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Introduction: Cardiovascular disease remains a significant problem in modern
society. Among non-invasive techniques, the electrocardiogram (ECG) is one of
the most reliable methods for detecting cardiac abnormalities. However, ECG
interpretation requires expert knowledge and it is time-consuming. Developing a
novel method to detect the disease early improves the quality and efficiency of
medical care.
Methods: The paper presents various modern approaches for classifying cardiac
diseases from ECG recordings. The first approach suggests the Poincaré
representation of ECG signal and deep-learning-based image classifiers.
Additionally, the raw signals were processed with the one-dimensional
convolutional model while the XGBoost model was facilitated to predict based
on the time-series features.
Results: The Poincaré-based methods showed decent performance in predicting
AF (atrial fibrillation) but not other types of arrhythmia. XGBoost model gave an
acceptable performance in long-term data but had a long inference time due to
highly-consuming calculations within the pre-processing phase. Finally, the 1D
convolutional model, specifically the 1D ResNet, showed the best results in both
studied CinC 2017 and CinC 2020 datasets, reaching the F1 score of 85% and
71%, respectively, and they were superior to the first-ranking solution of each
challenge. The 1D models also presented high specificity. Additionally, our paper
investigated efficiency metrics including power consumption and equivalent
CO2 emissions, with one-dimensional models like 1D CNN and 1D ResNet being
the most energy efficient. Model interpretation analysis showed that the
DenseNet detected AF using heart rate variability while the 1D ResNet assessed
the AF patterns in raw ECG signals.
Discussion: Despite the under-performed results, the Poincaré diagrams are still
worth studying further because of the accessibility and inexpensive procedure.
In the 1D convolutional models, the residual connections are useful to keep the
model simple but not decrease the performance. Our approach in power
measurement and model interpretation helped understand the numerical
complexity and mechanism behind the model decision.
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1. Introduction

Cardiovascular disease is the serious public health problem that

affects millions of people worldwide and is also a leading cause of

death (1). The expense of healthcare, lost productivity, and a

diminished quality of life due to heart illness has a significant

economic and social impact on individuals, families, and the

society as a whole (2). This emphasizes the value of early disease

identification. While the electrocardiogram (ECG) is considered

the most crucial method for detecting and diagnosing cardiac

problems (3), it takes time and requires trained professionals

with specialized skills to interpret ECGs. Furthermore, the

availability of devices that can record ECG signals is increasing

exponentially. Nowadays, many types of wearable devices are able

to collect these signals. However, the number of research studies

on this type of data is limited.

The ECG analysis task includes beat annotation and signal

classification. While the former deals with aligning the signal

segment to the heart contraction, the latter tries to predict the

disease from the signal data.

In the domain of ECG classification, there are a number of

methods ranging from feature-based models to deep learning–

based ones. In the feature-based model, the most common

features are the domain-dependent features, statistical

descriptors, morphological characteristics, and frequency-based

features (4). Meanwhile, the deep learning models are also

diverse. The work by Jun et al. (5) took advantage of AlexNet,

VGGNet, and their customized CNN architect to predict

arrhythmia diseases based on 128� 128 grayscale images of

ECG signal. The best model reached 0.989 Area under the ROC

Curve (AUC) and over 99% accuracy. Two years later, there

was a concerted effort by Hong et al. (6) to develop an

ensemble system to process the waveform data. With several

types of CNN-based deep learning models, this system scored

an accuracy of 95%. Also, Ribeiro et al. (7) used 1D ResNet to

predict six types of cardiovascular disease and got an F1 score

of over 80%. After that, the work by Zhang et al. (8) proved the

dominant results of deep learning compared to the traditional

machine learning model. Their model could classify nine

subtypes of arrhythmias with an F1 score of over 80%. The

impressive idea of this work is to use the SHapley Additive

exPlanations (SHAP) value to explain the model output at the

individual and population levels.

