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Case Report: Identification of
microduplication in the
chromosomal 2p16.1p15 region
in an infant suffering from
pulmonary arterial hypertension
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This study reports the first case of a patient with chromosomal 2p16.1p15
microduplication syndrome complicated by pulmonary arterial hypertension
(PAH). A female infant was admitted to the hospital suffering from dyskinesia and
developmental delay, and conventional echocardiography revealed an atrial septal
defect (ASD), which was not taken seriously or treated at that time. Two years
later, preoperative right heart catheterization for ASD closure revealed a mean
pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the
condition was stabilized after drug therapy. A genomic copy number duplication
(3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was
revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are
involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and
REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary
vascular endothelial cells and is thought to be involved in the rapidly developing
PAH of this infant. Collectively, our findings contribute to the knowledge of the
genes involved and the clinical manifestations of the 2p16.1p15 microduplication
syndrome. Moreover, clinicians should be alert to the possibility of PAH and take
early drug intervention when facing patients with 2p16.1p15 microduplications.
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Introduction

Pulmonary hypertension (PH) is a group of diseases characterized by a progressive

increase of mean pulmonary arterial pressure (mPAP), with pulmonary vascular

remodeling as the main pathological mechanism, which leads to right heart failure and

eventually death. Pulmonary arterial hypertension (PAH) belongs to group 1 PH, and

congenital cardiovascular disease is the most common cause of PH in children. Despite

early detection and surgical repair of congenital cardiovascular defects, there is no better

treatment for this type of PH. Moreover, it is considered that the underlying gene

mutations or chromosomal aberrations are the major contributors to PH associated with

pathological congenital cardiovascular disease.

Three case reports have documented 2p16.1p15 microduplication syndrome, and these

cases have similar clinical manifestations, namely, developmental delay, intellectual
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FIGURE 1

Pulmonary arterial hypertension of the patient. (A) The computerized tomography scan shows a dilated pulmonary artery. (B) The echocardiogram shows
tricuspid regurgitation prior to treatment. (C) The echocardiogram shows tricuspid regurgitation after treatment.
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disability, and congenital defects, but the length of the

chromosomal microduplication region, the genes involved, and

the number of genes differ (1–3). In addition to the

developmental delay, this case also showed PH associated with a

congenital defect of the heart and ocular lesions. Chromosomal

alterations, especially duplication of certain segments, cause great

genomic instability. Whole exome sequencing, karyotype analysis,

copy number analysis, and single nucleotide polymorphism

(SNP) analysis were performed to study this infant who suffered

from PAH, developmental delay, movement disorders, and ocular

lesions. A microduplication chromosomal abnormality in the

2p16.1p15 region was found. It is crucial to enrich the

understanding of the genes involved and clinical manifestations

of 2p16.1p15 microduplication syndrome.
Case presentation

A 2-year-old female infant was admitted to the Department of

Cardiology of the Hunan Children’s Hospital to undergo atrial

septal defect (ASD) closure due to multiple echocardiographic
TABLE 1 Changes in blood cell count and ratio in the patient.

Date Leucocyte (109/L) Neutrophil ratio L
2 February 2019 9.99 0.365

8 April 2019 8.41 0.246

13 June 2019 8.16 0.332

13 March 2021 13.63 0.545

12 May 2021 13.85 0.346

16 June 2021 14.76 0.45

13 July 2021 11.68 0.407

16 July 2021 13.35 0.71

19 July 2021 13.59 0.45

18 August 2021 5.95 0.305

21 December 2021 11.43 0.481

1 March 2022 9.27 0.462

10 June 2022 6.65 0.299

8 July 2022 12.57 0.625

18 December 2022 6.18 0.5
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examinations indicating an ASD (Figure 1). A preoperative

echocardiogram revealed an ASD with mild tricuspid

regurgitation. The ASD was carefully measured as 10 mm during

the operation. The mPAP and pulmonary vascular resistance

(PVR) were measured at 45 mmHg and 9.1 Wood units via right

heart catheterization under transesophageal echocardiography

guidance, respectively. The closure operation was canceled due to

the infant having significant PAH. By puncturing the right

femoral artery and inserting a right coronary catheter, we

measure the blood pressure measured at various sites. The left

ventricular pressure, ascending aortic pressure, and descending

aortic pressure were 31, 48, and 48 mmHg, respectively, which

ruled out pulmonary hypertension due to left heart-related

disease. The oxygen saturations of the aorta, pulmonary artery,

and superior vena cava were 100%, 72.3%, and 69.2%,

respectively. PH crisis was considered, and the infant was given

pure oxygen to prevent the possible occurrence of a PH crisis.

