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Objective: Exaggerated physiological reactions to acute mental stress (AMS) are
associated with hypertension (development) and have been proposed to play
an important role in mediating the cardiovascular disease risk with hypertension.
A variety of studies compared physiological reactivity to AMS between essential
hypertensive (HT) and normotensive (NT) individuals. However, a systematic
review of studies across stress-reactive physiological systems including
intermediate biological risk factors for cardiovascular diseases is lacking.
Methods: We conducted a systematic literature search (PubMed) for original
articles and short reports, published in English language in peer-reviewed
journals in November and December 2022. We targeted studies comparing the
reactivity between essential HT and NT to AMS in terms of cognitive tasks,
public speaking tasks, or the combination of both, in at least one of the
predefined stress-reactive physiological systems.
Results:We included a total of 58 publications. The majority of studies investigated
physiological reactivity to mental stressors of mild or moderate intensity. Whereas
HT seem to exhibit increased reactivity in response to mild or moderate AMS only
under certain conditions (i.e., in response to mild mental stressors with specific
characteristics, in an early hyperkinetic stage of HT, or with respect to certain
stress systems), increased physiological reactivity in HT as compared to NT to
AMS of strong intensity was observed across all investigated stress-reactive
physiological systems.
Conclusion: Overall, this systematic review supports the proposed and expected
generalized physiological hyperreactivity to AMS with essential hypertension, in
particular to strong mental stress. Moreover, we discuss potential underlying
mechanisms and highlight open questions for future research of importance for
the comprehensive understanding of the observed hyperreactivity to AMS in
essential hypertension.
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1. Introduction

Essential hypertension (EHT), the chronic elevation of blood pressure (BP) without

secondary causes, is one of the most prevalent risk factors for cardiovascular disease

(CVD) (1, 2). Exaggerated physiological reactions to acute stress (AMS), or more precisely

acute mental stress, have been proposed to be involved in mediating the CVD risk with

hypertension (3, 4). Specifically, several lines of evidence suggest that exaggerated mental

stress-induced cardiovascular and neuroendocrine reactions predict not only premature

development of hypertension and other precursors of coronary heart disease, but also an
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accelerated progression of atherosclerosis and the likelihood of having

a future acute coronary syndrome such as myocardial infarction (3–6).

In addition to cardiovascular and neuroendocrine hyperreactivity,

heightened stress reactivity of intermediate biological CVD risk

factors (e.g., blood lipids and lipoproteins, hemostatic factors,

inflammatory activity) may play an important role in hypertension

and hypertension development (7–9) as well as in the interface

between stress and heightened risk for CVD morbidity and

mortality (10–13). Since the 1970s, a variety of studies have

compared the physiological reactivity to AMS in essential

hypertensive individuals (HT) and normotensive individuals (NT)

applying mental stressors of different severity and considering

different stress-reactive physiological systems. However, a systematic

summary of the literature is lacking so far. Here, we therefore

summarize for the first time the hitherto published evidence on

physiological reactivity to AMS in HT as compared to NT

regarding the primary endocrine stress-axes, i.e., the sympathetic-

adrenal-medullary (SAM) axis, the hypothalamus-pituitary-adrenal

(HPA) axis, and the renin-angiotensin-aldosterone system (RAAS),

in addition to major stress-reactive intermediate biological risk

factors for CVD (coagulation, blood lipids and lipoproteins, and

inflammatory measures). Based the hitherto reported cardiovascular

hyperreactivity in EHT to different psychological and physiological

stressors including AMS [for review see: (14, 15)] on the one hand,

and the interrelation of stress-reactive physiological systems (16–20)

on the other hand, we hypothesized a generalized physiological

hyperreactivity to AMS in EHT across different stress-reactive

physiological systems. Moreover, we discuss potential mechanisms

underlying the obtained summarized stress reactivity findings in EHT.
1.1. Essential hypertension as a major CVD
risk factor

Arterial hypertension is a highly prevalent medical condition

defined as a chronic elevation of systolic BP (SBP) ≥140 mmHg, a

chronic elevation of diastolic BP (DBP) ≥90 mmHg, or both (21).

The worldwide prevalence of hypertension among adults is about

30% with noticeable but stable differences across countries and with

a steep increase with ageing (21, 22). Hypertension presents a major

if not the greatest risk factor for CVD (23). With BP increase from

normal to severe levels, the risk for accelerated atherosclerosis,

coronary heart disease, left-ventricular hypertrophy, and stroke

increases markedly (24, 25). Moreover, high BP was identified to be

the leading single risk factor globally in 2015 accounting for 10.7

million deaths (26). Intriguingly, most individuals diagnosed with

arterial hypertension suffer from EHT, also referred to as primary,

idiopathic, or systemic hypertension, meaning that there is no

medical cause for their condition (27).
1.2. Acute mental stress

According to Lazarus & Folkman (28), stress is the result of

cognitive appraisal processes concerning the interaction between

the individual and the environment. More precisely, stress occurs
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when an individual experiences demands or threats, i.e.,

encounters a so-called stressor, without sufficient resources to

meet these demands or mitigate the threats. This perceived

imbalance between situational demands and personal resources

triggers stress responses comprising a wide variety of

psychophysiological reactions in order to counteract the stressful

circumstances (29). Stress can occur acutely, i.e., lasting for

minutes to hours (i.e., acute stress) or chronically, i.e., persisting

for days to months (i.e., chronic stress) (30). In human acute

stress research, most studies focus on AMS. Mental stressors

commonly used comprise cognitive tasks, public speaking tasks

(PST), and the combinations of cognitive and PST (31, 32).