To improve the quality of models, the scientific community

organized many challenges with large-scale datasets, including

The PhysioNet/Computing in Cardiology Challenge (CinC)

2017 and 2020 (9, 10). While CinC 2017 focused on

arrhythmia disease, CinC 2020 contained ECG signals in a

wide range of cardiac abnormalities. There are many efforts to

apply machine learning/deep learning approaches to reach the

highest performance. In the challenge CinC 2017,

Kamaleswaran et al. (11) used a convolutional neural network

in signal processing and got the best ranking in arrhythmia

prediction. After that, Natarajan et al. (12) took advantage of

transformer architecture to get the highest place at challenge

CinC 2020.
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Besides the improvement of classification performance, the

architecture of models becomes more complicated, so they

require more energy to train and have a long inference time.

This problem limits the application of the method, especially in

handheld and wearable devices.

In this study, we focused on enhancing ECG classification

approaches in terms of performance, numerical complexity,

inference time, and its interpretability.

Contribution. The contribution of our paper is threefold:

• First, we introduce a pipeline for ECG classifier evaluation in

terms of performance and numerical complexity.

• Second, we achieved a state-of-the-art level (with regard to CinC

2017 and CinC 2020 challenges) performance with the 1D

ResNet model for both CinC 2017 and CinC 2020 benchmarks.

• Third, we provided interpretation techniques for Poincaré-based

DenseNet121 and 1D ResNet models.

2. Materials and methods

2.1. Data

The data were collected from two challenges: PhysioNet/CinC

Challenge 2017 and 2020 (9, 10). These collections were chosen

because they are both open-sourced datasets with well-annotated

labels, as well as massive sources of ECG recordings, which are

suitable for training deep learning models. We intentionally did

not apply any inclusion/exclusion criteria for data selection. The

total number of disclosure data samples was split into train/

validation/test subsets with the ratio 60/20/20. The partition was

done by splitting randomly the dataset based on the number of

recordings. In this study, we intentionally did not apply any

inclusion/exclusion criteria for data selection to capture the full

spectrum of patient profiles and maximize the generalizability of

our findings. The details of the data are shown in Table Table 1.

The CinC 2017 dataset was recorded by AliveCor device and

contains 8,528 single-lead signals. The length of recordings is

from 9 to 60 s, and the average length is about 32 s. Every ECG

signal was recorded at 300 Hz and already filtered by the

recorder. The host provided the data in WFDB format with a

.mat file containing signal data and a .hea file containing

headers for basic information including ID and recording

parameters.

The CinC 2020 dataset contains 12-lead signals which come

from five different sources: CPSC Database and CPSC-Extra

Database, INCART Database, PTB and PTB-XL Database, The

Georgia 12-lead ECG Challenge (G12EC) Database, and the

Private Database.

The dataset CPSC is the collection of the ECG signals of

Chinese patients, which were recorded at 500 Hz. The patient’s

gender and age were disclosed in this dataset; however, the age

of over-89-year-old patients is masked as 92 due to the HIPAA

guidelines. The INCART database contains 30-min recordings at

257 Hz while the PTB and Georgia datasets consist of 10-s

recordings only. The private part of data is not public so this

source was not included in our work. The remaining dataset was

split into train/test/split with the ratio 60/20/20. Like the CinC
frontiersin.org
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TABLE 1 Descriptive statistics and demographics information of CinC 2017 and CinC 2020 datasets.

Measures Factors
CinC 2017 CinC 2020

Train Validation Test Train Validation Test
# samples 5,116 1,706 1,706 25,860 8,620 8,621

Rate (Hz) 300 300 300 257–1,000 257–1,000 257–1,000

Signal length (s) Mean 32.4 32.8 32.5 15.4 16.1 16.1

Min 9.1 9.8 9.0 5.0 5.0 5.0

Median 30.0 30.0 30.0 10.0 10.0 10.0

Max 61.0 60.6 60.8 1,800.0 1,800.0 18,00.0

Age (%) Younger than 18 — — — 0.7 0.7 0.8

18–29 — — — 5.4 5.2 5.2

30–39 — — — 6.4 6.8 7.0

40–49 — — — 11.1 11.3 10.9

50–64 — — — 30.9 31.1 30.8

65 and older — — — 45.0 44.3 44.9

Missing data — — — 0.5 0.6 0.4

Gender (%) Male — — — 53.3 53.1 52.5

Female — — — 46.7 46.9 47.5

Missing data — — — 0.0 0.0 0.0
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2017 dataset, the data from CinC 2020 is also WFDB-compliant.