The blood oxygen saturation of the infant was maintained above

90%, and the hemodynamics improved. There was a decrease in

hemoglobin and transfusion of concentrated red blood cells used

to improve anemia (Table 1).
ymphocyte ratio Hemoglobin (g/L) Platelet (109/L)
0.533 113 359

0.604 105 269

0.531 98 328

0.357 117 86

0.573 128 101

0.476 114 82

0.503 117 81

0.241 77 43

0.433 81 112

0.622 98 70

0.432 124 85

0.464 110 97

0.574 101 31

0.339 102 312

0.414 97 78
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FIGURE 2

Results of CNV analysis in the patient.
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After her condition improved and her vital signs stabilized,

bosentan (22 mg/time/12 h) and sildenafil (5 mg/time/8 h) were

applied to lower the mPAP. After her condition improved and

she was discharged from the hospital, she continued to take

bosentan and sildenafil orally. Because the follow-up test of the

blood routine showed that thrombocytopenia (Table 1) and

pulmonary arterial pressure did not decrease significantly, she

was rehospitalized in June 2022 in our hospital. Gamma globulin

was used to increase the number of platelets for 3 days. Other

therapeutic drugs included bosentan tablets (25 mg/time/12 h)

and sildenafil (5 mg/time/8 h) to treat PAH. Because the mPAP

was estimated to be increased by echocardiogram, sildenafil was

changed to tadalafil (7 mg/time/day) and re-examination of

echocardiogram showed that the pulmonary artery pressure

decreased.

When the infant was 3 months old, she was admitted to the

Hunan Children’s Hospital for treatment due to poor head-up in

the prone position. The doctor observed that her limbs moved

slowly, and her pronunciation was less. Through physical

examination, it was found that she could not turn over in the

supine position while the upper limbs did not shift with the

fulcrum on the face when trying to raise her head in the prone

position. She had hypotonia in the limbs with grade II muscle

tone in both upper limbs and grade I muscle tone in both lower

limbs. Retinal examination revealed focal ridge-like changes and

hemorrhages in the temporal periphery of both eyes. Brain MRI

showed enlargement and deformation of the bilateral ventricle

and third ventricle. After rehabilitation treatment, her motor

ability has improved. Her parents and relatives did not have

corresponding clinical manifestations or similar medical history.

The karyotype analysis and blood metabolism screening of the

infant showed no abnormalities. Pathogenic point variants that

may be associated with clinical presentation were also not
Frontiers in Cardiovascular Medicine 03
detected. Further whole exome sequencing revealed that the

proband had a 2.58 Mb microduplication in the paternal

chromosomal 2p16.1p15 region (Figures 2, 3). We concluded

that this copy number variation (CNV) may be de novo with the

fact that sequencing data showed that neither the father nor the

mother of the infant had this copy number variation. This

genomic region involves multiple Online Mendelian Inheritance

in Man (OMIM) genes, among which BCL11A, EHBP1,

FAM161A, PEX13, and REL genes are identified as OMIM

pathogenic genes (Supplementary Material S1). Although there

were no established triplosensitive genes in this region, its

phenotype is highly consistent with that of the reported cases

(1, 3) (Supplementary Material S1). Using the technical

standards for the interpretation and reporting of constitutional

copy number variants (4), we determined the pathogenicity of

chromosomal microduplication as follows. First, chromosomal

2p16.1p15 microduplication regions contain protein-coding genes

(BCL11A, EHBP1, FAM161A, PEX13, and REL) or other known

functionally important elements (score 0). Second, one

breakpoint is within an established haploinsufficient gene

(BCL11A) and the phenotype of the patient is highly specific and

consistent with what is expected for the loss of function (LOF) of

that gene (5–7) (score 0.45). Third, the number of protein-coding

genes wholly or partially included in the copy number gain is

between 0 and 34 (score 0). Then, we performed detailed

assessments of genomic content using cases from the published

literature, public databases, and/or in-house laboratory data. We

found that the reported phenotype of de novo occurrences in

these cases is highly specific and relatively unique to the gene or

genomic region (1, 3, 7) (score 0.45). Finally, the observed copy

number gain in this case is de novo (score 0). Therefore, the

chromosomal microduplication pathogenicity of this case is likely

pathogenic (score 0.90).
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FIGURE 3

Positional plots of the microduplications on the 2p16.1p15 region.
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Discussion

This study reports a female infant who suffered from PAH,

developmental delay, ocular lesions, and bradykinesia. The PAH

in this infant was discovered during right heart catheterization

prior to the proposed repair of the ASD. ASD repair surgery was

canceled, and routine treatment of PAH-targeted drugs, e.g.,

sildenafil and bosentan, was used leading to a decreased

pulmonary arterial blood pressure. To clarify the possible genetic

causes of PAH in the proband and promote awareness of the

possibility of PAH in such children, we performed whole exome

sequencing, and a 2.58 Mb microduplication in the chromosomal

2p16.1p15 region was revealed.

