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Ferroptosis: a new strategy for
cardiovascular disease
Yuyuan Wang and Junduo Wu*

Department of Cardiology, Second Hospital of Jilin University, Changchun, China

Cardiovascular disease (CVD) is currently one of the prevalent causes of human
death. Iron is one of the essential trace elements in the human body and a vital
component of living tissues. All organ systems require iron for various metabolic
processes, including myocardial and skeletal muscle metabolism, erythropoiesis,
mitochondrial function, and oxygen transport. Its deficiency or excess in the
human body remains one of the nutritional problems worldwide. The total
amount of iron in a normal human body is about 3–5 g. Iron deficiency may
cause symptoms such as general fatigue, pica, and nerve deafness, while
excessive iron plays a crucial role in the pathophysiological processes of the heart
through ferroptosis triggered by the Fenton reaction. It differs from other cell
death modes based on its dependence on the accumulation of lipid peroxides
and REDOX imbalance, opening a new pathway underlying the pathogenesis and
mechanism of CVDs. In this review, we describe the latest research progress on
the mechanism of ferroptosis and report its crucial role and association with
miRNA in various CVDs. Finally, we summarise the potential therapeutic value of
ferroptosis-related drugs or ferroptosis inhibitors in CVDs.

KEYWORDS

ferroptosis, coronary artery disease, lipid peroxidation, regulatory cell death, ncRNAs

1. Introduction

Cardiovascular diseases (CVDs) are a group of diseases involving the circulatory system.

Statistically, they are responsible for about one-third of all fatalities globally. Examples of

CVDs include ischemic heart disease, cardiomyopathy, valve disease, tachycardia, and

heart failure, among others (1, 2). Cardiomyocyte mortality includes regulation cell death

(RCD) and unintentional cell death (ACD) (3). While several RCD types, including

apoptosis, autophagy, and pyroptosis, are associated with CVD pathogenesis, ferroptosis is

a novel RCD modality. The ferroptosis inhibitor ferrostatin-1 has been shown to reduce

doxorubicin (DOX)-induced cardiotoxicity and mortality in mice, whereas apoptosis,

autophagy, and necrosis inhibitors had no effect (4). These findings demonstrate that

ferroptosis, a distinct type of RCD, may contribute to the aetiology of CVD.

In 2002, Stockwell et al. demonstrated that the substance erastin results in cell mortality

(5). Subsequently, in 2012, they defined ferroptosis as an erastin-induced cell death

mechanism (6). They discovered that it lacked the hallmarks of apoptosis (chromatin

marginalisation and condensation), autophagy (such as the creation of double-membrane

closed vesicles), and necrosis (such as the swelling of organelles and the rupture of plasma

membrane). Ferroptosis is characterised by mitochondrial shrinkage, increased membrane

density, and the loss or absence of crests, with no discernible morphological alterations in

the nucleus. In cellular components, ferroptosis is mainly characterised by an increase in

reactive oxygen species (ROS) and lipid peroxidation (6). It has recently been linked to the

pathogenesis of numerous illnesses, including cancer, nervous system diseases, and CVD (7,

8). Different cardiovascular conditions are associated with a rise in ROS, a hallmark of
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ferroptosis. Therefore, assessing the role of ferroptosis in different

CVDs is crucial to improve their diagnosis and treatment. In this

review, we discuss the function and potential regulatory

mechanisms of ferroptosis in various CVDs.
2. Mechanisms underlying ferroptosis

Ferroptosis is accompanied by an imbalance in the production

and removal of free radicals, which may be related to aberrant lipid,

amino acid, iron, or mitochondrial metabolism. The underlying

mechanisms of ferroptosis are shown in Figure 1.
2.1. Lipid metabolism and ferroptosis

Lipid peroxidation is a crucial stage of ferroptosis. Any lipid

peroxidation-related substance can control ferroptosis (6). The

main building blocks of cell membranes are polyunsaturated fatty

acids (PUFAs), which are readily peroxidised during ferroptosis.
FIGURE 1

Regulatory mechanisms of ferroptosis. DMT1, divalent metal transporter 1; HSP
prostate 3; PUFAs, polyunsaturated fatty acids; AA, arachidonic acid; AdA, adren
acyltransferase 3; LOXs, lipoxygenases; GPX4, glutathione peroxidase 4; GSSG
receptor 1; APAP, acetaminophen; FtMt, mitochondrial ferritin.
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Lipid peroxidation can be classified into enzymatic and non-

enzymatic. When iron enters the cell via transferrin (TF), it

undergoes the Fenton reaction with H2O2 to produce an excess

of oxygen-free radicals, which mainly powers the non-enzymatic

process. Lipid degradation and ferroptosis can be caused by free

radicals and PUFA interaction (9).

An enzymatic response involves the induction of ferroptosis and

ROS production using numerous enzymes. Crucial enzymes in this

process include lysolecithin acyltransferase 3 (LPCAT3) and long-

chain fatty acyl-CoA synthetase 4 (ACSL4) (9). Arachidonic acid

(AA) and adrenal acid (AdA) can be converted into the fatty acyl

coenzymes AA-CoA and AdA-CoA, respectively, by the enzyme

ACSL4 (10). LPCAT3 then esterifies AA-CoA and AdA-CoA to

create phosphatidylethanolamine (PE)-AA and PE-AdA, which is

then oxidised by lipoxygenase (LOX) to produce the hazardous

lipid hydroperoxides (LOOH) products. The enhanced expression

of PE-AA-OHO and PE-AdA-OHO is associated with ferroptosis

(11). Recent research by Zhang et al. suggests that

phosphorylating ACSL4 may accelerate the accumulation of lipid

peroxidation products, intensifying ferroptosis (12).
β1, Heat shock protein β1; STEAP3, six-transmembrane epithelial antigen of
al acid; ACSL4, long-chain fatty acyl-CoA synthase 4; LPCAT3, lysolecithin
, oxidized glutathione; GSH, glutathione; TF, transferrin; TFR1, transferrin
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2.2. Iron metabolism and ferroptosis

Iron, a necessary human body component, is primarily used to

produce haemoglobin and myoglobin. It is involved in numerous

physiological processes, such as oxygen transfer and storage,

mitochondrial respiration, and intracellular enzymatic reactions

(13). These processes depend on balanced iron metabolism, with

iron overload and iron deficiency leading to pathological illnesses.

