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Cardiovascular diseases (CVD) continue to be the leading cause of morbidity and
mortality globally and claim the lives of over 17 million people annually. Current
management of CVD includes risk factor modification and preventative
strategies including dietary and lifestyle changes, smoking cessation, medical
management of hypertension and cholesterol lipid levels, and even surgical
revascularization procedures if needed. Although these strategies have shown
therapeutic efficacy in reducing major adverse cardiovascular events such as
heart attack, stroke, symptoms of chronic limb-threatening ischemia (CLTI), and
major limb amputation significant compliance by patients and caregivers is
required and off-target effects from systemic medications can still result in
organ dysfunction. Stem cell therapy holds major potential for CVD applications
but is limited by the low quantities of cells that are able to traffic to and engraft
at diseased tissue sites. New preclinical investigations have been undertaken to
modify mesenchymal stem cells (MSCs) to achieve targeted cell delivery after
systemic administration. Although previous reviews have focused broadly on the
modification of MSCs for numerous local or intracoronary administration
strategies, here we review recent preclinical advances related to overcoming
challenges imposed by the high velocity and dynamic flow of the circulatory
system to specifically deliver MSCs to ischemic cardiac and peripheral tissue
sites. Many of these technologies can also be applied for the targeted delivery
of other types of therapeutic cells for treating various diseases.
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AD-MSCs, adipose-derived mesenchymal stem/stromal cells; BM-MSCs, bone marrow-derived MSCs; CVD,
cardiovascular diseases; CSC, cardiac stem cell; CAM, cell adhesion molecule; CLTI, chronic limb-
threatening ischemia; CSF2, colony-stimulating factor 2; CLMP, coxsackie- and adenovirus receptor-like
membrane protein; EF, ejection fraction; ESL, E-selectin ligand; FGF, fibroblast growth factor; HGF,
hepatocyte growth factor; HCELL, hematopoietic cell E-/l-selectin ligand; MMPs, matrix metalloproteinases;
MSCs, mesenchymal stem/stromal cells; MI, myocardial infarction; PINC, platelet-inspired nanocell; PBP,
P-selectin binding peptide; PGE2, prostaglandin E2; SPIOs, superparamagnetic oxide nanoparticles; SDF-1α,
stromal cell-derived factor 1 alpha; TGF-β, transforming growth factor beta; VEGF, vascular endothelial
growth factor.
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1. Introduction

The efficacy of cell-based therapeutics, such as those utilizing

mesenchymal stem/stromal cells (MSCs), is contingent upon

effective cellular engraftment and homing to disease sites in order

to re-establish homeostasis and enact their therapeutic benefits.

Local injection to the site of disease or intravascular delivery are

the most commonly utilized methods of administration of stem

cells—including intraarterial injection that quickly delivers

therapeutic cells to the tissue/organs fed by a given artery, and

intravenous routes, by which therapeutic cells are infused into the

bloodstream (systemic delivery) (1, 2). Unfortunately, these

delivery routes are associated with substantial limitations. Direct

injection is a popular method of administration particularly in

sites with poor systemic perfusion; however, cell-based therapy is

significantly limited by cell viability and retention even when

locally dispensed to sites of disease (1, 3). Moreover, cells delivered

to local disease sites may not function appropriately given

environmental factors at the tissue interface including poor blood

flow, hyperglycemia, hypoxia, and wide-spread local inflammation

associated with disease (4–7). Limited space and even physical

pressure at sites of inoculation may further diminish cellular

characteristics or hamper cell viability (5, 8, 9). However, many

disease sites are not amenable to access by local inoculation given

their intra-cavitary anatomic location (cardiothoracic organs,

brain, aorta, etc.), which would necessitate highly invasive

injection procedures. Systemic administration via intravenous

routes can partially overcome this limitation in delivery to
FIGURE 1

Domains of modification of therapeutic MSCs for targeted cell delivery to
biological, can be used to modify the cell surface or label cells to create or in
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locations that are traditionally hard to access. Unfortunately, this

can lead to indiscriminate trafficking of cells and often results in a

low number of cells delivered to anatomic locations afflicted by

disease (1, 10). As a result, there is a critical, unmet need for novel

methods to augment delivery of a sufficient quantity of therapeutic

cells to diseased tissue sites.