The header files embedded the demographics information and

diagnosis labels.

The embedded headers in CinC 2020 reveal the distribution of

age and gender. Most of the subjects in CinC 2020 are aged 65 and

older, followed by the age group of 50–64 years. The remaining age

groups have relatively smaller proportions. Additionally, every

subset has minimal missing data for age, with less than 1% of

entries having no specified age information. Regarding gender,

the sex ratio is relatively balanced. Notably, there are nearly zero

missing data points for gender in CinC 2020.

In term of label distribution, while the CinC 2017 dataset was

limited to four classes, including Normal, Atrial Fibrillation (AF),

Other, and Noisy, the CinC 2020 dataset has 28 categories of

cardiovascular disease (Figure 1). The distribution of classes is

very imbalanced. In CinC 2017, the AF samples are under 10%

of the dataset while the Normal samples are nearly 60%.

Likewise, within the CinC 2020 dataset, the Sinus Rhythm and

Other categories exceed 20%, whereas the remaining classes fall
FIGURE 1

The classes distribution in datasets CinC 2017 (left side) and CinC 2020 (right
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below 10%. The detail description of each class is mentioned in

Table S1 in the Supplementary Material.
2.2. Model architecture, training pipeline,
and experiment conditions

This section describes the details of the configuration of each

model as well as the flow of data when training the model. The

overview of the training pipeline is given in Figure 2 and

interpreted in the following. There are three main flows of

learning in our experiments. They shared the same signal loader

and evaluation method. Each flow had a separate way of pre-

processing data and model optimization, which will be described

in detail below.

All experiments were conducted on the same computer with

1 � Intel Core i7-9700F CPU, 64 GB RAM, and 1 � NVIDIA

GeForce GTX 3060 GPU. The metrics was estimated on both

5-fold cross-validation and a separated test set. In cross-
side).
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FIGURE 2

The high-level scheme of training pipeline, including data preparation, model optimization, and performance evaluation.
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validation experiments, we combined the train and validation

subset into one dataset before performing the fivefold cross-

validation. To estimate the performance on the unseen data, we

trained the models on the train subset and tested on the

separated test subset, while the validation subset was used to

optimize the hyperparameters.
2.2.1. Learning over Poincaré representation
For the methods based on the Poincaré diagram, the

input ECG signals were preprocessed by biosppy (13) to

extract the R-peak positions from the signal (14). This

library filters the ECG signal in the frequency range from 3

to 45 before using the Hamilton algorithm (15) to detect

the R-peak. The distance between R-peaks (or RR intervals)

was evaluated from the R-peak location. Furthermore, in

our study, we only used the NN intervals, which are the

distances between normal R-peaks collected after removing

the noise and artifacts. The Poincaré diagram was

constructed by plotting the scatter charts for NNi and
FIGURE 3

The Poincaré diagrams of the short-term (A) and long-term (B) ECGs. The dia
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NNiþ1 intervals. Figure 3 shows the examples of Poincaré

diagram of a short and long recording.

To predict the cardiovascular disease over the Poincaré

diagrams, the default architecture of ResNet50 (16) and

DenseNet121 (17) were used to train from the scratch

(without pre-trained weights). The last layers of these

models were also tailored to match the number of classes

of each dataset.
2.2.2. Learning over 1D signal
In our study, the 1D CNN model comprises 12 base blocks. Each

base block consists of a 1D Convolutional layer, 1D Batch

Normalization, Activation function, Pooling layer, and Drop-out

layer. The 1D Convolutional layer was set with no padding and

stride size of 1. The output channel starts at 256 and decreases

gradually to 32 in the last convolutional layer, and the kernel size

starts at 20 followed by 5 layers with a kernel size of 5, and then 3

for the remaining layers. The Batch Normalization layers have the

number of weights the same as the number of output channels of

the prior convolutional layer. The momentum of normalization is
grams plot the normal R-peak intervals (or NN intervals).
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0.99 for every block. The Pooling of base block is Max Pooling of

which the kernel size and stride size are 2. The dropout probability

is set to 0.3 in every place. Before flattening the tensor and feeding

to the last fully connected layer for the logit outputs, there is an

average pooling layer with a kernel size of 1 and stride size of 2.