Iron-dependant lipid peroxidation is closely associated with

ferroptosis (9). The bulk of the body’s iron requirement is met by

the external diet or the physiological breakdown of ageing red

blood cells. TF on the cell membrane binds extracellular Fe3+,

producing TF-Fe3+, which is then absorbed by the cell through

transferrin receptor 1 (TFR1). Intracellular Fe3+ is converted to

Fe2+ in the endosome of the six-transmembrane epithelial antigen

of prostate 3 (STEAP3) and released into the cytosol by the

divalent metal transporter 1(DMT1) (14, 15). Fe2+ is stored in the

ferritin molecules and released by ferroportin 1(FPN1). When the

dynamic balance between iron intake, use, and recycling is

disrupted, free Fe2+ combines with H2O2 to form a lipid

peroxide with a high oxidative capacity, resulting in ferroptosis (14).

Several iron metabolism-related proteins and regulating

elements can influence ferroptosis. TFR1 is an iron transporter

involved in iron metabolism. Iron regulatory protein (IRP) and

hypoxia-inducible factor-1 (HIF-1) increase the expression of

TFR1, raising cellular iron absorption and susceptibility to

ferroptosis. Notably, reduced iron consumption prevents

ferroptosis (16). Additionally, without TFR1, the metal cation

transporter ZIP14, or SLC39A14, can function as an iron

transporter, bringing iron into the cell and causing ferroptosis (17).

Furthermore, a significant relationship exists between ferroptosis

and autophagy. Nuclear receptor coactivator 4 (NCOA4) is a ferritin

breakdown receptor. Controlling ferritin phagocytosis can help

maintain the intracellular iron balance (18). NCOA4-dependent

ferritin autophagy increases the cell’s vulnerability to ferroptosis

(19). CISD1 and CISD2 are crucial for mitochondrial iron

transfer, and CISD1 suppression increases iron-mediated

mitochondrial lipid peroxidation and erastin-dependent ferroptosis

(20). Contrarily, CISD2 inhibition increases the levels of ferrous

iron and lipid ROS in the mitochondria, accelerating sulfasalazine-

mediated ferroptosis (21). These results suggest that iron

metabolism plays a significant role in ferroptosis.
2.3. Amino acid metabolism and ferroptosis

A contributing factor to ferroptosis is glutathione (GSH), which

comprises glutamate, cysteine, and glycine via peptide bonds in

response to catalytic enzymes. It is present in almost all human

tissue cells (22). Glutaminase 2 (GLS2) primarily converts glutamine

(Gln) into glutamate, and Gln enters cells through a receptor

comprising SLC38A1 and SLC1A5. Exogenous cysteine entering the

cell via the glutamate cystine antiporter (XC-), consisting of

SLC3A2 and SLC7A11, is converted primarily into cysteine. GSH is

present in reduced (GSH) and oxidised disulfide (S-S-S) forms, both

of which have strong antioxidant properties. Oxidised glutathione
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(GSSG) has antioxidant and antiatherogenic effects on lipoproteins

and macrophages when enclosed in liposomes (23). Glutathione

peroxidase 4 (GPX4) converts GSH into GSSG in the presence of

radicals, and toxic lipid hydrogen peroxide generated by the cells

into nontoxic lipid alcohols (24). A drop in GSH levels leads to

ferroptosis from an accumulation of ROS and lipid peroxides.
2.4. Mitochondria and ferroptosis

Mitochondria are the chief energy source for many metabolic

processes, such as the tricarboxylic acid cycle and oxidative

phosphorylation. ROS are primarily produced by mitochondrial

oxidative phosphorylation. During ferroptosis, mitochondrial

changes, such as a decrease in its volume and an increase in its

membrane density, are seen. The relationship between

mitochondria and ferroptosis has received much attention

recently (25). Iron regulation depends on mitochondrial ferritin

(FtMt). Mice lacking FtMt exhibit severe neurological

impairments, reversed by FtMt overexpression (26). A

mitochondria-targeting antioxidant called MitoTEMPO was

found to protect mice with adriamycin-induced cardiomyopathy

from cardiac damage caused by ferroptosis (4). Atorvastatin

induces a dose-dependent decrease in the viability of human

cardiomyocytes and mouse skeletal muscle cells, increasing

intracellular ROS levels and lipid peroxidation. These changes

mainly affect the mitochondria, resulting in their malfunction (27).

Furthermore, the voltage-dependent anion channel (VDAC)

on the outer mitochondrial membrane has been shown to

mediate ferroptosis (28). VDAC regulates mitochondrial

metabolism by increasing ion and molecule exchange between

the cytoplasm and mitochondria (28). As early as 2007, VDAC

was recognised as a potential erastin target (29). Acetaminophen

(APAP) overdoses can lead to ferroptosis in hepatocytes.

Hepatocytes exposed to APAP showed VDAC1 oligomerisation,

and VBIT-12, an inhibitor of the oligomerisation, reduced

ferroptosis, treating mitochondrial malfunction (30).
3. Ferroptosis and CVD

Intravenous iron supplementation has been shown to improve

the apnoea-hypopnoea index (AHI) in patients with anaemia, iron

deficiency, heart failure and sleep-disordered breathing, improving

their quality of life (31). However, ferroptosis caused by excess iron

is closely related to various CVDs. Non-coding RNAs (ncRNAs)

play a crucial role in CVDs and are useful noninvasive diagnostic

markers (32). Here, we present a general review of the recent

studies that suggest the role of ncRNAs in CVD-related

ferroptosis (Table 1).
3.1. Ferroptosis and oxidative stress

Oxidative stress is the result of an imbalance between oxidation

and antioxidation processes. The ROS levels in the human body vary
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TABLE 1 Ferroptosis-related ncRNAs in cardiovascular disease.