A novel area of investigation within the field of cell-based

therapeutics is the advent of targeted cell delivery to limit the

downsides of systemic cell administration as well as enhance

cell therapeutic efficacy. The purpose of this review is to

summarize the most recent preclinical advances in the arena of

targeted cell delivery for applications in cardiovascular and

peripheral vascular disease applications achieved through

physical, chemical, and genetic modifications to enhance the

delivery of MSCs (Figure 1).
2. Basis for modifying MSCs for
targeted cell delivery in cardiovascular
applications

At the circulatory system interface, endothelial cells form a

selectively permeable luminal barrier between blood and tissues

under homeostatic conditions. As a result, unstimulated/

unactivated healthy endothelium in normal tissue forms a

smooth lining that contributes to the laminar flow of the

circulatory system and facilitate the transport of cells and

nutrients to peripheral sites. After physiologic insult from tissue
cardiovascular sites. Three methods, including chemical, physical and
stall “GPS”/“sensor” and guide cell homing.
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injury, inflammation, and/or malignancy, numerous chemokines

and cytokines such as stromal cell-derived factor 1 alpha

(SDF-1α) and transforming growth factor beta (TGF-β) activate

neighboring endothelial cells (11, 12). Resultant stimulation by a

cytokine milieu specific to each pathologic state can cause a

variety of cell adhesion molecules (CAMs) such as integrins and

selectins to be highly expressed within the luminal endothelium

in the diseased tissue; thereby, making the endothelial lining

“sticky” and augmenting its ability to tether circulating cells,

such as endothelial progenitor cells (EPCs), MSCs, and

leukocytes, responding to tissue repair and inflammatory signals

(12). As a result, methods to exploit cognate protein-receptor

binding interactions between circulating MSCs and activated

endothelial cells at sites of ischemic vasculature after myocardial

infarction (MI) or peripheral ischemic insults can dramatically

augment the ability of MSCs to traffic to diseased tissue sites.

Ultimately, the cytokine profile and subsequent endothelial cell

surface molecules induced are unique to the underlying

inflammatory, ischemic, or oncologic pathophysiology (Figure 2).

To better characterize highly upregulated target CAMs on

endothelial sites in diseased tissues, the utilization of newly

available RNA sequencing, protein array technology, and single-

cell multiomics has widely propagated (13–15). For example,

Fournier et al. (16) utilized bulk RNA sequencing of meningeal

endothelial cells to identify upregulation of coxsackie- and

adenovirus receptor-like membrane protein (CLMP) as a

trafficking molecule upregulated by inflammation in neurologic

conditions such as multiple sclerosis. They further demonstrated

that overexpressed CLMP is utilized by immune cells to traffic
FIGURE 2

Molecular profiling advancements used to identify unique/special target(s) at th
the targeted delivery of therapeutic MSCs. Unique cytokine/chemokine milieu
panel of elevated or specific adhesion molecules in activated endothelium.
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across endothelial cells into the central nervous system to

modulate neuroinflammation, and this CLMP overexpression

could represent a new therapeutic target for modified cell

therapies to exploit and target the central nervous system (16).

The continued applications of similar profiling methods will help

to uncover unique adhesion molecules expressed on endothelial

cells at specific disease sites in order to target their cognate

ligands as molecular mechanisms and augment the targeted cell

delivery of stem cells for cardiovascular applications in future work.
3. Physical methods of guiding cell
engraftment

With the advent of novel molecular and synthetic platforms, new

avenues of manipulating the cell surface to change migratory

patterns of cells in circulation have become available to

researchers. Such methods offer the ability to physically alter or

decorate the cell surface with specific proteins without aberrant

changes to intrinsic MSC properties that can occur through

genetic manipulation or downstream cell signaling (7).

