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Accurate heart rate (HR) measurement is crucial for optimal cardiac health, and while
conventional methods such as electrocardiography and photoplethysmography are
widely used for continuous daily monitoring, they may face practical limitations
due to their dependence on external sensors and susceptibility to motion artifacts.
In recent years, mechanocardiography (MCG)-based technologies, such as
gyrocardiography (GCG) and seismocardiography (SCG), have emerged as
promising alternatives to address these limitations. GCG has shown enhanced
sensitivity and accuracy for HR detection compared to SCG, although its benefits
are often overlooked in the context of the widespread use of accelerometers in
HR monitoring applications. In this perspective, we aim to explore the potential
and challenges of GCG, while recognizing that other technologies, including
photoplethysmography and remote photoplethysmography, also have promising
applications for HR monitoring. We propose a roadmap for future research to
unlock the transformative capabilities of GCG for everyday heart rate monitoring.
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Introduction

The critical importance of heart rate (HR) measurements in detecting irregularities in

heart rhythm patterns and cardiovascular health conditions is well established in the

literature (1–7). Traditional HR measurement techniques, such as electrocardiograms

(ECG) (8), demand sophisticated equipment and specialized knowledge for accurate

interpretation, rendering them costly and inaccessible for long-term, everyday monitoring.

The widespread adoption of smartphones in recent years (9) has given rise to an array of

smartphone-based HR measurement systems employing ECG (10, 11) and

photoplethysmography (PPG) (12–14). However, the reliance on smartphone-based ECG

systems specialized external hardware sensors poses challenges to precise ambulatory

measurements, while the accuracy of smartphone-based PPG recordings is compromised

by excessive noise.

Mechanocardiography (MCG) encompasses gyrocardiography (GCG), seismocardiography

(SCG), ballistocardiography (BCG), and phonocardiography (15), and increasing numbers of

studies attest to its potential for cardiac performance assessment (16). Unlike other methods,

MCG directly measures cardiac mechanics induced by heartbeats (17, 18). Despite their
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advantages, most smartphone-based HR monitoring algorithms rely

on SCG signals, with few considering GCG data for HR estimation.

Furthermore, published studies on the subject have been largely

authored by a small group of investigators (19–24), highlighting a

lack of awareness regarding GCG’s potential for HR estimation

within the broader research community.

In this perspective article, we aim to analyze the potential and

challenges associated with the use of GCG for HR estimation,

propose future research directions, and raise awareness of its

capabilities. Moreover, we introduce four evaluation metrics to

standardize the evaluation process, enabling a fairer comparison

betweenmethodologies and fostering further advancements in the field.
Exploring the potential of smartphone-
based GCG for heart rate detection

Despite accelerometers being the most commonly used sensors

for heart rate monitoring, recent literature suggests that due to the

heart’s helical shape up to 60% of cardiac vibrational energy is

contained in the gyration signal (25, 26). Furthermore, since

gyroscope measurements are not affected by gravity (27), GCG

signal collection is largely independent of the user’s position or

posture (27); in addition proper axis selection could even result

in GCG signals outperforming a combination of GCG and SCG

signals for heart rate estimation (28), raising the possibility that

GCG signals could supplant the currently popular SCG signals

and shape the future of HR estimation.

The practicality of this application can be significantly enhanced if

it can accommodate different measuring locations and postures. Most

studies have only conducted HR estimation using MCG signals

collected from subjects in a supine position (19–24, 28). However,

vertical postures, such as standing or walking, can modulate

autonomic regulation of cardiovascular function and capture

different HR patterns from supine postures (29–30), owing to an

increase in hydrostatic pressure in the thigh (31). Furthermore,

placing the smartphone on or near the chest, though reasonable

due to its proximity to the heart, could limit the application’s

usefulness. In most studies, measurements required the phone to be

on a bare chest or subjects to wear light clothing, restricting its

usage in cold weather conditions.