Typical cognitive tasks are mental arithmetic tasks (MA), Raven’s

progressive matrices (33), general knowledge quizzes, visual

puzzles, and interference tasks such as the mirror tracing task or

the Stroop color word interference task (SCWT) (34). In PST,

participants are instructed to prepare and deliver a short speech

in front of an audience on an assigned, often controversial topic.

Notably, cognitive tasks have been shown to induce physiological

stress reactions of minor intensity as compared to PST (35).

Strongest physiological stress reactions have been observed in

reaction to the combination of cognitive tasks with PST (31).

Central for induction of strong stress reactions is the

combination of social-evaluative threat (i.e., potential negative

evaluation of the self, e.g., by an evaluative audience) and

uncontrollability (i.e., perception that avoidance of negative

consequences, termination of aversive experiences or succession

is not or will not be possible, e.g., false feedback or time-

pressure) (31). A frequently used psychosocial stressor that

combines PST and MA is the Trier Social Stress Test [TSST

(36)]. The TSST comprises a short introduction phase followed

by a 3-min preparation phase, a 5-min mock job interview, and

a 5-min MA in front of an audience with video and audio

recording. Also, the Montreal Imaging Stress Task [MIST (37)]

that comprises a series of computerized mental arithmetic

challenges, was initially developed for inducing AMS in a

functional imaging setting and includes social evaluation and

uncontrollability (31).

Given these differences in stressor potency to elicit

physiological stress reactions, we discriminate between reactivity

to mild, moderate, and strong mental stressors. We refer to

cognitive tasks as mild, to PST as moderate, and to the TSST

and the MIST (that both combine PST with MA) as strong

mental stressors.
1.3. Major stress-reactive physiological
systems

Following stress encounter, multiple interrelated physiological

systems are activated, comprising neuroendocrine stress axes, i.e.,

the SAM axis, the HPA axis, and the RAAS, as well as stress-

reactive intermediate biological risk factors for CVD.

The first activated stress-reactive system is the SAM axis (38).

Here, stress perception activates preganglionic sympathetic

neurons in the intermediolateral cell column of the spinal cord.
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This subsequently leads on the one hand the activation of end

organs via direct sympathetic signaling pathways where

norepinephrine (NEP) acts as postganglionic transmitter and on

the other hand to stimulation of the secretion of the

catecholamines NEP and epinephrine (EP) from chromaffin cells

of the adrenal medulla into the circulation (39). Both, the NEP

released directly at sympathetic synapses and the circulating

catecholamines released from the adrenal medulla, induce rapid

physiological adaptions in order to allow to “fight-or-flight”, e.g.,

increases of BP, heart rate (HR), or vasodilation of central blood

vessels (e.g., in skeletal muscles, heart, and brain) (38). Measures

of acute SAM axis reactivity comprise on the endocrine level the

plasma catecholamines NEP and EP, on the cardiovascular level

BP, HR, cardiac output, stroke volume, or total peripheral

resistance. Also, the enzyme salivary alpha amylase (sAA),

secreted from the salivary glands under sympathetic stimulation,

is considered a surrogate marker of catecholamine release, in

particular of NE (40). Notably, all these parameters reach their

maximum stress reactivity during or immediately after stress.

Recovery to baseline levels can be observed within 5–20 min after

stress cessation for most parameters except for BP where delayed

recovery periods have been reported (41–44).

Simultaneously to the sympathetic activation, the activity of the

parasympathetic nervous system (PNS) as counterpart of the SNS,

predominant under quiet, resting conditions, decreases.

Parasympathetic (re)activity can be assessed via heart rate

variability (HRV) reflecting beat-to-beat changes in RR intervals

(45, 46). HRV parameters reflecting predominantly PNS (re)

activity comprise the square root of the mean of the sum of the

squares of differences between adjacent normal-to-normal

interval’ (RMSSD), the percentage difference between adjacent

normal-to-normal intervals that are greater than 50 ms (PNN50),

and the high frequency (HF) band (0.15–0.40 Hz) (45, 46).

Notably, given that HRV depends on resting heart rate as well as

the frequency and depth of respiration, reliable HRV assessment

requires adjustment for these potentially influencing factors (47).

In reaction to AMS, immediate significant decreases in RMSSD,

pNN50, and HF have been observed in healthy individuals (48–50).

In addition the activation of the SAM axis, perception of stress

activates hypophysiotropic neurons in the paraventricular nucleus

of the hypothalamus that lead to the release of the hypothalamic

hormones, corticotropin-releasing hormone (CRH) and arginine

vasopressin (AVP), which are the principal regulators of the HPA

axis (39). CRH and AVP stimulate the secretion of

adrenocorticotropin hormone (ACTH) from the anterior

pituitary (51). ACTH primarily acts on the zona fasciculata of

the adrenal cortex, where it initiates the synthesis and secretion

of cortisol (52). Cortisol acts on intracellular cytosolic

glucocorticoid and mineralocorticoid receptors throughout the

entire body, in order to prepare the body for exposure to stress

(53). In human stress research, assessment of acute HPA axis

(re)activity usually comprises peripheral ACTH and/or cortisol

measurements (54, 55). While ACTH is usually measured from

blood plasma, cortisol can reliably be measured from both, blood

plasma and serum (bound and free fractions of cortisol), as well

as from saliva (biologically active free fraction of cortisol)
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(56, 57). With respect to stress reactivity, stress exposure by

TSST induces fast increases in ACTH that peak immediately

after TSST cessation and return to baseline levels about 40 min

after stress cessation (36, 58). Salivary cortisol shows a

comparably delayed stress reactivity with highest levels peaking

about 30 min after TSST beginning, or about 10 min after its

cessation, respectively, that last for another 10–20 min and then

slowly return to baseline levels about 60 min after stress cessation

(36, 59). Reactivity of plasma and serum cortisol starts a bit

earlier but the subsequent reactivity pattern is comparable (36, 59).