NcRNA Target Effect Disease References
miR-23a-3p SLC7A11 Promote ferroptosis Atrial fibrillation (33)

miR-190a-5p GLS2 Inhibit ferroptosis Myocardial infarction (34)

miR-15a-5p GPX4 Promote ferroptosis Myocardial infarction (35)

miR-23a-3p DMT1 Inhibit ferroptosis Myocardial infarction (36)

lncRNA-Gm47283/miR-706 Ptgs2 Promote ferroptosis Myocardial infarction (37)

circRNA1615/miR-152-3p LRP6 Inhibit ferroptosis Myocardial infarction (38)

miR-149 HMGB1 Inhibit ferroptosis Septic cardiomyopathy (39)

miR-140-5p SLC7A11 Promote ferroptosis Obesity-induced cardiac injury (40)

lncRNA KCNQ1OT1/miR-7-5p – Promote ferroptosis DOX-induced cardiac injury (41)

lncRNA-ZFAS1 /miR-150-5p CCND2 Promote ferroptosis Diabetic cardiomyopathy (42)

miR-375-3p GPX4 Promote ferroptosis Heart failure (43)

circSnx12/miR-224-5p – – Heart failure (44)
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in a manageable way under metabolic circumstances. However, the

body’s ability to balance oxidation and antioxidation is disrupted

in response to harmful stimuli, leading to ROS accumulation and

cell damage or death (45). Oxidative stress is closely associated

with inflammation. It can be exacerbated by inflammation,

triggering transcription factors, such as Nrf2, NF-B1, and pro-

inflammatory cytokines like TNF, altering the production of

inflammatory cytokines and anti-inflammatory molecules (46).

Recent research has revealed a new inflammatory program of cell

death, called PANoptosis, was discovered, which has key features

of pyroptosis, apoptosis, and necroptosis, but cannot be

characterized by any of the three alone. According to Tong et al.,

mice with metabolic dysfunction-associated fatty liver disease

(MAFLD), which may be associated with PANoptosis regulation,

can be treated by LPT1, a ferroptosis inhibitor, suggesting a

relation between ferroptosis and PANoptosis (47).

Ferroptosis is primarily characterised by an increase in lipid

peroxides and ROS, disrupting the cellular oxidation-reduction

processes, resulting in cell death. GSH and GPX4, major regulators

of ferroptosis, are also implicated in controlling the inflammatory

response. GSH functions as an antioxidant, preventing cell damage

by buffering unusually high ROS levels (48). GPX4 reduces

inflammation by eliminating oxidative byproducts of AA

catabolism (49). Another key modulator of antioxidants is the

nuclear factor erythroid 2-related factor 2 (Nrf2). Under oxidative

stress, Nrf2 binds to antioxidant response elements in the nucleus,

initiating the transcription of antioxidant genes and defending the

cells from cytotoxic and oxidative harm (50). In addition, Nrf2

plays a role in ferroptosis by controlling several signalling

pathways. Several lipid peroxide-inhibiting proteins and enzymes,

including GPX4, SLC40A1, and SLC48A1, are encoded by Nrf2

target genes and mitigate ferroptosis (51).
3.2. Ferroptosis and immune modulation

The occurrence of cardiovascular disease is closely related to

changes in the body’s immune function. Coronary atherosclerosis

is essentially an inflammatory response process, and efferocytosis

is the process by which macrophages remove diseased or dead

cells from blood vessels, which is important for maintaining
Frontiers in Cardiovascular Medicine 04
homeostasis in the environment within tissues. When the

inflammatory response is disrupted, the decomposition effect is

inhibited, and these lesions or dead cells accumulate in the blood

vessels to form plaques, eventually causing coronary

atherosclerosis, myocardial infarction, and stroke, among others

(52). CD47-SIRPα plays an important role in regulating the

immune system, and CD47 can bind to the SIRPα protein on the

surface of immune cells to inhibit immune cells from

phagocytosing cancer cells. Notably, inhibiting CD47 expression

can block this process, promote the cleanup of dead cells by

macrophages, and reduce plaque accumulation in blood vessels

(53). Recently, Zhai et al. invented a DOX delivery nanoplatform

called p-LDM, which reduces DOX toxicity and increases its

efficacy. This platform promotes ferroptosis, leading to better

inhibition of tumour cell proliferation. However, marked

enhancement of ferroptosis was observed after a combination of

p-LDM and CD47-SIRPα blockade, which may be related to the

up-regulation of interferon-γ (IFN-γ) level and the inhibition of

cystine/glutamate antitransporter (system Xc-) mediated by

CD47-SIRPα blockade(54, 55).

Additionally, CD8+ T cells can reduce the expression level of

system Xc- subunits SLC3A2 and SLC7A11 by releasing IFN-γ,

which promotes the ferroptosis of tumour cells (56). In

atherosclerosis, CD8+ T cells can also play both atheroprotective

and pro-atherogenic roles. CD8+ T cells can be recruited to the

vessel wall and play a role in the inflammatory response (57).

However, how CD8+ T cells regulate ferroptosis and contribute

to atherosclerosis remains poorly understood.
3.3. Ferroptosis and dietary iron overload

Haemoglobin and the biological operation of humans both

depend on iron, a vital element. However, in rodent models,

excess iron intake has been shown to worsen liver damage by

raising serum triglyceride and cholesterol levels (58). Excess iron

can also exacerbate atherosclerosis (AS) by accumulating in the

arterial wall. It worsens the atherosclerotic process by altering

vascular permeability and lipid profile and elevating pro-

atherosclerotic inflammatory mediators (59). A meta-analysis

revealed a significant relationship between high dietary haem
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iron intake and an increased risk of cardiovascular death (60).

Thus, lowering the consumption of iron-containing meals may

help lower the risk of developing CVD.
3.4. Ferroptosis and coronary heart disease

AS is primarily a fatty metabolic disorder, and ferroptosis

possibly contributes to its development and progression. Guo

et al. have reported that the overexpression of GPX4, a

ferroptosis regulator, reduces vascular cell sensitivity to oxidised

lipids delaying the progression of AS (61). Coronary AS is the

most prevalent form of AS. Based on biological information

analysis, Wu et al. have identified seven ferroptosis-related genes,

including CA9, CBS, CEBPG, HSPB1, SLC1A4, STMN1, and

TRIB3, that are associated with ischemic heart disease (62).