These constraints may hinder the applicability of these methods

in real-life situations where changes in chest pressure may lead to

signal variations when subjects assume different postures or engage

in physical activities. Methods capable of accurately estimating HR

using a smartphone in these contexts would represent a significant

advancement in the field. Such models would not only prove

valuable in HR estimation but also in identifying signal patterns

and characteristics under these conditions. If the models can

account for the effects of posture and physical activity on MCG

signals, adjusting HR estimations based on these factors to achieve

accurate HR predictions becomes feasible.

While some studies have already explored HR estimation using

different subject positions (e.g., standing and walking) and

measuring locations (e.g., in the hand (32) and pants pocket

(33)), these methods utilized either SCG signals (32, 33) or MCG
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signals from non-smartphone sources. Given the potential of

GCG signals, further investigation into GCG signal collection

from various postures and sites for HR estimation is warranted.

Based on the literature (21, 34–39), we proposed a general

workflow of using GCG signals from smartphones for HR

monitoring, as shown in Figure 1. The smartphones collect GCG

data from the user in various locations and orientations. The raw

GCG signals are then processed (filtered, feature extraction, and

then HR calculation) in the cloud. The computed HRs are sent

back to the smartphone, which generates a series of

recommendations as feedback to the user. In emergency situations,

an alert will be sent to the hospital for faster communication to

ensure that medical treatments can be delivered to the user in time.
Obstacles encountered in smartphone
GCG-based heart rate monitoring

The application of microelectromechanical systems (MEMS)

vibrating structure gyroscopes (VSG) found in smartphones to

heart rate monitoring is novel, and although these gyro sensors

can potentially detect vital biomarkers such as blood pressure

and heart rate, they were not specifically engineered for medical

applications. Consequently, additional data cleaning and artifact

removal steps must be implemented to achieve the necessary

precision and accuracy for reliable heart rate readings.

One of the primary hurdles in employing gyro sensors for heart

rate detection is the presence of motion artifacts produced by

activities such as walking, running, or even typing. The

orientation of the smartphone—for example, held in one’s hand

versus resting on a stable surface—can also significantly impact

the heart rate readings. Additionally, gyro bias error, inherent to

MEMS sensors, is a significant factor in gyroscope drift error and

can lead to inaccurate readings. Notably, the yaw axis is most

susceptible to gyroscope drift (40). As a result, thorough time

series analysis of the signals and proper axis selection are crucial

for compensating for these factors and generating accurate

gyroscope signals (41).

While the use of smartphone gyro sensors offers potential for

heart rate detection, it is not without challenges. The accuracy

and reliability of the readings can be affected by these obstacles,

which must be carefully addressed when using smartphone

gyroscopes for dependable heart rate monitoring.
Wider challenges in smartphone-
based heart rate monitoring

Lack of clinical data

Before gyroscope data from smartphones can be harnessed for

dependable heart rate (HR) monitoring, it is crucial to establish

clinical evidence of the proposed methods’ accuracy. This

demands rigorous testing and validation using a sufficiently sized

and diverse participant pool, ensuring that the developed

methods are unbiased and universally applicable.
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FIGURE 1

Proposed general workflow for HR monitoring using GCG signals from smartphones. The smartphones collect gyroscope data in various locations and
orientations. The raw GCG signals are processed in the cloud, and computed results are sent back to the smartphone as a series of recommendations for
the user. In emergency situations, an alert is sent to the hospital for a faster communication, ensuring the timely delivery of medical treatment.
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Obtaining medical data, especially in emerging fields such as

this, is challenging and time-consuming, as the process often

requires costly specialized equipment and expert personnel.

Additionally, the sensitive nature of medical data mandates strict

adherence to patient privacy and data protection regulations,

further complicating data collection, processing, and sharing.