Both, the SAM axis and the HPA axis, can interact with the

RAAS. With respect to the SAM axis, catecholamines released

from the adrenal medulla induce the synthesis and secretion of

renin via β-adrenergic receptors on juxtaglomerular cells in the

kidney. Subsequently, renin catalyzes the hydrolysis of

angiotensinogen produced in the liver and fat tissues to

angiotensin-I (ANG-I) (60). ANG-I is transported to lung

capillaries, endothelial cells, and kidney endothelial cells via the

blood circulation where it is converted to angiotensin-II (ANG-

II) by angiotensin-converting enzyme (ACE) (61). ANG-II then

stimulates the production of aldosterone in the zona glomerulosa

of adrenal cortex (62). With respect to the HPA axis, the stress-

induced release of ACTH stimulates in addition to the

production of cortisol in the zona fasciculata also the production

of aldosterone in the zona glomerulosa of the adrenal cortex

(60). Parameters indicative of RAAS activation comprise plasma

renin and plasma renin activity (PRA), ANG-II, and aldosterone

that can be measured in blood plasma. Notably, we recently

showed that aldosterone can also be validly assessed from saliva

(18). While plasma renin measures and ANG-II increased

immediately after stress with quick return to baseline levels,

highest levels of both, plasma and salivary aldosterone, were

observed during the 20 min after TSST cessation (18, 63). Stress-

induced aldosterone level increases returned to baseline within

about 90–120 min after stress with respect to salivary aldosterone

and within 180 min after stress for plasma aldosterone (18).

In addition to the activation of endocrine stress axes, AMS

elicits increases in intermediate biological risk factors for CVD.

Acute stress induces activation of coagulation molecules, platelets,

and fibrinolysis resulting in net hypercoagulability (11, 64) that

presumably aims at protecting the organism from lethal

hemorrhage in case of a potentially resulting injury in fight-or-

flight situations (65). Major clotting-related targets of stress-

induced catecholamine-release include platelet activation, the

hepatic release of clotting factors VII (FVII:C) and VIII (FVIII:

C), as well as excretion of hemostatically active von Willebrand

factor antigen (VWF) and the pro-fibrinolytic tissue-type

plasminogen activator (t-PA) from endothelial storage pools into

the circulation (66, 67). Notably, further stress-induced t-PA

increases in the circulation origin from sympathetic innervated

artery walls (68). Subsequently, various resulting processes

involving the clotting factors IX (FIX:C), X (FX:C), XI (FXI:C),

and XII (FXII:C), lead to further platelet activation and the

formation of a critical amount of thrombin, initiating the

conversion of fibrinogen to fibrin and clot formation (69).

Termination of clot formation involves several anticoagulant
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mechanisms leading to inactivation of thrombin by formation of

thrombin-antithrombin III (TAT) complexes (70). Laboratory

studies in healthy humans show increased stress-induced

activation of the clotting parameters FVII:C, FVIII:C, platelets, t-

PA, TAT complexes, and fibrinogen with highest levels

immediately after stress and recovery back to prestress levels

about 20–45 min after stress (12, 66, 71, 72). Notably, stress

reactivity kinetics of the fibrin cleavage product and

hypercoagulability parameter D-Dimer are not fully understood

yet with some studies reporting highest D-dimer levels

immediately after stress and other study observing delayed

increases (71, 73–75).

Blood lipids and lipoproteins represent further stress-reactive

intermediate biological risk factors. Stress-induced changes in the

prothrombotic lipid parameters total cholesterol (TC),

triglycerides (TG), and low density lipoprotein-cholesterol (LDL-

C) as well as the antithrombotic high density lipoprotein-

cholesterol (HDL-C) presumably aim at providing energy for

muscles activity in fight-or-flight responses (76). Studies

investigating blood lipid and lipoprotein reactivity to AMS report

stress-induced increases in prothrombotic and antithrombotic

blood lipid parameters (13, 77–82). However, not all these

studies controlled for stress-induced hemoconcentration as an

important confounding factor (79). Notably, stress can induce

transient acute loss of plasma volume into the extravascular

space, which results in the concentration and passive increase of

larger (>69 kDa) and thus non-diffusible blood constituents such

as lipids (83, 84). After control for stress hemoconcentration

effects on blood lipid reactivity (85), stress-induced increases in

prothrombotic blood lipids and lipoproteins have been observed

in reaction to mental stressors of moderate or strong intensity

(13, 78, 79, 81) but not in reaction to mild mental stressors (79).

With respect to HDL-C, results of studies controlling for stress

hemoconcentration remain inconclusive (13, 78, 79). Stress

hemoconcentration-independent changes in blood lipid

parameters in reaction to AMS have been proposed to relate to

stress-induced SNS activation (86, 87). With respect to the

kinetics of lipid stress reactivity to moderate and strong mental

stress, most studies point to highest levels of prothrombotic

blood lipids and lipoproteins at or shortly after stress cessation

(13, 78, 79, 81).

Finally, acute stress is capable of inducing immune activation.