The structure of the base block in 1D ResNet includes a 1D

Convolutional layer, 1D Batch Normalization, ReLU activation

function, a Drop-out layer, another 1D Convolutional layer, and 1D

Batch Normalization. In a base block, the input would go through

these layers before adding the residual which is also the input

tensor. This summation is activated by the ReLU function after

leaving the block.

In our work, the 1D ResNet starts with a 1D Convolutional layer

with a kernel size of 15 and the number of output channels is 64

followed by a 1D Batch Normalization, ReLU Activation function,

and Max Pooling layer. After that, there are four base blocks with

kernel sizes increasing from 65 to 256. The output of the last base

block goes through two pooling layers: an Average Pooling layer

and a Max Pooling layer. These outputs are concatenated before

feeding to the final fully connected layer to compute the output logits.

In both 1D CNN and 1D ResNet models, the signals are

converted to first-order difference and scaled to zero mean and

unit variance before transferring to the models.
2.2.3. Learning over XGBoost feature space
In the pipeline of the XGBoost model, the processed ECG signals

need to feed to module tsfresh to extract the features before

training model. The features extraction used the list of efficient

features set but filtered out the time-consuming features including:

entropy-related features, matrix profile, the number of Continuous

Wavelet Transform (CWT) peak, partial autocorrelation,

aggregated linear trend, and the statistics of Augmented Dickey–

Fuller test. In the feature matrix, the pipeline filled the missing

data with �999 and removed the low-variance features.

The hyperparameters of XGBoost were optimized by searching

within the predefined space (Table 2). The optimum collection was

found by Bayesian optimization implemented in the library

scikit-optimize. (18) The number of search trials was

limited to 100 because of time constraints.
2.3. Metrics and model interpretation

The popular metrics for the classification problem include

accuracy, precision, recall, and F1 score. While the accuracy is
TABLE 2 The hyperparameters searching space of XGBoost.

Component Hyperparameter
Feature elimination min_features_to_select

XGBClassifier max_depth

XGBClassifier gamma

XGBClassifier eta

XGBClassifier scale_pos_weight

XGBClassifier reg_lambda

XGBClassifier reg_alpha
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biased if the dataset is heavily imbalanced among classes (19),

precision and recall are preferred in these cases. In this study, we

used the harmonic mean of precision and recall (F1 score), which

is easy to compare methods with only one measure. Besides the

F1 score, sensitivity and specificity were also calculated to get

more insight into each model. These scores were calculated as

Precision ¼ TP
TP þ FP

, Recall=Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
FP þ TN

, F1 Score ¼ 2� Precision� Recall
Precisionþ Recall

where TP, FP, TN, and FN are the number of True Positive, False

Positive, True Negative, and False Negative extracted from the

confusion matrix, respectively. Because the dataset is multiple

classes (in CinC 2017) or multiples labels (in CinC 2020), the

average of each metric was reported in our study.

To assess the power efficiency of the proposed methods, we

measured the power consumption, the equivalent CO2 emission,

and the inference time of each model. The inference time was

calculated by the average time of predictions on the test set. The

power consumption and carbon emissions information were

monitored and calculated using the open-source library eco2AI,

which is available at https://github.com/sb-ai-lab/Eco2AI (20).

To explore the mechanism behind the decision of (1D and 2D)

convolutional model, the Gradient-weighted Class Activation

Mapping or GradCAM (21) was constructed to visualize which

region in the input that the model focused on when predicting.

The basic idea of GradCAM is to calculate the gradient of output

with respect to the feature map of last convolutional layers, and

then these gradients are aggregated to obtain the weight for the

feature map. An heatmap is built based on these weights to show

the contribution of each region to the prediction score.