Despite these obstacles, concerted efforts are being made to

collect and disseminate medical data for research advancement.
Inter- and intra-subject variability

A truly effective model should account for individual variability in

physiology and movement patterns. This necessitates incorporating

demographic data such as race, gender, and age to create

personalized models that adapt to each individual’s characteristics

and behavior. Additionally, environmental factors like temperature

and humidity can influence the signals HR estimation signals, as

can electromagnetic interference, which can introduce noise and

complicate the extraction of meaningful information.

Moreover, psychological factors, including anxiety, stress, and

depression, can impact the cardiovascular system and,

consequently, alter heartbeat patterns. Addressing these

complexities in heart rate monitoring models ensures their

adaptability and applicability across diverse scenarios and
Frontiers in Cardiovascular Medicine 03
individuals, paving the way for more accurate and personalized

health monitoring solutions.

Gender effects
The use of smartphone signal data for HR estimation involves

non-invasive measurements of vibrations and rotations related to

cardiomechanics using accelerometers and gyroscopes placed on

the body surface near the chest. However, anatomical differences

between men and women can affect the transmission of

mechanical vibrations generated by the heart to the surface of

the chest, leading to different directions and amplitudes of the

MCG signals. Men tend to have larger and broader chests (42),

while women tend to have smaller hearts, which can affect the

amplitude and timing of the signals resulting from heartbeats.

Differences in the shape of the heart and body fat distribution

between genders (43) can also alter the mechanical vibrations

transmitted to the chest. Wrist-worn wearables for HR estimation

have been found to produce higher device errors in males (44),

underscoring the importance of gender-specific physiological

differences and the need for a balanced gender ratio in subject

selection for smartphone-based HR validation studies.

Obesity
Obesity is a well-known cardiovascular risk factor that has been

linked to an increased likelihood of heart rhythm disorders, which
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can have a significant impact on heart rate patterns (45–47).

Anatomical fat distribution can indirectly affect the waveforms

produced by the heart, as it can alter the position and

orientation of the heart itself. This, in turn, can impact the

mechanical forces acting on the chest wall and the signals

measured by medical equipment. For example, excess abdominal

fat may push the heart upwards and backwards, altering the

signal’s morphology and amplitude. Additionally, differences in

metabolism associated with different fat deposition patterns can

also influence the function of the cardiovascular system, leading

to changes in cardiac output that can influence the signal.

Although the body mass index (BMI) is widely used as an indicator

of relative obesity, it is calculated from height and body weight and does

not capture the body fat distribution (48). Therefore, it is generally

regarded as a weak indicator of obesity. More effective

anthropometric indicators such as chest circumference, waist-hip

ratio, waist circumference, hip circumference, and waist stature ratio

have been proposed as alternative measures of obesity.

Age distribution
As individuals age, the ability of cardiac muscle cells to divide

and regenerate declines, which can lead to a deterioration of

cardiac function and an increased risk of heart disease. Aging

also causes anatomical and physiological changes within the

cardiovascular system that can affect the mechanical forces acting

on the chest wall (49). The heart muscle can become stiffer and

thicker, especially the left ventricular wall, which can impair the

heart’s ability to fill with blood and contract effectively.

Additionally, the heart may increase in size (50), leading to

changes in its shape and position within the chest. These

changes in cardiac muscle stiffness, thickness, and size can alter

the transmission of mechanical vibrations from the heart to the

chest wall, leading to changes in the morphology and amplitude

of the signal. Furthermore, the accumulation of lipofuscin, a

pigment that results from the buildup of waste products within

cells, can impair the function of cardiac muscle cells. The

number of pacemaker cells in the heart also decreases with age,

which can affect the heart’s ability to regulate its own rhythm

(51). The alterations in the number and function of pacemaker

cells can lead to changes in the timing and frequency of

heartbeats, resulting in an irregular rhythm. As in obesity, aging

may also lead to changes in total and regional fat distribution,

with increased fat deposition often seen in internal organs,

including the heart (52), further impacting the signals obtained

from the heart. Overall, the interplay between these factors, as

well as other comorbidities, can lead to changes in the MCG

signals obtained from older adults, potentially requiring

adjustments in their interpretation.