A recent systematic review and meta-analysis summarized the

increasing number of studies investigating reactivity of

inflammatory markers in reaction to AMS in healthy individuals

(88). Robust stress-induced increases of moderate to large effect

size were found for the cytokines interleukin (IL)-6 and IL-1β

(88, 89), in addition to small to moderate stress-induced

increases in tumor necrosis factor (TNF)-α (88). Stress-induced

C-reactive protein (CRP) increases however could not be

confirmed (88). It is assumed that the stress-induced

proinflammatory response has evolved in order to protect an

individual from potential immediate injury and infection due to

stressors such as e.g., a predator attack (30, 90). Stress reactivity

kinetics differ between cytokines [likely due to differences in

half-lives or clearance mechanisms (91)] and are not fully
Frontiers in Cardiovascular Medicine 04
understood yet given the investigation period of only up to 2 h

in existing studies. Notably, inflammatory markers were found to

increase delayed, i.e., not before 10 min after stress cessation.

Peak levels of circulating IL-1β and TNF-α were mostly observed

40–50 min after stress, while peak levels of IL-6 occurred later, at

90–120 min after stress (88). The exact mechanisms underlying

the stress-induced increases in inflammatory markers are

beginning to be understood. It has been speculated that cytokine

increases in reaction to acute stress are mediated via the SNS and

intracellular proinflammatory activity (88, 89, 92). With respect

to down-regulation or delay of the inflammatory response to

acute stress, cortisol, and thus HPA axis reactivity, has been

proposed to play an important role (88, 93–95).
2. Systematic review: physiological
reactivity to AMS in essential
hypertension

Exaggerated stress-induced physiological reactions have not

only been associated with premature development of

hypertension (6, 96) but also been proposed to play an

important role in mediating the CVD risk with hypertension (3).

In the following, we summarize the hitherto existing literature on

the physiological reactivity to AMS with respect to the SAM and

HPA axes, the RAAS as well as intermediate biological risk

factors in HT compared to NT. In line with existing meta-

analytic evidence for a cardiovascular hyperreactivity with EHT

to different stressors including AMS (14) and the interrelation of

stress-reactive physiological systems (16–20), we expect our

systematic review to support a generalized physiological

hyperreactivity to AMS with EHT across different stress-reactive

physiological systems.
2.1. Methods

We performed a systematic review according to the “preferred

reporting items for systematic reviews and meta-analysis

guidelines” (PRISMA) (97). Our literature search was conducted

in November and December 2022.

2.1.1. Search strategy
In our main literature search on studies investigating

physiological reactivity to AMS in manifest EHT, we conducted a

systematic search on PubMed using the combinations of search

terms “hypertension” AND (“mental stress” OR “psychological

stress” OR “psychosocial stress” OR “acute stress”) together with

the keywords of each of the considered stress-reactive

physiological systems: the SNS (sympathetic reactivity,

sympathetic nervous system, catecholamines, norepinephrine,

epinephrine, cardiovascular reactivity, blood pressure, heart rate,

salivary alpha-amylase), the PNS (parasympathetic reactivity,

parasympathetic nervous system, heart rate variability, RMSSD,

HF, pNN50), the HPA axis (HPA axis, CRH, ACTH, cortisol),

the RAAS (renin-angiotensin-aldosterone-system, renin,
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angiotensin, aldosterone), the coagulation system (coagulation,

procoagulant, d-dimer, fibrinogen, FVII, FVIII), blood lipids and

lipoproteins (blood lipids, LDL, HDL, triglycerides, cholesterol),

the immune system (inflammation, inflammatory marker,

interleukin, t-PA, TNF-alpha, NF-kappaB, CRP). All identified

publications were screened to exclude duplicates. Subsequently,

both, abstracts and full texts of remaining publications were

reviewed manually for formal and content-related inclusion

criteria. We moreover manually searched the reference lists of

included publications for further relevant publications not

identified by the initial search.

Moreover, we a-priori defined that in case of less than 10

identified eligible publications for a stress-reactive physiological

systems, our main literature search for this system will be

extended to a secondary literature search on hypertension-prone

individuals. Study participants were considered as hypertension-

prone if at least one of their parents had EHT (parental

hypertension) and/or if they were designated as hypertension-

prone by the authors of the respective publication. Based on this

definition, we repeated the previous systematic literature for all

stress-reactive systems except the SNS (see Figure 1) by using

the search terms “hypertension-prone” OR “parental

hypertension” instead of “hypertension”.
FIGURE 1

Flow diagram of the process of study selection. A secondary literature search w
<10 publications (in italics) included in qualitative synthesis of main literature se
parasympathetic nervous system; HPA axis, hypothalamus-pituitary-adren
publications.
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2.1.2. Eligibility and inclusion criteria
With respect to formal inclusion criteria, we considered

original articles and short reports published in English language

that were published in peer-reviewed journals. Meta-analyses,

reviews, case reports, editorials, and conference abstracts were

not considered. With respect to content-related inclusion criteria,

we included studies reporting experimental data on human

physiological reactivity in reaction to AMS assessed in essential

hypertensive (main literature search) or hypertension-prone

(secondary literature search) individuals of at least 18 years as

compared to a normotensive control group. Acute mental

stressors considered in this review comprise cognitive tasks (MA,

Raven’s progressive matrices, general knowledge quizzes, visual

puzzles, mirror tracing tasks, SCWT) (mild mental stressors),

PST (moderate mental stressors), and the combinations of

cognitive and PST (strong mental stressors). Notably,

publications that did not differentiate between reactivity to

mental stressors and other stressor types were not further

considered. Regarding the physiological reactivity assessment,

publications had to capture at least one of the previously defined

physiological parameters of interest (plasma EP, plasma NEP,

BP, HR, sAA, RMSSDN, PNN50, HF, ACTH, plasma or salivary

cortisol, plasma renin or plasma renin activity, ANG-II,
as conducted for endocrine stress systems and biological risk factors with
arch. EHT, essential hypertension; SNS, sympathetic nervous system; PNS,
al axis; RAAS, renin-angiotensin-aldosterone-system; n= number of
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aldosterone, any coagulation or inflammatory marker, or blood

lipid parameter). Notably, some studies have resulted in multiple

publications, addressing different physiological systems and

parameters with respect to AMS reactivity in EHT. To prevent a

resulting bias, we included the first published data of the

respective physiological systems and parameters.