Modulating immune responses, amino acid metabolism, and

numerous pathways implicated in the pathogenesis of Coronary

heart disease (CHD) may also play a part in its regulation (62).

The first event in the pathogenesis of AS is endothelial cell

damage caused by lipid peroxidation-induced ferroptosis (63).

Previous research has demonstrated that tanshinone IIA (TSA)

inhibits AS by significantly decreasing ROS and lipid ROS levels

produced in response to ferroptosis inducers in human cardiac

endothelial cells while restoring GSH function. TSA inhibits

ferroptosis by elevating Nrf2 mRNA (63). Nrf2 has also been

related to ferroptosis in human coronary endothelial cells.

Moreover, the isoprene diphosphate synthase subunit (PDSS2) is

responsible for the formation of AS (64). Yang et al. have shown

that AS patients have lower serum levels of PDSS2 and Nrf2, and

overexpression of PDSS2 reduces iron concentration and

ferroptosis in human coronary endothelial cells (HCAECs) while

increasing HCAECs proliferation (64). However, the curative

effects of PDSS are blunted because Nrf2 mRNA is

downregulated in HCAECs. Overexpression of PDSS2 suppresses

ferroptosis in HCAECs by activating the Nrf2 pathway (64).

The mitochondrial transporter GLS2 controls the conversion of

Gln to glutaminase. Zhou et al. have shown that GLS2

overexpression in mice with myocardial infarction (MI) increases

cardiomyocyte ferroptosis. GLS2 is blocked by miR-190a-5p

preventing ferroptosis (34). Additionally, miR-15a-5p is thought

to be involved in the ferroptosis of cardiomyocytes. GPX4 is a

direct target of miR-15a-5p, and in a mouse model of MI, miR-

15a-5p overexpression enhanced ferroptosis. The transcription

factor early growth response 1 (Egr-1) increases GPX4 synthesis

while decreasing miR-15a-5p levels, preventing cardiomyocyte

ferroptosis (35).

Exosomes made from human umbilical cord blood

mesenchymal stem cells (HUCB-MSC) were found to have

cardioprotective effects in a rat model of acute MI (AMI). By

transporting Fe2+, the divalent metal transporter 1 (DMT1)

improves iron metabolism, and DMT1 overexpression results in

cardiomyocyte ferroptosis. HUCB-MSC carries miR-23a-3p and

prevents the synthesis of DMT1 and ferroptosis (36).

Additionally, downstream miRNA can be regulated by lncRNA

and circRNA to aid in the process of ferroptosis in MI (37, 38).
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LncRNA Gm47283 specifically targets miR-706 and PTGS2,

known ferroptosis regulators. In a rat model of MI,

overexpression of the lncRNA Gm47283 suppressed miR-706

expression to increase PTGS2 level and ferroptosis damage, a

process reversed by siRNA within the stem cell membrane (37).
3.5. Cardiomyopathy

Cardiomyopathy is an organic heart disorder with multiple

potential causes. Nonetheless, the genetic cause is substantially

the most prevalent. Mechanical or electrical heart dysfunction

caused by cardiomyopathy can lead to heart failure and,

eventually, cardiac death (65). Despite the different causes, all

forms of cardiomyopathy are associated with elevated levels of

ROS and lipid peroxidation (66), suggesting a robust relationship

between cardiomyopathy and ferroptosis.

3.5.1. DOX-induced cardiomyopathy
The anticancer drug adriamycin is associated with dose-

dependent cardiotoxicity. DOX-induced cardiomyopathy includes

cardiomyocyte structural abnormalities in response to adriamycin

(67). In 2014, Ichikawa found a significant increase in the

mitochondrial iron levels in the myocardial tissue of patients

with DOX-induced cardiomyopathy compared to those with

normal cardiac function or other types of cardiomyopathy, which

was reversed by dexrazoxane (68). According to Tadokoro et al.

ferroptosis is the primary cause of cell death in DOX-induced

cardiomyopathy. Mitochondria-dependent ferroptosis is caused

by excessive lipid peroxidation via the DOX-Fe2+ complex, with

downregulation of GPX4 expression (69). In addition, MITOL/

MARCH5 controls the number of mitochondria and their

function. Kitakata et al. have shown that the knockdown of

MITOL leads to reduced GPX4 mRNA in the mitochondria and

ferroptosis in rat cardiomyocytes. Lipid peroxidation and

ferroptosis are significantly reduced in MITOL mutant cells upon

GPX4 activation (70). However, PRMT4 binds with Nrf2 to

increase its enzymatic methylation, thereby limiting Nrf2 nuclear

translocation, decreasing GPX4 transcription, and enhancing

DOX-induced cardiac ferroptosis (67).

Methyltransferase-like 14 (METTL14), an m6A writing

protein, is widely involved in the progression of CVD (71). By

facilitating the m6A modification of lncRNA KCNQ1OT1,

METTL14 reduces the activity of miR-7-5p. Reduced miR-7-5p

expression leads to higher transferrin receptor levels, increased

iron uptake, and higher lipid ROS production. Consequently,

selective inhibition of the METTL14/KCNQ1OT1/miR-7-5p axis

provides a unique method for preventing DOX-induced cardiac

damage by negatively mediating cardiomyocyte ferroptosis (41).

3.5.2. Septic cardiomyopathy
Extreme cases of septic cardiomyopathy (SCM), a cardiac

dysfunction caused by septic shock, can result in heart failure

and mortality. Studies have indicated that ferroptosis may

contribute to cardiac damage in patients with sepsis (72). Gong

et al. have used bioinformatics to pinpoint the roles of Cdkn1a,
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Ptgs2, Nfe2l2, Rela, and Vim5 in modulating ferroptosis in SCM

(72). The inflammatory reaction is primarily regulated by islet

cell autoantigen 69 (ICA69). In addition to ICA69, inflammatory

cytokines, ROS, and ferroptosis markers are upregulated in the

myocardium of LPS-treated mice. ICA69 knockdown significantly

reduced the expression of ferroptosis markers, suggesting the

potential of targeting ICA69 as a therapeutic strategy for septic

cardiomyopathy (73).
3.5.3. Diabetic cardiomyopathy
Diabetic cardiomyopathy is diagnosed in individuals with

diabetes when coronary AS and hypertension do not account for

abnormalities in the myocardial structure or function (74).