For the XGBoost model, the feature importance of each feature

was calculate based on the frequency of that feature in splitting data

when training the tree. Because the number of variables is

enormous, they were aggregated into common group.
3. Results

In this section, we summarize the classification performance

and power consumption metrics of each classifier. After that, we

try to interpret the model decision using the mentioned methods.
Range Distribution
[10, #features] Uniform

[2, 100] Uniform

[10�3, 103] Log-uniform

[10�3, 103] Log-uniform

[10�3, 103] Log-uniform

[10�3, 103] Log-uniform

[10�3, 103] Log-uniform
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3.1. Cardiovascular diseases classification

The experiment results showed the superior performance of the

1D ResNet model learned over raw data in both datasets.

Especially, in both datasets, this model surpassed the first rank

solution in many measurements. The comparison of F1 scores,

sensitivity, specificity, and the efficiency metrics (power

consumption, equivalent CO2) are given in Table 3.

For the CinC 2017 dataset, the 1D ResNet is the best-performing

model with the highest F1 score in both fivefold cross-validation and

separated test dataset. The model also demonstrates high sensitivity

and specificity. The 1D CNN on the raw signal input also performs

well among the other models. For the CinC 2020 dataset, the 1D

ResNet models also outperforms other models in F1 scores and

specificity. However, the sensitivity of the model is lower than the

transformer-based model (12).

In detail, the Poincaré-based methods have adequate

performance in the CinC 2017 challenge. However, they did not

perform well in the CinC 2020 challenge. Particularly, some

classes are not discriminated in the Poincaré diagrams. The

models ResNet50 and DenseNet121 only identified the types

Atrial fibrillation (AF), Sinus bradycardia (SB), Sinus rhythm

(SNR), Sinus tachycardia (STach), and other, while the metrics

for the remaining types are close to zero. This result is

understandable as the information on heart rate variability is not

sufficient to identify several types of heart disease.

The XGBoost is under-expected because it ranked lowest in

CinC 2017 and only third in CinC 2020 despite the gradient-

boosting family usually gaining the highest place at many

machine learning benchmarks.

The unidimensional convolutional models yielded excellent

results in both classification challenges. The 1D CNN and 1D

ResNet shared the top two places in both datasets. In CinC 2017,

the 1D ResNet is the best model, followed by the 1D CNN. In

CinC 2020, the 1D ResNet surpassed the top-1 solution by a

large margin in F1 score and 2% higher specificity. However,

these models were still not better than the transformer-based
TABLE 3 Performance benchmark results on the fivefold cross-validation and

Dataset Input data Model
Five

F1
CinC 2020 Poincaré ResNet50 0.70 (0.02)

Poincaré DenseNet121 0.75 (0.02)

Raw signal 1D CNN 0.81 (0.01)

Raw signal 1D ResNet 0.82 (0.01)

Raw signal Kamaleswaran et al.a 0.80 (0.02)

Time series XGBoost 0.64 (0.02)

CinC 2020 Poincaré ResNet50 0.47 (0.03)

Poincaré DenseNet121 0.50 (0.00)

Raw signal 1D CNN 0.67 (0.00)

Raw signal 1D ResNet 0.71 (0.00)

Raw signal Natarajan et al.a 0.61 (0.02)

Time series XGBoost 0.65 (0.01)

F1, F1 score; SENS, sensitivity; SPEC, specificity.

The cross-validation performance metrics are reported with mean (SD). Bold number
aThe first rank solution.
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model in sensitivity. Regarding the best model (1D ResNet), the

metrics for each class are presented in the Supplementary

Table S2. This model worked very well on classifying

the class Atrial Fibrillation, Sinus tachycardia, and Left/Right

bundle branch block while there are a number of minor patterns

that were unable to detect such as Q-wave abnormal or

T-wave inversion.

The fivefold cross-validation results, especially the standard

deviation of performance metrics, reveals the stability and

robustness of the models. Because of lower standard deviation in

the cross-validation metrics, the 1D convolutional models are

more stable than other models in both datasets, while the

performance of gradient-boosting model and Poincaré-based

models fluctuate among the splits.