Nanocarriers utilizing adhesion moieties or cell membrane

components have emerged as a versatile, safe method to achieve

the delivery of drug and cell therapeutic payloads to specific tissue

sites expressing the cognate receptor for proteins on a modified

nanocarrier (5, 17–19). For instance, E-selectin, an inducible CAM

with pro-angiogenic signaling effects, along with its ligands,

including CD44, CD62 and E-selectin ligand (ESL), have been

shown to be upregulated on vasculature in ischemic tissue (20,
e circulatory system interface in diseased tissues to create a “roadmap” for
in various diseased tissue states stimulate local vasculature to express a

frontiersin.org

https://doi.org/10.3389/fcvm.2023.1236345
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Huerta et al. 10.3389/fcvm.2023.1236345
21). Liu et al. (5) demonstrated that systemic administration of pre-

modified MSCs on which cell surfaces were coated with E-selectin-

conjugated dendrimer nanocarriers directed MSC homing to skin

wound sites or injured cornea mediated by enhanced interaction

of E-selectin/ligands. This resulted in increased tissue repair in an

ischemic diabetic wound healing model. This physical cell

modification led to efficient trafficking of MSCs to wound areas

without indiscriminate distribution to other organs even when

administered systemically (5).

Through an extension of the beneficial angiogenic effects of the

numerous cell signaling and paracrine factors secreted by MSCs,

some groups have created nanocells by combining nanocarrier/

membrane derivatives with the MSC secretome. By exploiting the

overexpression of prostaglandin E2 (PGE2) receptors in ischemic

myocardium, Su et al. (22) designed a platelet-inspired nanocell

(PINC) containing PGE2-platelet membranes and cellular signaling

factors harvested from the cardiac stem cell (CSC) secretome.

Intravenous administration of PGE2-PINCs achieved targeted

delivery of the CSC-derived therapeutic payload to the injured

myocardium in a murine model of myocardial ischemia and

reperfusion injury. This therapy significantly mitigated ischemia

and reperfusion injury in myocardium as evidenced by preserved

cardiac ejection fraction (EF), increased cycling of cardiomyocytes,

activation of endogenous CSCs, and enhanced angiogenesis in

cardiac tissue in vivo compared to control PINC treatment lacking

PGE2-platelet membranes (22). This work demonstrates a new

method to direct the MSC therapeutic payload to target sites.

Some have even investigated the application of physical devices

to guide stem cell transplantation in difficult locations. For

instance, the retention of stem cells to the heart is often impeded

due to venous washout resulting from forceful cardiac

contraction even when delivered via direct intracoronary

injection (23). Hydrogel and microgel formulations as well as

direct cell coating are applications that have been extensively

investigated in murine and porcine models of myocardial

ischemia to overcome challenges in cell retention. Utilizing an

alginate scaffold to aid the local implantation of MSCs in a

porcine model of MI, Panda et al. (24) demonstrated

substantially preserved cell retentiona as well as improved cardiac

impulse condution. Others such as Peng et al. (25) have utilized

a gelatin methacrylate cell-coating system on murine-derived

MSCs locally inoculated to the heart after induction of MI. Cell

coating with gelatin methacrylate offered a less bulky matrix

compared to conventional hydrogels for MSCs to more directly

interact with diseased tissue sites, which resulted in preserved

cardiac function, reduced scar size, and augmented angiogenesis

compared to control treatments (25). While biomaterials such as

MSC-loaded scaffolds and devices hold promise, they still incur

postoperative complications associated with implantation of

medical devices such as fibrosis and adhesions that can

complicate procedures later in life (23). To overcome these

challenges, Cheng et al. (26) investigated the use of CSCs labeled

with iron microspheres. After ligation of the left anterior

descending artery to simulate myocardial ischemia in rats,

administration of iron labeled-CSCs via left ventricular injection

occurred and was followed by the placement of an external
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magnet outside the heart for 10 min. Overall, rats exposed to the

external magnet demonstrated substantially augmented rates of

stem cell engraftment in ischemic heart tissue and significantly

reduced migration of therapeutic cells to the lungs. These effects

persisted up to 3 weeks after injection and resulted in enhanced

therapeutic benefits including higher ventricular EF and

attenuated left ventricular remodeling compared to rats not

exposed to the external magnet device during stem cell

administration (26). Similarly, Shen et al. (27) utilized rat MSCs

labeled with superparamagnetic oxide nanoparticles (SPIOs)

administered into the left ventricle of recipient rats after

induction of myocardial ischemia and placed magnets of varying

intensity at the cardiac site. They importantly found that cellular

engraftment was significantly correlated with higher magnetic

intensity; however, the highest magnetic intensity resulted in

microembolization and undermined the clinical benefits of cell

therapy. Ultimately, these works serve as examples of physical

devices to potentiate cell delivery and retention at target disease

tissues without the risks associated with the implantation of long

term hardware. While physical alterations such as these hold

significant potential to improve targeted cell delivery for

cardiovascular applications, future studies will need to consider

and rigorously test the safety and toxicity associated with

nanocarriers and other synthetic platforms (5, 17). Furthermore,

physical devices to guide stem cell engraftment are a unique way

to enhance cell transplantation but will need to optimize the

least invasive methods possible of device utilization as well as

consider their cost and scalability for clinical applications (26, 28).
4. Genetic manipulations to direct cell
migration