Diabetic cardiomyopathy may be regulated in part by Nrf2 (75).

Long-term diabetes inhibits autophagy, reducing Nrf2-mediated

defence and activating Nrf2-regulated pathogenic processes,

resulting in increased lipid peroxidation, cardiomyocyte

ferroptosis, and heart muscle deterioration, accelerating the

development of diabetic cardiomyopathy (75). Nrf2 inhibition

reverses the pathological changes, apoptosis, and oxidative stress

in the hearts of patients with type I diabetes. It also reduces the

development and severity of diabetic cardiomyopathy.

Palmitic acid (PA)-induced cardiac damage is one of the major

contributors to type 2 diabetes mellitus (T2DM)-related

cardiomyopathy (76). Wang et al. have shown that PA triggers

cell death in H9C2 cardiomyocytes by decreasing the protein

levels of heat shock factor 1 (HSF1) and GPX4 (76), which were

restored by ferroptosis inhibitors. Furthermore, HSF1

overexpression restored PA-suppressed GPX4 expression,

inhibiting PA-induced cardiomyocyte ferroptosis (76).

In a mouse model of diabetic cardiomyopathy, lncRNA-ZFAS1

increased cardiomyocyte death and ferroptosis. It inhibited miR-

150-5p expression and cyclin D2 (CCND2) production in

diabetic cardiomyopathy, enhancing cardiomyocyte ferroptosis.

Therefore, inhibiting lncRNA-ZFAS1 may be a strategy for

managing and avoiding diabetic cardiomyopathy (42).
3.5.4. Hypertensive cardiomyopathy
A leading cause of heart failure is hypertensive heart disease,

which results from long-term untreated hypertension and causes

abnormalities in the structure and function of the heart.

Microvascular endothelial cells (CMVECs) in the heart are rich

in the apelin receptor, which binds to the new endogenous

ligand elabela. In rodents, angiotensin II (Ang II) can

significantly reduce elabela levels. In mice with Ang II-induced

hypertension, administration of elabela or ferrostatin-1

significantly attenuated the myocardial remodelling and

ultrastructural damage. Elabela decreases Ang II-induced iron

content and lipid peroxidation by increasing cardiac xCT/GPX4

signalling and inhibiting IL-6/STAT3 signalling. Hence, elabela

can potentially delay the progression of hypertensive heart

disease by inhibiting Ang II-mediated CMVEC ferroptosis and

ventricular restructuring (77).
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3.5.5. Hypertrophic cardiomyopathy
Fang et al. have shown that the cardiomyocytes of ferritin

H-deficient animals have lower iron concentrations and higher

oxidative stress (78). However, rodents with larger hearts

maintained an iron-rich diet. In addition, ferroptosis worsens

due to decreased GSH levels in cardiomyocytes and elevated lipid

peroxidation. SLC7A11 overexpression was found to increase

GSH levels and decrease cardiac ferroptosis in subsequent studies

(78). Ptgs2, malondialdehyde, and ROS levels substantially

increase Ang II-induced cardiac hypertrophy; however,

ferroptosis blocker xCT attenuates these changes, inhibiting

cardiac hypertrophy (79).
3.5.6. Sickle cell disease-induced cardiomyopathy
Sickle cell disease (SCD), characterised by massive haemolysis,

results in excess haem in the plasma leading to CVD (80).

Ferroptosis is a vital mechanism underlying SCD cardiomyopathy.

The process of haem breakdown can produce free iron by haem

oxygenase 1 (Hmox1). In the SCD mouse model, cardiomyopathy

worsened as the heme levels increased, simultaneously elevating

ferroptosis marker levels. Hence, inhibiting or activating Hmox1

could reduce or increase myocardial ferroptosis, whereas a

ferroptosis inhibitor could improve cardiomyopathy in mice (80).
3.6. Atrial fibrillation

The mechanism underlying iron-induced arrhythmia remains

unknown. Previous studies have shown that rats with chronic

iron overload develop heart block, longer PR intervals, and atrial

fibrillation (AF) (81). Increased ROS production caused by iron

overload leads to mitochondrial malfunction and changes in

membrane potential, which can be one of the primary reasons

for developing arrhythmia (82). Researchers have shown that

excessive alcohol consumption can activate ferroptosis and

increase the likelihood of AF. However, iron overload, ROS

production, and AF susceptibility can all be reduced by

inhibiting ferroptosis (83). Sepsis is a risk factor for the onset of

AF, and sepsis-related myocardial injury has been associated with

ferroptosis (84). Fang et al. have shown that in the atria of septic

rats, the expression of transferrin FPN, the only identified

mammalian non-haem iron export protein, is significantly down-

regulated. FPN knockdown significantly increased the

intracellular iron concentration, increasing susceptibility to AF,

which was reversed by suppressing ferroptosis. This finding

demonstrates that in patients with recently diagnosed AF, LPS-

induced endotoxemia may be influenced by ferroptosis (85).