To better illustrate the tandem “Performance vs. Complexity”

for examined models, Figure 4 shows cross-plots on F1 score

and CO2 emissions for both datasets. In particular, one can

reveal that DenseNet121 and ResNet50 models learned over

Poincaré diagrams stand out from other models as inefficient

while ResNet learned on raw ECG signals outperforms.

We also analyzed the performance of investigated models in

each source of the CinC 2020 dataset (Table 4). The ResNet50

was good at the short-term recordings while performing poorly

in long-term data. The DenseNet121 was better than ResNet50

in long-term signal classification but did not surpass the 1D

Convolutional model. The XGBoost outperformed the others in

long-term ECG. However, the number of long-term signals is not

very large, so their metrics might not be stable.
3.2. Efficiency metrics

The results of the efficiency measurement are summarized in

Table 5. In terms of power consumption, 2D models are also the

most power-hungry models: ResNet50 and DenseNet121

consumed two to three times more energy than the others. On

the other hand, the 1D models are more efficient than any other
the separated test datasets.

fold cross-validation Test set

SENS SPEC F1 SENS SPEC
0.64 (0.03) 0.82 (0.05) 0.71 0.64 0.79

0.71 (0.02) 0.82 (0.02) 0.77 0.73 0.80

0.79 (0.01) 0.86 (0.01) 0.84 0.83 0.86

0.81 (0.01) 0.87 (0.01) 0.85 0.85 0.86

0.77 (0.02) 0.85 (0.03) 0.84 0.83 0.86

0.72 (0.09) 0.51 (0.15) 0.69 0.82 0.48

0.37 (0.03) 0.81 (0.03) 0.45 0.35 0.83

0.40 (0.01) 0.80 (0.01) 0.50 0.41 0.80

0.59 (0.01) 0.89 (0.01) 0.69 0.63 0.88

0.65 (0.01) 0.92 (0.01) 0.71 0.65 0.92

0.82 (0.02) 0.85 (0.02) 0.66 0.80 0.90

0.62 (0.03) 0.80 (0.03) 0.65 0.65 0.78

s indicate the performance of the best model.
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FIGURE 4

Test F1 score vs. CO2 emissions: left side—models learned over CinC 2017 dataset; right side—models learned over CinC 2020 dataset. Dotted red ellipses
highlight relatively heavy models.

TABLE 4 The F1 score on each sources in the CinC 2020 dataset.

Model G12EC �l ¼ 10 PTB-XL �l ¼ 10 CPSC �l ¼ 16 CPSC-Extra �l ¼ 16 PTB �l ¼ 109 INCART �l ¼ 1800
ResNet50 0.28 0.56 0.35 0.33 0.16 0.20

DenseNet121 0.36 0.58 0.38 0.50 0.77 0.60

1D CNN 0.55 0.76 0.61 0.68 0.85 0.74

1D ResNet 0.59 0.76 0.70 0.66 0.85 0.70

XGBoost 0.56 0.69 0.55 0.77 0.87 0.74

�l is the average length of signal in seconds. Bold numbers indicate the performance of the best model.

TABLE 5 Power consumption, equivalent CO2 emission, and inference time of each model.

Dataset Input data Model
Power (Wh) CO2 (g) Inference time (ms)

Processing Predicting Total
CinC 2017 Poincaré ResNet50 127 69 33.7 37.9 71.6

Poincaré DenseNet121 148 81 33.7 38.2 71.8

Raw signal 1D CNN 77 42 13.5 25.5 41.0

Raw signal 1D ResNet 44 24 13.5 18.8 32.2

Raw signal Kamaleswaran et al.a 92 51 14.3 66.0 80.3

Time series XGBoost 42 23 1717.6 0.2 1717.8

CinC 2020 Poincaré ResNet50 630 344 227.2 36 263.2

Poincaré DenseNet121 740 404 227.2 36.3 263.5

Raw signal 1D CNN 396 216 144.3 29.8 174.1

Raw signal 1D ResNet 223 122 144.3 21.6 165.9

Raw signal Natarajan et al.a 497 271 4.9 833.6 838.5

Time series XGBoost 286 156 382.7 0.0 382.7

Bold numbers indicate the performance of the best model.
aThe first rank solution.
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models: the 1D ResNet needed more energy than only XGBoost in

CinC 2017 and was the most efficient model in CinC 2020. Despite

the 1D CNN having a simpler base block than the 1D ResNet, the

CNN required more layers than ResNet (12 CNN blocks vs. 4
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ResNet blocks). This made the former require more power while

performing less well than the latter.