While physical methods of manipulating the cell surface of

MSCs can augment their migratory ability, newer methods of

genetic manipulation have emerged as a promising method to

overexpress cell-cell binding proteins for delivery and further

potentiate the innate properties and therapeutic effects of MSCs

(29, 30). For example, colony-stimulating factor 2 (CSF2) is a

signaling chemokine that along with its cognate receptor pair

CSF2RB modulates leukocyte production and proliferation as

well as MSC recruitment and post-myocardial infarction (MI)

cardiac remodeling (31). However, expression of CSF2RB is very

low in unmodified MSCs (32, 33). To overcome this, Qi et al.

(32) utilized an adenovirus vector to induce overexpression of

CSF2RB in adipose-derived MSCs (AD-MSCs) prior to

intravenous delivery in murine subjects after myocardial ischemia

and reperfusion injury. Compared to unmodified AD-MSCs,

CSF2RB-modified AD-MSCs became imbued with a

cardioprotective phenotype that resulted in markedly preserved

ventricular EF and cardiac contractility in injured mice.

Moreover, genetic modification with CSF2RB augmented

AD-MSCs’ proangiogenic properties and inhibited cell apoptosis

in addition to increasing their migratory capacity through

increased phosphorylation of STAT5 within the canonical JAK-

STAT5 signaling pathway. Modification of MSCs in this way to
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improve their migratory capacity after intravenous administration

can also allow for repeated rounds of noninvasive treatment with

cell delivery, thereby overcoming traditional drawbacks associated

with invasive intramyocardial injections (34, 35). In a similar

fashion, Yan et al. (36) implemented an adenoviral vector to

induce overexpression of N-cadherin, a transmembrane cell-cell

adhesion protein, in murine derived AD-MSCs. Cells harboring

abundant cell surface N-cadherin levels demonstrated improved

adhesion on to cardiomyocytes and paracrine effects on

angiogenesis mediated by subsequent upregulation of matrix

metalloproteinases (MMPs)-10 and -13 as well as hepatocyte

growth factor (HGF). Furthermore, this cell therapy resulted in

enhanced engraftment at ischemic myocardium and attenuated

fibrosis after cardiac ischemia in vivo.

Parallel applications of genetic programming of MSCs have also

been undertaken for peripheral vascular diseases such as chronic

limb-threatening ischemia (CLTI) in recent years. Hematopoietic

stem cells have previously been shown to express a CD44

glycoform known as hematopoietic cell E-/l-selectin ligand

(HCELL), which functions as a highly potent ESL to improve their

recruitment within bone marrow compartments (19).

Modification of cell surface CD44 on stem cells into HCELL has

been previously shown to enhance the tropism of these cells to

bone, which can also provide a “roadmap” or “GPS” for targeted

cell delivery to areas with heightened ESL expression such as in

ischemic vasculature (18, 37, 38). To exploit this relationship

with E-selectin, a CAM capable of inducing postnatal

neovascularization, in ischemic tissue, Quiroz et al. (30)

demonstrated a novel application of murine bone marrow-derived

MSCs (BM-MSCs) for CLTI after inducing the overexpression of

cell surface membrane-bound E-selectin via an adenoviral vector.