The chromosomal 2p16.1p15 region is prone to copy number

variation. We aimed to identify the involved genes that may play

key roles by collating the clinical characteristics of patients with

similar copy number variants. Then, by searching the

DECIPHER database (8) and the PubMed-indexed scientific

literature, we included in the analysis a total of 13 cases for

which phenotypes were described with four cases appearing as

case reports (1–3) and another nine cases deposited in the

DECIPHER database (Supplementary Table S1). The common

clinical features of 14 patients with 2p16.1p15 microduplications

including our report were delayed language development,

developmental delay, intellectual disability, movement disorder,
Frontiers in Cardiovascular Medicine 04
and special facial features. The patients reported by Mimouni-

Bloch et al. (2) and DECIPHER 501182 had ADHD, whereas

patients reported by DECIPHER 501182 and DECIPHER 508232

had autistic behaviors. Interestingly, three of the 14 patients with

microduplications [Lovrecic et al. (3), DECIPHER 258333, and

DECIPHER 508232] had macrocephaly, which was the opposite

phenotype of microdeletion patients with 44% of patients

showing microcephaly. Except for the patient in our case, none

of the remaining 13 patients developed PH with two patients

having atrial septal defect. Audiovisual impairment was present

in some patients [DECIPHER426112, Mimouni-Bloch et al. (2),

the patient in our case]. In terms of infections and the blood

system, the patients in both our case and DECIPHER 258333

reported recurrent infections and abnormal blood counts.

Comparative analysis of OMIM genes involved in the

symptoms of the patients and their microduplication regions

provides an opportunity to find the key genes of specific

phenotypes. The OMIM genes involved in microduplication

regions in all reported cases are VRK2, FANCL, BCL11A,

PAPOLG, REL, PUS10, PEX13, KIAA1841, C2orf74, ASHA2,

USP34, XPO1, FAM161A, CCT4, COMMD1, B3GNT2, TMEM17,

and EHBP1. Six of them, namely, BCL11A, PEX13, REL,

FAM161A, EHBP1, and FANCL, are OMIM pathogenic genes. In

this case report, chromosomal microduplication regions

encompassed multiple genes, and five of them were identified as
frontiersin.org
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OMIM genes causing diseases, namely, BCL11A, PEX13, REL,

FAM161A, and EHBP1. BCL11A and PEX13 are the two most

shared OMIM pathogenic genes. REL and FAM161A were

involved in 13 or five cases, respectively, while EHBP1 was only

involved in our case.

BCL11A (OMIM 606557) encodes B-cell chronic lymphocytic

leukemia (CLL)/lymphoma 11A which is a zinc finger protein

and regulates gene transcription by interacting with COUP-TF

protein (5). BCL11A is highly expressed in the human cerebral

cortex, hippocampus, and cerebellum. Mutation or deletion of

BCL11A has been shown to cause various diseases or

dysfunctions. Heterozygous mutant BCL11A is associated with

autosomal dominant Dias–Logan syndrome or intellectual

developmental disability with persistent fetal hemoglobin (OMIM

617101). Soblet et al. (6) reported that BCL11A frameshift

mutations lead to dyskinesia and hypotonia. Cai et al. (9) found

BCL11A mutations in patients with autism and intellectual

disability. Basak et al. (10) found that loss of BCL11A causes

schizophrenia and attention deficit hyperactivity disorder. Dias

et al. (7) found that BCL11A haploinsufficiency can lead to

neurodevelopmental defects, developmental delay, and intellectual

disability. Peter et al. (11) reported the association of BCL11A

deletion with severe speech impairment. The reason for the

above phenotypes may be that BCL11A is related to the

development and growth of nerve cells. Wiegreffe et al. (5) found

that BCL11A controls the migration of cortical projection

neurons through Sema3c. Fox et al. (12) found that BCL11A

affects the number and types of neurons by affecting the

differentiation time program of neural stem cells. Kuo et al. (13)

found that BCL11A controls axon branching and dendrite

growth by regulating the expression of DCC and MAP1B. Kuo

et al. (14) also found that the known X-linked intellectual

disability gene CASK interacts with BCL11A to regulate axon

branching and growth. All of the above are the result of BCL11A

copy number deficiency or mutation, and the significance of

BCL11A copy number gain remains unclear. However, the

BCL11A knockdown model of zebra fish developed microcephaly

with reduced size (15), which was in contrast to macrocephaly in

three cases. Therefore, the phenotypes caused by increased or

decreased BCL11A copy number may be opposite in some

respects. Three cases reported macrocephaly, and according to

the fact that the genes shared by the microduplication region in

these three cases included BCL11A, the copy number increase of

BCL11A may be able to explain to some extent why patients

with 2p16.1p15 microduplication syndrome have intellectual

disability and developmental disability and special facial features.