Equivalent CO2 emissions are directly related to the power

consumption. Higher power consumption leads to higher CO2
frontiersin.org
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emissions. Similar to the power consumption pattern, the

DenseNet121 model on the Poincaré input data exhibits the

highest CO2 emissions for both datasets, while the 1D ResNet

model on the raw signal input has the lowest emissions.

Regarding the inference time, although XGBoost had a

lightning prediction time, this model dominated the total

inference time benchmark, which comes from the heavy

processing steps. This problem leads to the fact that XGBoost

still inferred 24 times longer than the second place. The

Poincaré-based method requires an approximate twofold longer

inference time than the 1D CNN or 1D ResNet. This result

complies with the mathematical characteristics of the 1D and

2D convolutional operators.
3.3. Models interpretation

3.3.1. DenseNet121 on Poincaré diagram
classification

Figure 5 visualized the GradCAM output of DenseNet121 on

CinC 2017. We can see how this model processes the Poincaré

diagram differently. In the Normal graph, the model focused on

the area in the upper left and lower right, while the shape of the

point cloud was ignored. In the arrhythmia diagram, the model

focuses on the point cloud or the diversion of data.

This behavior of the model is compatible with human

knowledge. For ordinary people, we do not expect any data

point far away from the diagonal of the diagram. Any data

point in the upper left or lower right area is evidence of

abnormal changes in heart rate and predicts the problem,

whereas in arrhythmia patients, because of the fluctuation in

the heartbeat statistics, the data should be very varied and

form a spreading cloud in the Poincaré diagram. The bigger

cloud shows more variation in heart rate.
FIGURE 5

Explaining CinC 2017 predictions on the Poincaré diagrams using GradCAM.
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3.3.2. 1D ResNet on ECG signal classification
Our work also took advantage of GradCAM to explore the

mechanism of the 1D ResNet model. In medical literature, the

ECG of Atrial fibrillation was detected by the irregular pattern in

P- and T-waves around the QRS complex.

Figure 6 shows the focusing points of the 1D ResNet when

predicting the AF signal. The yellow area is the segment that the

model attracts. These heatmaps show that the classifier focused

on the signal at the neighbor of the QRS complex. These regions

are corresponding to the P-wave and T-wave of ECG recordings.

In fact, the absence or abnormality of P-wave and T-wave is

related to the fluctuation of heart rate and predicts arrhythmia

disease (22).
3.3.3. Feature importance of XGBoost
To explore how model XGBoost predicts classes, the feature

importance score is calculated and summarized in Table 6. The

results show that the features relating to the peak of signal, like

fft_coefficient and ratio_beyond_r_sigma, are

the highly important ones. We can see that the XGBoost

model infers the heart rate information indirectly via the

peak-related features, after which the model could give the

prediction of arrhythmia from heart rate. The detailed

description of each feature group could be found in

Supplementary Table S3.
3.4. Statement on computational resources
and environmental impact

This work contributed totally 1.8 kg equivalent CO2 emissions

when training on a workstation with 1 CPU Intel Core i7-9700F

and 1 GPU NVIDIA RTX 3060.
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FIGURE 6

Explaining 1D ResNet decision by GradCAM methods in case of normal regimes and arrhythmia.

TABLE 6 Feature importance score of top 15 feature groups in the model
XGBoost.