2.1.3. Data collection and synthesis
We retrieved and tabulated the following data from

publications with respect to each defined physiological parameter:

participant characteristics, stressor characteristics, and findings

with respect to physiological stress reactivity.
2.2. Results

With respect to the main literature search, our search yielded

2,486 potentially relevant publications after removal of duplicates

and checking of formal inclusion criteria (see Figure 1).

Ultimately, 45 publications met content-related inclusion criteria

and 13 additional eligible publications were identified from

reference lists, rendering a total of 58 publications included in

the qualitative synthesis of literature on physiological reactivity to

AMS in EHT. 50 publications report reactivity of SNS

parameters, 5 of PNS parameters, 4 of HPA axis parameters, 8 of

RAAS parameters, 4 of coagulation markers, 2 of blood lipid

parameters and 0 of inflammatory markers (see Tables 1–5).

With respect to the secondary literature search, we identified 6

potentially relevant publications after removal of duplicates and

checking of formal inclusion criteria (see Figure 1). Only 1 of

these 6 publications met content-related inclusion criteria. We

additionally identified 1 eligible publication from reference lists,

rendering a total of 2 articles included in the qualitative synthesis

of literature on reactivity to AMS in hypertension-prone

individuals with respect to PNS, HPA axis, RAAS, and

intermediate biological risk factors.

In the following, we report the results of our systematic review

for the defined physiological parameters. For a condensed

summary of our results, see Table 6.

2.2.1. Stress reactivity of the autonomic nervous
system
2.2.1.1. Sympathetic adrenal medullary (SAM) axis
With respect to sympathetic parameters or SAM axis parameters,

respectively, reactivity to AMS has been extensively studied in

EHT. Given the multitude of studies, we restricted our review to

studies that investigated sympathetic stress reactivity in manifest

HT. We hereby focused our literature search on catecholamines,

cardiovascular reactivity in terms of BP and HR as the major

sympathetic measures, and sAA (see Table 1).

2.2.1.1.1. Catecholamine reactivity. Norepinephrine: In reaction to

AMS including either mild or strong mental stressors, the

majority of studies failed to find reactivity differences in

plasma NEP between HT and NT (42, 105, 107, 109, 118, 119,

127, 129–133, 142, 143) despite the overall higher plasma NEP
Frontiers in Cardiovascular Medicine 06
levels with EHT (42, 142, 143). Notably, the participants of

these studies were mostly aged between 35 and 50 years of

age. However, few studies investigated reactivity to mild AMS

by means of MA in younger subjects mostly aged between 19

and 29 (98–104). Results of these studies show enhanced NEP

reactivity in the young HT as compared to NT. Interestingly,

Lenders et al. (101) explicitly examined potential age-related

differences in MA stress-induced plasma catecholamine

reactivity in EHT. In line with the above summarized findings,

they found increased NEP responses to MA in young HT aged

20–29 years, but not in older HT aged 30–39 or 40–55 years,

all as compared to NT. These findings are in accordance with

the hypothesis that in particular young HT and those in the

early stages of hypertension are characterized by a

hyperkinetic state with elevations in HR and cardiac output as

well as increased sympathetic tone (151, 152). This

hyperkinetic state is supposed to attenuate with increasing age

and the progression of hypertension (151). In later stages of

hypertension, BP elevations can be achieved with less

sympathetic firing/tone because of alterations in the wall-

lumen ratio and hyperresponsiveness of arterioles. This results

in the combination of normal cardiac output and increased

vascular resistance; characteristic for advanced hypertension

(151, 153).

Epinephrine: Similar to NEP reactivity, the majority of studies

did not observe differences in plasma EP reactivity to AMS between

HT and NT (99–102, 104, 118, 119, 127, 129–133, 142, 143), apart

from overall higher plasma EP levels with hypertension in some

studies (99, 142). Notably, all these studies applied mild mental

stressors. So far, only five studies report increased EP reactivity

to AMS in HT with four studies employing mild mental stressors

(98, 103, 105–107) and one study applying a strong stressor (42).

To the best of our knowledge, the latter study is the hitherto

only study investigating EP reactivity to a strong mental stressor.

In that study, middle-aged EHT and NT men underwent the

TSST, and EP reactivity was assessed repeatedly before and up to

60 min after stress cessation. Results showed higher EP reactivity

in EHT as compared to NT with most pronounced reactivity

differences up to 10 min after stress cessation pointing to EP

hyperreactivity in reaction to strong AMS in middle-aged EHT.

