferation through the pericardium. These vessels are

usually damaged, resulting in increased ischemia and fibrosis.

Furthermore, venous and lymphatic vessel damage impairs the

ability to drain extracellular fluid (44). Thickening of

pericardium was diagnosed in 15% of patients treated with older

radiation techniques for HL with a median radiation dose of

41 Gy in a study by Lund et al. (164)

In another study by Galper et al. pericardial disease was

identified in 9 patients out of 1,279 HL survivors who were

treated with median dose of 40 Gy and cumulatively only 1,3%

of patients needed pericardial surgery after 25 years of follow up

(181, 194). Severe damage of pericardium seems to be a rare

complication in standard radiation doses.

Thoracic irradiation in childhood cancer survivors is an

emerging issue with a respect to the years of survival after

therapy discontinuation. According to the study by Mulrooney

et al. cardiac radiation exposure of 15 Gy or more during

childhood increased the relative hazard of cardiac events (CHF,

myocardial infarction, pericardial disease, and valvular

abnormalities) by twofold to sixfold compared to non-irradiated

long-term survivors (24).
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In a large-scale study of 13,060 childhood cancer survivors who

were followed up to the age of 50 years an individual prediction

model of ischemic heart disease was proposed, and cancer

survivors were categorized according to sex, chemotherapy, and

heart-absorbed radiation dose to low-risk vs. high-risk groups.

The cumulative incidence of ischemic heart disease at the age of

50 years among low-risk survivors was <5% compared with 20%

for high-risk groups (cumulative incidence for siblings were 1%)

(195). The cumulative incidence of cardiac disease in HL

survivors decreases from 21% (after mediastinal radiation dose of

36 Gy) to 10%, 6%, 5%, 3% after lower mediastinal radiation

doses (30 Gy, 25 Gy, 20 Gy, 0 Gy) (178).

Currently, novel radiation techniques such as mantle field

techniques are employed and high doses to anterior parts of the

heart are partly compensated by boost treatment from non-anterior

angles potentially decreasing the risk of cardiotoxicity (196).

Prevention is mainly focused on using modern irradiation

techniques with reducing heart’s exposure to radiation such as

prone positioning, deep inspiratory breath holding, intensity

modulated techniques, intraoperative irradiation (197). Yet, there

is no medicament to reduce radiation damage but in rat models

N-acetyl cysteine ameliorated cardiac injury induced by RT and

hence possibly could be used as radioprotector (198).
1.12. Novel specific targeted therapy

1.12.1. Bruton’s tyrosine kinase inhibitor
Assumingly, new cancer therapy-related cardiovascular

complications will be discovered with advances in targeted

therapy for malignant lymphoma (199). Ibrutinib (Bruton’s

tyrosine kinase (BTK) inhibitor nowadays used for refractory

chronic lymphocytic leukemia or mantle cell lymphoma (200)

increases the risk of atrial fibrillation potentially via inhibition of

cardiac PI3K-Akt signaling (201). The second generation BTK

inhibitors were introduced to reduce BTK-related cardiotoxicity.

In this generation, adverse effect occur in 6.3% vs. 20.8% cases in

first generation (202). Although according to Arustamyan et al.

(202), the second generation BTK inhibitors have increased

incidence of other adverse effects such as endocrine,

gastrointestinal, neurological etc. Pirtobrutinib is highly selective

BTK inhibitor and is classified as third generation. Mato et al.

(203) found that less than 1% of patients suffered from atrial

fibrillation and flutter and possibly unrelated to Pirtobrutinib.

1.12.2. Immune checkpoint inhibitors (ICI)
Immune checkpoint inhibitors (ICI) fight tumor cells

dominantly by the activation of T cells (204). Certain ICI posses

significant efficacy with an overall response rate in relapse/

refractory HL nevertheless in rare cases the cardiotoxic adverse

effect may be lethal (205). ICI associated cardiotoxicity is mainly

represented by myocarditis, pericarditis, arrhythmias and rarely

by coronary spasm (206–208). The exact mechanism of ICI-

related cardiotoxicity remains unclear, however proposed

mechanisms include shared antigen between tumor and

myocardium, T-cell receptor targeting homologous muscle
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antigen or certain T-cell receptors targeting dissimilar antigens

(209). ICI-related cardiotoxicity in solid tumors therapy was

described in 7% of patients with diabetes mellitus as an

independent risk factor (204). ICI possesses not only acute

cardiotoxicity but also late-onset cardiotoxicity. In the study

from Dolladille (200), late-onset cardiotoxicity was defined as

any cardiac adverse effect observed after more than 90 days

following therapy initiation. These adverse effects were mainly

represented by heart failure emphasizing the necessity of

prolonged cardiac follow-up after ICI therapy (200).

1.12.3. Chimeric antigen receptor T (CAR-T) cells
Immune therapy with CAR-T cells is currently reserved

for patients suffering from late stages or refractory

hematological malignancies. This novel therapeutic approach

yields promising results, however its alteration of immune

response leads to various cytokine-related adverse events (210).

The incidence of cytokine release syndrome (CRS), resulting

from overactivation of immune system, occurs in 70%–90%

patients receiving CAR-T cell therapy. Approximately one third

of all patients with CRS experience any cardiac adverse events

(211, 212). Most common are tachyarrhytmias (both

supraventricular and ventricular), QT-interval prolongation,

myocardial ischemia and thromboembolism (213). Further

investigation of exact mechansims of CAR-T cell therapy-

related cardiotoxicity is necessary to discover potential targets

of cardioprotective medication.
2. Discussion and future perspectives

In this review, we revisited the topic of cardiotoxicity of

conventional chemotherapeutics that still remain a mainstay of

therapeutic protocols used to treat malignant lymphomas.