Comorbidity
Altered transmission of mechanical signals from the heart to the

chest wall can occur with comorbidities such as hypertension and

diabetes, which can cause changes in arterial stiffness (53), or

respiratory diseases like chronic obstructive pulmonary disease

(COPD), which can affect lung mechanics (54). Inflammatory

conditions like rheumatoid arthritis and systemic lupus
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erythematosus can change joint and muscle mechanics (55, 56),

which can affect the position of the chest wall relative to the heart.

Other comorbidities that impact the autonomic nervous system,

such as heart failure and atrial fibrillation, can lead to changes in

heart rate variability and other measures of cardiac autonomic

function and to variations in the amplitude and timing of MCG

signals (57, 58). Thus, it is important to consider the presence of

various comorbidities when interpreting MCG signals, as they can

introduce confounding factors affecting the accuracy and reliability

of measurements and downstream HR predictions.
Performance evaluation metrics

Many studies have used smartphone MCG data, including GCG

signals, to derive HR, but without proper evaluation metrics for HR

estimation; however, performance evaluation metrics are essential to

evaluate HR estimation methods for accuracy and precision,

especially when health and safety decisions are involved.

Standardized and consistent metrics for evaluating HR estimation

performance can enable objective compare different HR estimation

methods, improve reliability, identify effective and efficient

methods, and highlight areas for improvement.

There are two aspects to having unified and consistent metrics for

evaluating HR estimation performance: a standardized gold standard

and evaluation metrics. Some studies have used suboptimal reference

methods like HR derived from pulse oximeters or PPG signals, which

themselves have varying degrees of error. This can introduce

unnecessary measurement errors and potentially undermine

findings. Therefore, the gold standard of ECG should ideally be

used as the reference signal for HR estimation.

This article proposes four metrics for standardizing the evaluation

of HR estimation performance: mean absolute errors (MAE), root

mean squared errors (RMSE), Pearson correlation coefficient (r),

and equivalence testing. The MAE measures general measurement

error, the RMSE detects large prediction errors, the r metric

measures the overall statistical relationship between estimated and

reference values, and equivalence testing investigates agreements

between estimated and reference measurements. A 95% equivalence

testing (a ¼ 0:05) would be typically used.

Equivalence testing is preferred over the standard two-sample

t-test because it confirms statistical equivalence and requires

acceptance criteria to be known a priori (59–61). However, it

requires the criterion to be based on either empirical evidence or

domain knowledge. Researchers could follow previous studies

(62, 63) that pre-defined an equivalence zone of +10% of the

reference mean, and perform a statistical test to determine

whether the 90% confidence interval from the estimations falls

within the equivalence zone with 95% precision (a ¼ 0:05).

The lack of standards for evaluating and reporting accuracy

reduces transparency and accountability of the method, which

could lead to contradictory results, lack of generalizability, false

findings, and reproducibility issues. Utilizing a unified and

consistent set of standards can avoid these problems, improve the

clinical utility of findings in this field, and facilitate objective

comparisons of different HR estimation methods.
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Conclusion

HR estimation using GCG signals from smartphones is a new

and promising field that has gained attention in recent years.

However, there are still relatively few studies dedicated to this

purpose, which could be attributed to a lack of awareness about

the potential of gyroscopes for HR detection. Our work aims to

increase awareness of this field and highlight the potential of

GCG signals for HR estimation. We also presented some of the

challenges that need to be addressed and proposed a gold

standard and four evaluation metrics for performance evaluation.

By considering these factors and utilizing standardized

performance evaluation metrics, comparing results across studies

and establishing standard protocols for data analysis can become

easier, advancing this field and potentially leading to more robust

downstream classification applications.
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