By simulating limb ischemia via surgical ligation of the femoral

artery, mice receiving local therapy with E-selectin-modified BM-

MSCs demonstrated rescued revascularization, muscle fiber

integrity, and ambulatory capacity on treadmill testing compared

to control BM-MSC treatment (30). Interestingly, genetic

modification of BM-MSCs with E-selectin also enhanced the

angiogenic profile of these cells in vitro through the upregulation

of nine proangiogenic genes such as Cxcl2, which among many

functions also contributes to cell engraftment (30). Taken

together, these studies show hope for augmenting not only cellular

delivery and engraftment but also the cell potency of MSCs for

future cardiovascular and peripheral disease applications. As

researchers continue to explore such options for gene editing, they

should consider the associated risks of these approaches such as

aberrant insertional mutagenesis and chromosomal instability

(39). Although viral vectors have been used in previous clinical

applications, adverse immune reactions can occur with their use

and impede the stability of gene expression (40, 41).
5. Chemical methods to potential cell
delivery

Direct chemical modification of the cell surface can also yield

improvements in cell trafficking. Although AD-MSCs offer
Frontiers in Cardiovascular Medicine 05
advantages as a readily accessible tissue source of MSCs with

potent paracrine and tissue reparative functions, their homing

potential for cardiovascular purposes is significantly limited in

unmodified cells (42–44). To overcome this challenge and allow

targeting to denuded endothelial sites after vascular injury, Yan

et al. (45) altered AD-MSCs utilizing a polyethylene glycol-

conjugated derivative linker to facilitate the binding of P-selectin

binding peptide (PBP) to the cell surface. After both wire and

balloon injury to femoral artery sites in rats to simulate injury from

percutaneous interventions observed in human patients, PBP-

modified AD-MSCs targeted in significantly greater quantities to

vascular injury sites after intraarterial injection and shielded injury

sites from pathologic platelet and leukocyte adhesion. In turn, this

substantially augmented vascular repair, limited pathologic

neointimal hyperplasia, and augmented endothelial cell

proliferation compared to unmodified AD-MSCs (45).

Chemical modification has similarly been applied to fuse

components of other cell types with natural vascular homing

abilities to MSCs. For instance, Tang et al. (46) harvested

nanovesicles from platelets and fused them to the cell membrane

of CSCs using polyethylene glycol. By exploiting the natural

ability of platelet membranes in localizing to ischemic vascular

sites and denuded endothelium, platelet-nanovesicle-fused CSCs

augmented migration and retention to ischemic myocardium

after intravenous delivery in a porcine model of cardiac ischemia

and reperfusion (46). Moreover, this modified cell therapy

yielded myocyte proliferation and angiogenesis in cardiac sites to

a degree far greater than administering unmodified CSCs. As

newer pharmacologic and chemical synthetic mechanisms

continue to be developed, investigators will have a greater

armamentarium of methods to modify MSCs for cardiovascular

applications than ever before. However, limitations associated

with chemical priming and modification strategies should be

taken into account. For example, chemical agents can produce

off-target, unintended effects on MSCs and result in transient

expression of the molecular target (47). Additionally, scalability

and manufacturing of sufficient quantities of MSCs using costly

chemical strategies can pose a significant challenge in future

clinical applications (48).
6. Host factors affecting modification
strategies

While physical, chemical, and genetic modification of MSCs

hold significant promise to augment their targeted delivery to

disease tissues, the host milieu to which cells are delivered plays

an equally important role in determining their therapeutic

efficacy. Immunocombatibility between donor and recipients can

reduce effectiveness of MSCs. MSCs typically exist as immune

privileged cells due to their low expression of HLA-I and MHC-I

(4). However, all cell modification strategies and culture methods

can cause increased expression of immunogenic molecules.

Furthermore, the inflammatory environment in recipient tissue

such as interferon gamma can yield heightened MHC-II

expression in donor MSCs, which can result in rejection and
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thereby necessitate repeated injections to achieve clinical benefits

(49). The chemokine expression profile in recipient tissue can

also be significantly heterogeneous and may not be compatible

with unmodified MSCs. For example, areas of myocardial

infarction may typically have high levels of expression of

chemokines such as CXCL1, CXCL2, and CCL7; however, the

presence of their corresponding receptors such as CCR1 and

CXCR2 on native MSCs is low and can impede their delivery to

such sites (50). As a result, careful molecular profiling of host

disease tissue sites is needed prior to selecting targets to modify

in donor MSCs to ensure maximal migratory and therapeutic

potential is preserved.