Moreover it is still important to note, that many patients treated

in young age, that we follow-up today in cardiology/oncology

departments, received treatment based on chemotherapy only

and still need to be monitored for cardiotoxicity. An update to

“old and known” drugs pharmacology is important as novel

pharmacokinetic and pharmacodynamic properties are steadily

being discovered. Typical example is the pathophysiology

underlying TOP2 isoform-mediated cytotoxic effect of DOX. The

knowledge of tumor expressing predominantly TOP2α, while

other tissues expressing mainly TOP2β, rise a potential for

developing drugs of the anthracycline class selectively targeting

TOP2α. These may lead to reduction of cardiac damage.

Moreover, based on the individual expression of TOP2β, a

suitable (or alternative) chemotherapy regimen may be chosen,

however further studies are needed to explore this concept (51).

Current experimental studies on possible cardioprotective agents

have mostly been conducted on animal (murine) model with

promising results. However, large-scale human clinical trials failed

to provide significant results. One example of a successful

implementation of cardioprotective agent in clinical practice is

dexrazoxane. Several clinical trials on cardioprotection during anti-

cancer treatment are currently conducted including STOP-CA with
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atorvastatin/DOX (214). Early results of STOP-CA presented by

Neilan TG at ACC/WCC 2023 show that patients receiving 40 mg

of oral atorvastatin were less likely to develop 10% or greater

decline in LVEF than those receiving placebo. Female individuals

over the age of 52, obese patients and those receiving doses of

anthracyclines greater than 250 mg/m2 benefited the most from

daily atorvastatin (215). Clinical trial evaluating the effects of ACE-i

and β-blockers in management of cardiotoxicity in cancer patients

are expected to be completed in 2030 (216).

Another approach to reduce impact of anti-cancer

chemotherapy on cardiac function is to explore cardioprotective

effect of medication commonly used to treat cardiac disorders in

non-cancer patients (e.g., ischemic heart disease, congestive heart

failure etc.). As Cardinale et al. (87) reported, main benefit of

ACE-i and BB therapy in DOX-treated patients comes from its

early initiation when a drop of LVEF is discovered. This

implicates the necessity of proper follow-up visits as reported in

ESC 2022 cardiooncology guidelines (6).

As novel target/immune therapeutics are steadily introduced to

clinical practice, close cardiotoxicity monitoring is essential.

Although this treatment is marked as “targeted” (focusing its

toxic properties on tumor tissue), clinical trials still reveal

significant negative effects on cardiovascular system. Of the most

pronounced complications of ICI therapy, cardiotoxicity may

result from shared antigen or triggered systemic immune

response and is currently managed by immunesuppresants.

These, however, may modulate both cardiac toxicity and

undesirably anti-tumor effect (217). Thus ICI treatment adverse

events pose a future therapeutic challenge.

Similar complications rise from CAR-T cells-related

overactivation of immune system, CRS, which is classified as on-

target, on-tumor toxicity (218). Preventing the progression of

CRS impacts overall cardiovascular outcomes in CAR-T cell

patients. This can currently be achieved non-specifically by

corticosteroids (potentially causing cardiac adverse events

themselves and affecting anti-tumor effect of CAR-T cells) or

more specifically by Tocilizumab, an anti-IL6 monoclonal

antibody (217). Tocilizumab seems to be a promising

cardioprotective agent used to manage CRS with less effect on

CAR-T anti-tumor action (219).

Antigenic similarity remains an issue of CAR-T cell therapy.

Tumor antigens may resemble peptide sequences of cardiac cell

proteins as described in recent studies (220). These toxicities are

referred to as on-target, off-tumour toxicities and are generally

managed by immune modulatory drugs or by methods of

controlling CAR-T cells activity. These have mostly been described

in therapy regimens for solid tumors and are relatively rare in the

literature (220–222). However, these complications need to be

closely monitored and overcome, possibly by modern technologies,

such as logic-gating circuits and synthetic biology approaches (223).

Regarding BTK inhibitors, highly selective third generation is

expected to balance positives of the first- and second- generation

drugs of this class (203). Particularly Pirtobrutinib was found to

be safe and efficacious in multiple malignancies in clinical setting

(203) and was recently approved for the treatment of adult

patients with relapsed or refractory mantle cell lymphoma (224).
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3. Conclusion

Cardiotoxicity of anti-cancer treatment in malignant lymphoma

remains a challenge for oncologists and cardiologists. In this article,

we reviewed mechanisms of specific cardiotoxic properties of

currently used anti-cancer drugs for treatment of malignant

lymphoma and their clinical manifestations (in summary, see

Table 1). These statements imply the need for further research on

management of chemotherapy-related cardiac toxicity.

In 2022, European Society of Cardiology published new

cardiooncology guidelines with detailed risk stratification of

patients undergoing chemotherapy and follow-up strategy during

and after chemotherapy cessation (6). Close collaboration of

cardiologists and oncologists is essential to provide appropriate

care. Hopefully new and/or running clinical trials will come up

with new effective therapeutic approaches including specific

cardioprotective targeted therapy that will reduce cardiotoxicity

burden of currently used anti-cancer treatment.
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