AF is mainly caused by myocardial fibrosis. Liu et al. have

shown that ferroptosis-related proteins in H9C2 cells undergo a

series of sequential changes, including a gradual decrease in the

expression of SLC7A11 and GPX4 in a canine model of fast

atrial pacing. Exosomes from cardiac fibroblasts also make H9C2

cells more ferroptotic. Moreover, Liu et al. later discovered that

in H9C2 cells, rapid pacing significantly increased the expression

of miR-23a-3p, and SLC7A11 was a target gene. The damage to
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H9C2 cells was lessened following therapy with a miR-23a-3p

inhibitor(33). Therefore, miRNA intervention is a potential

strategy to prevent AF recurrence of AF by reducing ferroptosis

and oxidative damage (33).
3.7. Pulmonary arterial hypertension

Studies have shown that iron deficiency is present in 43%–

63% of people with pulmonary arterial hypertension and is

associated with decreased exercise tolerance and higher

mortality (86). Pulmonary vascular remodelling is the main

pathogenic factor in pulmonary hypertension. In mice with

chronic iron deficiency, pulmonary vascular cells switched to

aerobic glycolysis, leading to pulmonary vascular remodelling

through inflammatory cell infiltration and mitochondrial

malfunction (87). Zou et al. identified seven genes, including

BCL2, GCLM, MSMO1, SLC7A11, SRXN1, TSPA5, and

TXNRD1, through biological data analysis that may be involved

in regulating iron metabolism (86). Among the most crucial

elements in pulmonary vascular remodelling are the suppression

of cell death and abnormal proliferation of pulmonary artery

smooth muscle cells (PASMCs) (88). Overexpression of

SLC7A11 in PASMCs prevents ferroptosis, promotes

proliferation, and ultimately accelerates pulmonary vascular

remodelling. Erastin can induce ferroptosis by reducing the

expression of GPX4 and SLC7A11, inhibiting the proliferation

of hypoxic PASMCs both in vitro and in vivo (88).
3.8. Viral myocarditis

The most common enterovirus and the main culprit behind

viral myocarditis is coxsackievirus. Kung et al. have shown that

acyl-CoA synthetase long-chain family member 4 (ACSL4), the

primary cause of ferroptosis, is involved in forming viral

replication organelles. Enteroviruses cause ferroptosis through

ACSL4, suggesting its potential as a therapeutic target for viral

myocarditis (89).
3.9. Heart failure

The final stage of many cardiovascular disorders is heart

failure, involving myocardial fibrosis and cardiac remodelling.

Iron anomalies (both deficiency and overload) in cardiomyocytes

are closely associated with heart failure. Moreover, ferritin H is

essential for maintaining iron homeostasis in the heart. Ferritin

H-deficient mice showed reduced Slc7a11 expression in cardiac

cells, while selective overexpression of Slc7a11 increased GSH

levels and prevented cardiac ferroptosis (78, 90). These findings

suggest that ferritin H is essential for avoiding heart failure. In

addition, the adipose tissue macrophages (ATMs) express high

levels of miR-140-5p in their exosomes, which may contribute to

obesity caused by a long-term high-fat diet. miR-140-5p can
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inhibit the synthesis of GSH and encourage ferroptosis in

cardiomyocytes by targeting SLC7A11 (40).

Through bioinformatics analysis, Chen et al. have shown that

ferroptosis and autophagy are related to TLR4 and NADPH oxidase

4 (NOX4). The generation of superoxide anion, hydrogen peroxide,

and cardiomyocyte ferroptosis are stimulated when TLR4 binds to

NOX4. Knockdown of TLR4 and NOX4 in the heart by siRNA

lentivirus in HF rats reduced cardiomyocyte death and enhanced

ventricular remodelling. Their loss also delayed the activation of

autophagy and ferroptosis in HF rats. Therefore, TLR4-NOX4 may

be a potential therapeutic target for heart failure (91).

The principal causes of heart failure following an ischemia-

reperfusion (I/R) insult are ventricular remodelling and eventual

cardiac fibrosis. In rat cardiomyocytes, miR-375-3p increased

myocardial fibrosis and accelerated the progression of heart failure

by enhancing cardiomyocyte ferroptosis through GPX4 control (43).

In the myocardium of HF mice, circSnx12 acted as an endogenous

sponge for miR-224-5p. Notably, miR-224-5p also has a binding site

in the 3’-UTR region of FTH1. Consequently, miR-224-5p may be a

circSnx12 target in heart failure-related ferroptosis (44).
3.10. Heart transplantation

Following a heart transplant, I/R damage may cause aseptic

inflammation, ultimately lowering the transplant’s success rate.

The majority of patients who undergo cardiac transplantation have

advanced heart disease. Aseptic inflammation is mainly caused by

neutrophil recruitment. Through the TLR4/Trif/type I IFN

pathway, ferroptosis enhances the adhesion of coronary vascular

endothelial cells to neutrophils. While ferrostatin-1(Fer-1), a

ferroptosis inhibitor, has no impact on neutrophil recruitment to

the inflammatory site, it can significantly prevent neutrophils and

endothelial cells from adhering to the walls of the coronary

arteries. Thus, inhibiting the ferroptosis process may improve the

prognosis of patients with heart transplants (92).
3.11. Aortic aneurysm and dissection

An aortic aneurysm is a prevalent condition with a high fatality

rate. It is characterised by smooth muscle cell (SMC) damage or

loss, elastic fibre destruction, aortic wall weakness, dilatation, and

dissection. Currently, no treatments can clinically halt the

progression of aortic aneurysm and dissection. Hence, to

effectively treat this condition, it is critical to explore its

molecular mechanisms (93)Recently, Zheng et al. screened 40

differential genes from a ferroptosis-related genes (FRG) dataset

in abdominal aortic aneurysms (AAAs) and normal samples.

GPX4 was found to be a key gene involved in AAA-related

ferroptosis. TNF, NOD-like signal pathways, and ferroptosis-

related immune cell infiltration also play a key role in AAA (94).

PCSK9 plays an essential role in lipid metabolism, and its

inhibitors have been widely used clinically to reverse

atherosclerotic plaques and reduce LDL cholesterol. PCSK9 is

highly expressed in AAA tumour necks and regulates ferroptosis
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TABLE 2 Small- molecule modulators and clinical drugs to target ferroptosis in cardiovascular diseases.