The effect of the disease process within recipient tissue is also a

major host factor limiting the efficacy of MSC therapy. For CVD

such as myocardial infarction and PVD, significant ischemia and

hypoxia in tissue results in a limited nutrient supply and hostile

tissue interface for delivered MSCs to survive and proliferate in

even after they have been modified. Moreover, patients with

these diseases often have major comorbidities such as diabetes

mellitus, smoking, and renal disease which can exacerbate

ischemia and reduce the functionality of MSCs such as from

hyperglycemia and circulation of uncleared uremic breakdown

products (10). The utilization of biologic scaffolds and hydrogels

can help provide a more hospitable cellular environment to areas

of local delivery to improve the survival and retention of cell

therapy. However, these methods to implant such scaffolds can

require invasive surgical or percutaneous procedures to access

cardiac and other internal organ sites thereby increasing the risk

of infection and anesthestic complications in a patient population

already predisposed to higher rates of complications (10).
7. Conclusions and future perspectives

CVD continue to be the leading cause of morbidity and

mortality globally and claim the lives of over 17 million people

annually (51–53). Current management of CVD includes risk

factor modification and preventative strategies such as dietary and

lifestyle changes, smoking cessation, medical management of

hypertension and cholesterol lipid levels, and surgical

revascularization interventions if needed (17, 54, 55). Although

these strategies have shown therapeutic efficacy in reducing major

cardiovascular events such as heart attack, stroke, acute limb

ischemia, sequelae of CLTI, and major limb amputations,

significant compliance by patients and caregivers is required and

off-target effects from systemic medications can still result in

organ dysfunction (17, 54). Given the rising incidence of CVD

globally, newer strategies to reduce inflammation and stenosis

associated with atherosclerosis progression beyond those imparted

by conventional medical and surgical options are needed (52, 53).

MSC-based therapeutics hold substantial potential for tissue

and vascular regenerative applications for cardiac and peripheral

ischemic disease applications given their natural capacity for

immunomodulation, self-renewal, and differentiation. However,

delivery of sufficient quantities of cells to target disease sites

without invasive intracoronary or direct injection methods
Frontiers in Cardiovascular Medicine 06
remains a substantial challenge (10, 28). Methods to augment

targeted cell delivery after systemic injection without

indiscriminate trafficking to cell-sink organs such as the lungs

and liver are critically needed for patients with these diseases.

Recent preclinical advances utilizing physical methods to install

adhesion moieties with nanocarriers or device-assisted induction

of cell trafficking are avenues with emerging potential. Genetic

methods have been widely applied to modify MSCs for other

disease applications and are showing promise to enhance MSC

phenotype and migratory capacity for cardiovascular applications.

Several recent studies have demonstrated chemical modification

strategies to influence the trafficking of MSCs to ischemic disease

sites.

As investigators begin to translate these and similar preclinical

advances into the clinical arena, several important considerations

should be taken into account. Modification of MSCs by any

strategy should include careful cell phenotypic characterization

studies to ensure that innate stem cell properties including

multilineage differentiation, self-renewal, and immunodulatory

functions are preserved (56, 57). Nonbiologic nanocarrier

platforms as well as genetic manipulation strategies utilizing viral

vectors should be thoroughly interrogated with regards to their

toxicity and safety after systemic administration of cell

therapeutics (41, 58–60). Moreover, the cost and scalability

utilizing any of these MSC modification domains should be

considered prior to initiating preclinical and clinical

investigations (48, 61).

Although this review focused primarily on the benefits of

targeted MSC therapies, the technologies implemented to modify

cells for homing to disease sites are extremely versatile and can

be applied to the delivery of pharmacologic agents or additional

cell types such as mononuclear cells and others (17, 62). Some

investigators have modified mononuclear cells with adenoviral

constructs to overexpress proangiogenic factors such as vascular

endothelial growth factor (VEGF) and fibroblast growth factor

(FGF), which results in their ability to induce endothelial cell

proliferation and may represent future treatments for ischemic

diseases (63). Moreover, future work may uncover that

combinations of these aforementioned physical, genetic, and

chemical alteration methods could produce the optimal cell

phenotype to achieve localized cell homing to diseased tissue

sites. Despite the challenges and limitations that will need to be

overcome in translating these scientific advances into actionable

clinical therapeutics, targeted cell delivery of MSCs holds

tremendous potential and hope for patients with a wide variety

of ischemic cardiovascular diseases that fail or are not candidates

for other medical and surgical treatment options.
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