With respect to mild stressors, two studies investigated EP

reactivity in younger subjects with an average age of 20 years to

2–5 min of MA and found higher EP reactivity in HT as

compared to NT (98, 103) while other comparable studies did

not (100, 104, 119, 129, 142). Notably, investigating EP reactivity

in young men in the low, normal, and high (hypertension grade

2) BP ranges, Flaa et al. (98) found increasing EP reactivity with

increasing BP. The last study investigated EP reactivity to the

SCWT in two groups of EHT individuals, including grade 2 HT,

aged from 18 to 59 years as compared to NT (105). In this

study, the SCWT induced significant EP increases in the HT

groups but not in NT. Other studies on EP reactivity to the

SCWT, notably in HT grade 1, failed to find reactivity

differences (99, 104, 118, 131). It remains to be elucidated

whether an elevated EP reactivity to mild AMS may depend on

HT severity.
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TABLE 1 Summary of studies on stress reactivity to AMS in EHT with respect to SNS parameters.

Authors SNS
parameter

Stressor
(duration in

min)

Participant characteristics Hypertension cut-offs Results

n Age Sex

Increased reactivity to AMS of at least one SNS parameter in EHT
Flaa et al. (98) NEP

EP
MBP
HR

MA (5) 13 high BP
(166/97 ±
3/1 mmHg)
15 intermediate BP
(129/79 ± 2/
1 mmHg)
15 low BP
(106/52 ±
2/2 mmHg)

19.0 ± 0 ♂ . NEP/EP/MBP/HR: + in high BP

Garafova et al.
(99)

NEP
EP
SBP/DBP
HR

SCWT (10) 8 EHT with BMI
<25 kg/m2 (HT)
13 NT with BMI
<25 kg/m2 (NT)
10 EHT with BMI
>30 kg/m2

(HT-OB)
14 NT with BMI
>30 kg/m2

(NT−OB)

23.0 ± 3.0

23.0 ± 5.0

28.0 ± 4.0

27.0 ± 5.0

♂ SBP 140–159 mmHg and/or DBP
90–99 mmHg

NEP: +
EP/SBP/DBP/HR: =
No reactivity differences
between lean and obese HT

Kawabe et al.
(100)

NEP
EP
SBP/DBP
HR

MA (5) 11 EHT-I
26 EHT-II
12 NT

19.3 ± 0.2
19.3 ± 0.2
19.7 ± 0.3

♂ EHT-I: ≥ 140/90 mm Hg
EHT-II: only SBP≥ 140 mm Hg

NEP: + in EHT-I; = EHT-II vs. NT
SBP/DBP/HR: + in EHT-I as
compared to EHT-II and NT
EP: = ; no significant stress-
induced changes

Lenders et al.
(101)

NEP
EP
SBP/DBP
HR

MA (5) 70 EHT
41 NT

35.2 ± 9.9
34.8 ± 9.5
Age classes:
20–29, 30–39,
40–55 years

♂ ♀ SBP 140–179 mmHg and/or DBP
90–109 mmHg

NEP: + in HT aged 20–29, not
in other HT-groups
SBP: +
EP/DBP/HR: =

Lindvall et al.
(102)

NEP
EP
SBP/DBP
HR

MA (5) 14 EHT
14 NT

37.0 ♂ ♀ SBP 140–160 mmHg and DBP
95–105 mmHg

NEP: +
EP: =
SBP: = (relative and absolute
changes)
DBP: = (absolute changes)
−(relative changes)
HR: = (relative and absolute
changes)

Matsukawa
et al. (103)

NEP
EP
MBP
HR

MA (2) 9 EHT
11 NT

22 ± 1
21 ± 1

♂ SBP >140 mmHg and/or DBP
>90 mmHg

NEP/EP/MBP/HR: +

Perini et al.
(104)

NEP
EP

SCWT (8),
rest (16),
MA (4)

24 EHT
50 NT + PH
49 NT−PH

18–24 ♂ ♀ SBP 140–160 mmHg and/or DBP
90–100 mmHg

NEP:
SCWT: =
MA: +
EP:
SCWT: =
MA: =

Eliasson et al.
(105)

NEP
EP
SBP/DBP
HR

SCWT (.) 33 EHT
16 BHT
17 NT

40.0 ± 2.0
36.0 ± 2.0
38.0 ± 2.0

♂ ♀ EHT: >160/95 mmHg
BHT: SBP 140–160 mmHg or DBP
90–95 mmHg

EP:
EHT vs. NT: +
BHT vs. NT: +
EHT vs. BHT: =
DBP:
BHT vs. EHT: + in BHT
BHT vs. NT: + in BHT
EHT vs. NT: =
NEP/SBP/HR: =

Palermo et al.
(106)

EP MA (5) 15 EHT
15 NT

39 ± 3 ♂ . EP: +
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TABLE 1 Continued

Authors SNS
parameter

Stressor
(duration in

min)

Participant characteristics Hypertension cut-offs Results

n Age Sex

Tomoda et al.
(107)

NEP
EP
SBP/DBP
HR

MA (10) 11 EHT-I
13 EHT-II
14 NT

40 ± 4
49 ± 3
42 ± 4

♂ ♀ EHT-I: SBP 130–139 mmHg and/
or DBP 80–89 mmHg
EHT-II: SBP >140 mmHg and/or
DBP >90 mmHg

EP:
EHT-I vs. NT: =
EHT-II vs. NT: +
SBP: EHT-I vs. NT: =
EHT-II vs. NT: +
HR:
EHT-I vs. NT: =
EHT-II vs. NT: +
NEP: =
DBP: =

Wirtz et al. (42) NEP
EP
SBP/DBP
HR

TSST (15) 22 EHT
26 NT

46.3 ± 3.0
42.0 ± 2.6

♂ SBP≥ 140 mmHg and/or DBP ≥
90 mmHg

EP: +
NEP/SBP/DBP/HR: =

Bahlmann et al.
(108)