Drug Mechanism Target References
Fer-1 Reduces the production of ROS and Inhibits lipid peroxidation Diabetic myocardial; ischemia/reperfusion;

heart transplantation
(92, 96)

Atorvastatin Decrease the mRNA levels of PTGS2, contents of malonaldehyde and protein levels of
NOX4 and increase the contents of GSH

Heart failure (97)

Canagliflozin Regulated autophagy Heart failure (98)

Dexmedetomidine Activation of Nrf2 through AMPK/GSK-3β signaling pathway Myocardial ischemia/reperfusion injury (99)

C3G Downregulated TfR1 expression, and upregulated the expressions of FTH1 and GPX4 Myocardial ischemia/reperfusion injury (100)

Melatonin Regulates YAP Dox-induced cardiotoxicity (101)

Resveratrol Regulation of ubiquity specific peptidase 19 (USP19)-Beclin1 autophagy Myocardial ischemia/reperfusion injury (102)

Inhibits the production of HMGB1 by upregulating miR-149 Septic cardiomyopathy (39)

DFO – Myocardial ischemia/reperfusion injury (103)

Britanin Upregulate GPX4 Myocardial ischemia/reperfusion injury (104)

BRD4770 Inhibit the inflammatory response and lipid peroxidation Aortic dissection (105)

Salvianolic acid B Activates NRF2 Myocardial infarction (106)

MSC-EVs Reduce the release of NETs by turning NETosis into apoptosis Abdominal aortic aneurysm (107)

FIGURE 2

NRF2 regulates the ferroptosis process associated with cardiovascular disease. PDSS2, prenyldiphosphate synthase subunit 2.

Wang and Wu 10.3389/fcvm.2023.1241282
by inducing ROS production, mitochondrial dysfunction, and

regulating lipid metabolism (95).
4. Ferroptosis and CVD treatment

Given the strong association between ferroptosis and several

CVDs, active research has been ongoing to find ferroptosis

inhibitors that can prevent and treat CVD (Table 2). Ferrostatin-1

and deferoxamine (DFO) are some ferroptosis inhibitors under

evaluation. Nrf2, a regulator of ferroptosis and antioxidants, is

also crucial to the development and progression of CVD. Hence,

controlling Nrf2 levels is another therapeutic strategy to prevent/

inhibit ferroptosis (Figure 2).
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4.1. Ischemia-reperfusion injury

Fer-1 is a first-generation ferroptosis inhibitor (6) that

suppresses lipid ROS production and inhibits erastin or

RSL3-induced ferroptosis. It improves cardiac function in animal

models of diabetes and I/R damage (96). Additionally, Fer-1

increases the longevity of patients with heart transplants by

preventing neutrophil recruitment after cardiac cell death (92).

Cyanidin-3-glucoside (C3G), a member of the anthocyanin

family of antioxidants, frequently found in red or purple fruits

and vegetables, has anti-inflammatory, antioxidant, and heart-

protective properties (108). Studies in a rat model have

demonstrated that C3G protects against cardiac I/R injury. Rat

H9C2 cells treated with C3G showed a drop in Fe2+ levels and
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TFR1 expression. It blocks the deubiquitylation of Beclin1 through

K11, inhibiting ferroptosis (100). Therefore, C3G might be useful

for preventing I/R myocardial injury.

Inula sinensis yields britanin (Bri), a bioactive substance with

potent antioxidant and anti-inflammatory properties (109). Lu

et al. found that Bri suppresses apoptosis and ferroptosis and

reduces the size of cardiac infarcts in mice following I/R (104).

The Food and Drug Administration of the United States has

approved the use of the iron chelator DFO to treat conditions

caused by an excess of iron (110). DFO lowers the lipid

peroxides in heart tissue averting myocardial damage in a rat

model of I/R injury (103). Resveratrol is a naturally occurring

bioactive polyphenol with anti-inflammatory, anticancer, and

antioxidant properties. I/R injury causes ferroptosis in the

cardiac cell model of H9C2 rats with I/R, resulting in higher

levels of oxidative stress and Fe2+ than in normal cells.

Resveratrol also inhibits autophagy, mediated by ubiquitin-

specific peptidase 19 (USP19)-Beclin1, to minimise ferroptosis

(102). Dexmedetomidine reduces iron accumulation and lipid

peroxidation caused by hypoxia/reoxygenation in cardiomyocytes

through Nrf2 activation via AMPK/GSK-3 signalling, inhibiting

myocardial ferroptosis (99).
4.2. DOX-induced cardiomyopathy

DOX-induced cardiomyopathy is closely associated with the

Nrf2 pathway, with several pathway members contributing to

DOX-induced cardiac ferroptosis (67, 111, 112). Fisetin has been

shown to significantly inhibit DOX-induced cardiotoxicity in rats

by reversing the reduction in GPX4 levels and lowering

myocardial fibrosis, cardiac hypertrophy, and cardiomyocyte

ferroptosis. It also increases the expression of SIRT1, Nrf2

mRNA and protein levels and its nuclear translocation to

safeguard the myocardium (112). Furthermore, intravenous

astragaloside decreased DOX-induced cardiac ferroptosis by

activating the Nrf2 signalling pathway and increasing GPX4

expression (111).

Ethoxyquinoline, a lipophilic antioxidant often used in food

preservation, suppresses ferroptosis caused by GPX4 deficiency in

DOX-induced cardiomyopathy by lowering DOX-induced

increases in malondialdehyde and mitochondrial lipid

peroxidases. Although its effect on apoptosis is not immediately

obvious, ethoxyquinoline is a potential therapeutic that could

prevent DOX-induced ferroptosis in cardiomyopathy (113).

Salidroside significantly reduces the fibrosis and heart

malfunction caused by adriamycin in vivo. By limiting iron

accumulation, restoring GPX4-dependent antioxidant activity,

and preventing cellular or mitochondrial lipid peroxidation, it

inhibits ferroptosis in vivo and in vitro (114). Melatonin is a

mitochondrial antioxidant, mainly used to improve sleep quality.

However, it also safeguards the heart. It has been shown to

prevent DOX-induced ferroptosis by markedly upregulating

ACSL4, a ferroptosis-related protein and downregulating GPX4.

By increasing YAP protein levels, melatonin can decrease DOX-

induced ferroptosis and cardiotoxicity (101).
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4.3. Diabetic cardiomyopathy

Isoadiponectin (ISO) has been shown to increase microvessel

density and perfusion, promote MFN2 overexpression in diabetic

mice, and inhibit mitochondria-associated ferroptosis to protect

heart microvessels in patients with diabetes (115).