Group No. features Importance score
fft_coefficient 22 0.2138

ratio_beyond_r_sigma 10 0.1989

autocorrelation 8 0.0935

energy_ratio_by_chunks 5 0.0657

index_mass_quantile 5 0.0651

lempel_ziv_complexity 5 0.0483

agg_autocorrelation 3 0.0444

range_count 3 0.0411

spkt_welch_density 3 0.0408

change_quantiles 3 0.0316

quantile 2 0.0279

number_peaks 2 0.0241

count_below 1 0.0185

cwt_coefficients 2 0.0154

number_crossing_m 1 0.0137

Pham et al. 10.3389/fcvm.2023.1229743
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4. Discussion

In the study, we have presented various modern approaches to

classify cardiac diseases from ECG recordings. The first approach

took advantage of the Poincaré diagram and deep learning–based

image classifiers. ResNet50 and DenseNet121 architectures were

chosen to process the graph. The experimental results figured out

that these methods are decent for atrial fibrillation but not good

at predicting other types of arrhythmia. In particular, Poincaré-

based methods have adequate performance in the CinC 2017

dataset but are not good in the CinC 2020 dataset. The reason is

that the information in the Poincaré diagram is limited in NN

interval fluctuation, which benefits in predicting arrhythmia but

is not much helpful in detecting other cardiovascular disease

types. However, NN intervals, and therefore Poincaré diagrams,

are much more accessible and can be obtained without the
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relatively complicated and expensive ECG procedure. Thus, it is

still worth studying this approach further.

XGBoost’s performance is more impressive in the subset of

long-term than the short-term recordings. This model learned

more information in the long signal, and we can transfer that

knowledge to short signal via data augmentation. This could be

done by segmenting the long signal into many short signals, and

then combining to the original dataset before training. Besides

that, this gradient-boosting model has a long inference time

because of the expensive calculation in the feature engineering

step. The feature calculation could be improve by narrowing

down the number of calculated features based on the feature

importance ranking.

The one-dimensional convolutional model showed the best

results in both studied datasets. Especially the 1D ResNet was

superior to the first-ranking solution of each challenge. The

residual connection showed its advantages in transferring

information while keeping the model not too deep. Our

experiments proved the superior advantage of the 1D CNN–based

model in ECG signal classification over other deep learning

architectures. In the experiments on the CinC 2020 dataset, 1D

CNN and 1D ResNet were better than the transformer-based

model of Natarajan et al., which is well known in sequence tasks.

To explain this behavior, we can consider the ECG classification

as local pattern recognition, so the model needs to detect the

abnormalities in each P, Q, R, S, and T location in the signal. The

intensity, appearance, or absence of any component in that

complex is evidence of cardiovascular disease. This is also the way

the physician reads the ECG recordings. However, the attention

mechanism of the transformer architect is likely to collect the

global information by connecting the information in many parts

of the sequence than focusing on a particular region of the series

(23). On the other side, when applied to the sequence processing,

the CNN model used the small size filter to focus on a short and

fixed segment of signal, which was helpful in capturing the local

pattern of each region of the recording.

Although there were papers studying the power consumption

on ECG classification problem (24, 25), our paper is the first to

investigate the efficiency metrics while training the models,

including power consumption, equivalent CO2 emissions, as well

as the inference time, in a wide range of models. The numerical

complexity is also represented by these metrics. Because of the

high workload when processing 2D images, 2D ResNet and 2D

DenseNet are at the top in power consumption rankings. The

XGBoost is energy efficient for the short term, but the power

requirement is multiplied many times when training on long-

term signals, which came from the complexity of feature

engineering. Since the 1D convolution operator is optimized in

calculation, unidimensional models like 1D CNN and 1D ResNet

are the most energy efficient among the studied methods.

In the aspect of model interpretation, three models (DenseNet,

1D ResNet, and XGBoost) were analyzed to figure out how they
Frontiers in Cardiovascular Medicine 10
discriminate the normal and AF data. The DenseNet detected AF

using the heart rate variability, which was measured by the

spreading of the data cloud and the presence of data in the

upper left and lower right in the Poincaré diagram. On the other

hand, the 1D ResNet assessed the AF pattern in raw ECG signal

similar to a medical expert: this model focused on the area

around the QRS complex, which is also the location of P- and

T-waves.
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