MBP MA (4) 12 EHT
6 NT

. . . SBP 130–159 mmHg or DBP 80–
94 mmHg

MBP: +

Baumann et al.
(109)

NEP
SBP/DBP
HR

MA (14) 30 EHT
20 NT

15–20 ♂ SBP 130–139 mmHg or DBP 80–
89 mmHg

SBP/DBP/HR: +
NEP: =

Brod et al. (110) SBP/DBP
HR

MA (5) 12 EHT
6 NT

35.6 ♂ ♀ 140/90–179/109 mmHg SBP/DBP: +
HR: =

Drummond
(111)

SBP/DBP
HR

MA (6) 18 EHT
18 NT

25.0
25.2

♂ ♀ SBP≥ 140 mmHg and/or DBP ≥
90 mmHg

SBP/DBP: +
HR: =

Drummond
(112)

SBP/DBP
HR

MA (5) 16 EHT
10 NT

22.9
25.3

♂ SBP >140 mmHg SBP: +
DBP/HR: =

Fredrikson et al.
(113)

SBP/DBP MA (2) 14 EHT
14 NT

43.6 ± 2.5
44.2 ± 2.6

♂ ♀ >160/95 mmHg SBP: +
DBP: =

Georgiades
et al. (114)

SBP/DBP
HR

MA (4) 75 EHT
74 NT

50.0 ± 5.7
49.9 ± 5.7

♂ DBP: 85–94 mmHg SBP: +
DBP/HR: =

Itoh et al. (115) MBP
HR

MA (10) 26 EHT
24 NT

30–59 ♂ SBP≥ 140 mmHg and DBP ≥
90 mmHg

MBP: + in 30-year-olds; = in
40- and 50-year-olds
HR: =

Köhler et al.
(116)

SBP/DBP
HR

MA (10) Study-1:
19 HT
19 NT
Study-2:
18 HT
18 NT

20.74 ± 1.19
20.89 ± 1.66

21.33 ± 2.15
21.28 ± 1.49

♂ SBP >140 mmHg and/or DBP
>90 mmHg

SBP: +
DBP/HR: =

Langewitz et al.
(117)

SBP/DBP MA (5) 34 HT
41 BHT
54 NT

44 ± 7 ♂ HT: SBP≥ 160 mmHg and/or
DBP≥ 95 mmHg
BHT: SBP 140–159 mmHg and/or
DBP 90–94 mmHg

SBP: + in HT as compared to BHT
and NT
DBP: + in HT and BHT as
compared to NT

Lindqvist et al.
(118)

NEP
EP
SBP/DBP
HR

SCWT (10) 11 EHT
10 NT

40.5
38.8

♂ DBP 95–115 mmHg SBP: +
NEP/EP/DBP/HR: =

Reims et al.
(119)

NEP
EP
SBP/DBP
HR

MA (5) 20 EHT
20 NT

22.2 ± 0.6
22.7 ± 0.6

♂ SBP >140 mmHg and DBP
>90 mmHg

DBP: +
NEP/EP/SBP/HR: =

Schmieder et al.
(120)

SBP/DBP
HR

MA (5) 12 EHT
14 NT+PH
12 NT−PH

24 ± 3
24 ± 2
24 ± 2

♂ SBP 140–160 mmHg and DBP 90–
95 mmHg

SBP: + in HT as compared to
NT+PH and NT−PH;
NT+PH vs. NT−PH: =
DBP/HR: =

Schulte & Neus
(121)

SBP/DBP MA (5) 10 EHT
10 BHT
10 NT

32.5 ± 6.8
31.6 ± 7.7
31.9 ± 7.7

♂ . SBP: + in EHT and BHT as
compared to NT
DBP: + of EHT as compared to
BHT and NT

Schulte et al.
(122)

SBP/DBP MA (5) 20 EHT
13 NT

. ♂ ♀ SBP 130–159 mmHg or DBP 80–
94 mmHg

SBP: +
DBP: =

Shapiro et al.
(123)

MBP SCWT (.) 35 EHT
33 NT

47.1 36.6 ♂ ♀ DBP≥ 90 mmHg MBP: +

Steptoe et al.
(124)

SBP/DBP
HR

SCWT (4) 12 EHT
12 NT

42.3 ± 2.7
42.8 ± 2.8

♂ 145/90–175/105 mmHg SBP/DBP: +
HR: =
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TABLE 1 Continued

Authors SNS
parameter

Stressor
(duration in

min)

Participant characteristics Hypertension cut-offs Results

n Age Sex

Tuomisto (125) SBP/DBP
HR

MA (4) 32 EHT
30 BHT
33 NT

40.4 ± 4.2 ♂ HT: SBP≥ 160 mmHg or DBP≥
95 mmHg BHT: 140–159 mmHg
or DBP 90–94 mmHg

SBP/DBP:
EHT vs. NT: +
BHT vs. NT: +
EHT vs. BHT: =
HR: =

Markovic et al.
(126)

SBP/DBP
HR

Mirror tracing
task (3),
rest (6),
PST (5)

132 EHT
627 NT

. ♂ ♀ SBP≥ 140 mmHg and/or DBP ≥
90 mmHg

SBP/DBP: + (both tasks)
HR: = (both tasks)

Murakami et al.
(127)

NEP
EP
MBP
HR

MA (3) 23 EHT-I
11 EHT-II
10 NT

48.0 ± 3.0
48.0 ± 4.0
47.0 ± 3.0

♂ ♀ EHT-I: SBP 130–139 mmHg and/
or DBP 80–89 mmHg
EHT-II: SBP >140 mmHg and/or
DBP >90 mmHg