PEX13 (OMIM 601789) encodes peroxisome biogenesis factor

13, which is a peroxisome membrane protein. Deletion of PEX13 is

associated with autosomal recessive disorders of peroxisome

biogenesis 11A and 11B (16, 17). REL (OMIM 164910) encodes

c-Rel, a transcription factor of the REL/NFKB family. REL is

required for long-term synaptic plasticity and memory function

in the hippocampus (18). REL promotes survival and apoptosis

resistance in hippocampal neurons (19) and its knockout

promotes a Parkinson’s disease-like phenotype (20). DNA

binding of NF-κB/c-Rel is reduced in the substantia nigra and
Frontiers in Cardiovascular Medicine 05
peripheral blood mononuclear cells of patients with Parkinson’s

disease (21). FAM161A (OMIM613596) is a microtubule-binding

protein expressed throughout the photoreceptor inner segment,

enriched in the photoreceptor base connecting cilia and basal

body (22, 23), which interacts with C8orf37 to promote the

survival of photoreceptors (24). Deletion of FAM161A is

associated with autosomal recessive retinitis pigmentosa 28

(RP28) (23). After knocking out Fam161a in mice, Beryozkin

et al. (25) found that the outer segmental discs of photoreceptors

were disorganized in the vertical direction and that the base of

the outer segments was wider and shorter than that of those in

the WT mice and eventually resulted in retinal denaturation.

This may be related to retinal damage in our case.

EHBP1 (OMIM609922) may play a role in actin reorganization

which links clathrin-mediated endocytosis to the actin

cytoskeleton. EHBP1 regulates vesicle trafficking by recruiting

Rab8 family members and Eps15 homology domain-containing

protein 1/2 (EHD1/2) (26–28). In all 14 cases, EHBP1 was the

only OMIM causative gene that was not shared and was found

in children suffering from sudden PAH. Intersectin-1s (ITSN)

deficiency and expression of bioactive ITSN fragments are

characteristic of PAH human and animal model lung tissue (29).

Bioactive ITSN fragments promote EC proliferation in PAH

lungs (30). Predescu et al. (31) found that EHBP1 was involved

in the proliferative effect of EHIRSN on endothelial cells by

changing the subcellular localization of EHBP1. The unexpected

occurrence of PAH based on an atrial septal defect in our case

may be due to a copy number gain of the EHBP1 gene that

promotes EHBP1 expression in endothelial cells and diverts

physiological vesicle trafficking to an alternative endocytic

pathway, ultimately leading to molecular phenotypes of

dysfunctional pulmonary vascular endothelial cells. This requires

further evidence.

Although this case report involves only one patient, it is unique

in several ways. First, this patient had a longer chromosomal

microduplication region length and a greater portion of the 2p15

region, in contrast to most reported 2p16.1p15 microduplication

copy number changes, which mainly occurred in the 2p16.1

region. Despite this discrepancy, this patient had clinical features,

such as developmental delay and movement disturbance, similar

to those of patients with 2p16.1p15 microduplication carriers.

A second unique feature of this case is that the father and

mother of the proband had no similar copy number variation

and all chromosome copy numbers were normal, suggesting that

the microduplication was a de novo mutation. Finally, the

2p16.1p15 microduplication in the proband involved an OMIM

causative gene, EHBP1, which was not involved in all reported

case reports in the PubMed and DECIPHER databases. EHBP1

may be related to the rapid onset of PAH in this case.

This report has limitations. First, the cause for the 2p16.1p15

microduplication of the chromosome of the patient was not

explained in this report. Whole genome sequencing and further

bioinformatics should be performed to explore any possible

causes. Second, the reasons for PAH in this infant have not been

thoroughly explored. Although EHBP1 was suggested as the most

likely cause, quantitative polymerase chain reaction and Western
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blot experiments on tissue or blood samples from the infant were

not performed to determine the high expression of EHBP1.

Third, subsequent in vitro cell experiments to verify the effect of

EHBP1 on endothelial cell proliferation phenotype should also be

performed.

In conclusion, we report in detail a case of rare 2p16.1p15

microduplication syndrome involving EHBP1, which suggests

that the occurrence of PAH should be alerted if microduplication

mutations occur in the 2p16.1p15 region and involve EHBP1.
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