Historically, sulforaphane and curcumin were thought to have

anticancer and antioxidant properties (116). Ferroptosis in diabetic

cardiomyopathy can be mitigated through Nrf2 modulation using

sulforaphane and curcumin (117, 118). Sulforaphane inhibits

ferroptosis in rodents with diabetic cardiomyopathy by increasing

ferritin and SLC7A11 levels and stimulating Nrf2 through AMP-

activated protein kinase (AMPK) (117). Curcumin attenuates

glucose-induced ferroptosis in diabetic rabbit cardiomyocytes by

increasing Nrf2 nuclear translocation, increasing the expression

of oxidative scavenging factors like HO-1, and reducing the loss

of GPX4 (118). These results suggest novel therapeutic

alternatives for the management of diabetic cardiomyopathy.
4.4. Septic cardiomyopathy

LPS is a well-known contributor to heart dysfunction in septic

cardiomyopathy. Catalase, an antioxidant enzyme, inhibits LPS-

induced heart dysfunction by controlling multiple processes,

including ferroptosis, oxidative stress, autophagy, and apoptosis (119).

Resveratrol, an anti-inflammatory and antioxidant, has been shown to

play a role in cardiomyocyte ferroptosis. In a mouse model of

endotoxemia, resveratrol therapy improves GSH levels and decreases

lipid ROS, lipid peroxidation, and iron accumulation in

cardiomyocytes. It inhibits the production of HMGB1 by

upregulating miR-149, which reduces the ferroptosis of endotoxemia

cardiomyocytes (39).
4.5. Myocardial infarction

Salvia miltiorrhiza contains salvianolic acid B, a strong

antioxidant. Salvinolic acid B is found in rats with myocardial

infarction, similar to Fer-1. It reverses ferroptosis, including lipid

peroxide accumulation, mitochondrial damage, and expression of

ferroptosis-related proteins, activating the Nrf2 signalling

pathway and preventing myocardial infarction (106).

Geniposide (GEN), the main active ingredient of Gardeniae

fructus, has natural antioxidant qualities and protects the heart.

In rats with myocardial infarction, it reduced lipid peroxidation

and iron overload, preventing ischemic heart damage (120).
4.6. Aortic aneurysm and dissection

Aortic aneurysm and dissection are detected based on the loss

of smooth muscle cells. Ferroptosis-related markers, such as TFR,

HOMX1, and ferritin, are noticeably higher in individuals with

aortic dissection. BRD4770 functions as a histone methyltransferase

inhibitor, preventing the mono-, dio-, and trimethylation of
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histone H3 lysine 9 (H3K9me1/2/3). System Xc-GPX4, FSP1-CoQ10,

and GCH1-BH4 reduced morbidity and mortality in a mouse model

of aortic dissection by reactivating the canonical ferroptosis pathways

inhibited by ferroptosis inducers (105).

The formation of neutrophil extracellular traps (NETs),

composed of depolymerised chromatin and intracellular granulin

in the centrioles, can trap and kill pathogens by neutrophil

death, or NETosis.NETosis has been shown to cause ferroptosis

in smooth muscle cells (SMCs) by blocking the PI3K/AKT

pathway and inducing the formation of AAA. Extracellular

vesicles made from mesenchymal stem cells (MSC-EVs) can

delay the formation of AAA by converting NETosis into

apoptosis and reducing the release of NETs (107).
4.7. Heart failure

Atorvastatin has long been used as a treatment for coronary

heart disease. It inhibits the activation of ferroptosis-related

signals in a mouse model of isoproterenol (ISO)-induced heart

failure by decreasing the levels of PTGS2 (a ferroptosis marker)

mRNA, malondialdehyde, and NOX4 protein and increasing the

GSH levels. Additionally, it defends the myocardium (97).

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have recently

been found to provide significant cardiovascular benefits in patients

with heart failure with preserved ejection fraction (HFpEF). Ma et al.

have shown that ferroptosis plays a vital role in the HFpEF rat model

induced by a high-salt diet, and canagliflozin protects against heart

failure by reducing ferroptosis (98). SGLT2i decreases ferritin and

hepcidin while increasing the transferrin receptors, thereby lowering

the iron levels that help treat chronic heart failure. The mechanisms

underlying this effect are based on the “cytoplasmic iron

consumption” and “cytoplasmic iron supplementation” hypotheses.

The former postulates that SGLT2i increases erythropoietin-related

iron utilisation, leading to cytoplasmic Fe2+ reduction, while the

latter contends that functional iron insufficiency is promoted by the

inflammatory response in some patients with mild to moderate heart

failure. SGLT2i inhibits hepcidin and ferritin by directly activating

the sirtuin-1 signalling pathway, eliminating the need for intravenous

iron therapy. It improves aberrant iron utilisation and treats

functional iron deficiency (121). Therefore, clinical trials are required

to confirm if iron supplementation therapy is necessary for treating

heart failure with SGLT2i.
5. Conclusions and perspectives

Ferroptosis, characterised by lipid peroxidation, has been

associated with numerous CVDs and promoted as a potential

directions of treatment. It differs from other cell death processes

because of the accumulation of intracellular iron, lipid peroxides,

and mitochondrial alterations. Its role in the onset and

progression of several diseases has been well studied.

Drugs inhibiting ferroptosis by reducing lipid peroxidation

and iron accumulation can affect the development and
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progression of CVDs. Additionally, ncRNAs have been shown

to play a crucial role in CVDs and are useful noninvasive

biomarkers. Ferroptosis can be effectively controlled by reducing

the expression of related ncRNAs, offering a unique therapeutic

strategy for treating CVDs.

However, there are several challenges to treating CVD and

ferroptosis together. First, research is warranted on the specific

processes and pathways relating ferroptosis to CVDs to find

new treatments. Second, there is little clinical research focused

on human subjects since most current studies on ferroptosis

and CVDs are in cells or animals. More clinical trials must be

performed to support the use of different ferroptosis inhibitors

for CVDs. The ferroptosis inhibitors currently in clinical

practice are likely to have unidentified adverse effects on other

organs, including the liver and kidney, which need to be

explored.
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