MBP: + in HT groups as
compared to NT
NEP/EP/HR: =

Walther et al.
(128)

sAA TSST (15) 19 EHT
23 NT

46.8 ± 3.4
42.1 ± 2.9

♂ SBP≥ 140 mmHg and/or DBP ≥
90 mmHg

sAA: +

Comparable SNS reactivity to AMS between EHT and NT
Fossum et al.
(129)

NEP
EP
MBP
HR

MA (5) 96 high BP
22 normal BP

20–21 ♂ High BP: ≥140/90 mmHg NEP/EP/MBP/HR: =

Graafsma et al.
(130)

NEP
EP
SBP/DBP
HR

MA (5) 20 EHT
20 NT

42.6 ± 7.5
46.0 ± 6.7

♂ ♀ SBP >140 mmHg and/or DBP
>90 mmHg

NEP/EP/SBP/DBP/HR: =

Hjemdahl &
Eliasson (131)

NEP
EP
SBP/DBP
HR

SCWT (20) 7 EHT
7 NT

34.6 . . . NEP/EP: = ; no significant
stress-induced changes
SBP/DBP/HR: =

Januszewicz
et al. (132)

NEP
EP

MA (30) 10 EHT
10 NT

26.9 32.9 ♂ . NEP/EP: =

Köhler et al.
(133)

NEP
EP
SBP/DBP
HR

MA (10) 12 EHT
12 NT

21.00 ± 1.54
21.50 ± 1.51

♂ SBP >140 mmHg and/or DBP
>90 mmHg

NEP/EP/SBP/DBP/HR: =

Carroll et al.
(134)

SBP/DBP MA (4) 12 HT
11 NT

22 ± 12.9
21 ± 25.2

♂ SBP≥ 140 mmHg SBP/DBP/HR: =

Esler & Nestel
(135)

SBP/DBP Visual puzzles
(45)

10 EHT
6 NT

. . . >145/90 mmHg SBP/DBP: =

Fredrikson et al.
(136)

SBP/DBP
HR

MA (2) 14 EHT
14 NT

41.6 ± 8.7
44.3 ± 8.6

♂ ♀ SBP≥ 160 mmHg and/or DBP ≥
95 mmHg

SBP/DBP/HR: =

Hollenberg
et al. (137)

MBP
HR

IQ test (20) 15 EHT
24 NT

40.1 ± 4.0
38.9 ± 3.9

. . . MBP/HR: = ; no significant
stress-induced changes

Naqvi & Hyuhn
(138)

SBP/DBP
HR

SCWT (3),
MA (3),
randomized order
with 15 min rest

28 EHT
20 NT

51 ± 13
49 ± 11

♂ ♀ SBP 136–180 mmHg or DBP 86–
100 mmHg

SBP/DBP/HR: =

Nyklicek et al.
(20)

SBP/DBP
HR

MA (7),
rest (5),
PST (5)

37 EHT
20 NT

43.8 ± 6.0
44.8 ± 5.6

♂ ♀ SBP≥ 140 mmHg and/or DBP ≥
90 mmHg

SBP/DBP/HR: =

Scheuch et al.
(139)

SBP/DBP
HR

MA (6) 17 EHT
17 NT

39.9 ± 14.2
37.1 ± 11.4

. . SBP > 130 mmHg and DBP >
80 mmHg

SBP/DBP/HR: =

Seibt et al. (140) SBP/DBP
HR

SCWT (6),
rest (3), MA (6)

20 EHT
20 BHT
20 NT

34.4 ± 7.6
27.9 ± 5.7
28.0 ± 6.8

♂ ♀ EHT: >18 of 30 recordings >140/
90 mmHg or >6 of 30 recordings
>160/95 mmHg
BHT: all between HT and NT
NT: <8 of 30 BP recordings >140/
90 mmHg & 0 recordings >160/
95 mmHg

SBP/DBP/HR: =

(Continued)
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TABLE 1 Continued

Authors SNS
parameter

Stressor
(duration in

min)

Participant characteristics Hypertension cut-offs Results

n Age Sex

Decreased reactivity to AMS of at least one SNS parameter in EHT (and no increases in any SNS parameter)
Ducher et al.
(141)

SBP/DBP SCWT (20) 10 EHT
10 NT+PH
10 NT−PH

39 ± 1
30 ± 3
42 ± 2

♂ ♀ DBP >95 mmHg SBP/DBP:
HT vs. NT-PH: =
HT vs. NT+PH: −

Horikoshi et al.
(142)

NEP
EP
SBP/DBP
HR

MA (3) 8 EHT
14 NT+PH
14 NT−PH

24.6 ± 4.3
21.9 ± 2.4
21.9 ± 2.6

♂ ♀ SBP 140–160 mmHg and/or DBP
90–95 mmHg

DBP:−in EHT as compared to
NT−PH and NT+PH
NEP/EP/SBP/HR: =

Sullivan et al.
(143)

NEP
EP
SBP/DBP
HR

MA (.) 15 EHT
13 NT

37.0 ± 11.0
36.0 ± 8.0

♂ ♀ SBP >140 mmHg and/or DBP
>90 mmHg

SBP:−NEP/EP: = ; no significant
stress-induced changes DBP/
HR: =

Dimsdale et al.
(144)

SBP/DBP
HR

MA (3) 21 EHT
25 NT

39 ± 5
37 ± 6

. . SBP≥ 140 mmHg and DBP ≥
90 mmHg

HR:−
SBP/DBP: =

Fredrikson et al.
(145)

SBP/DBP
HR

MA (2) 14 EHT
14 NT

46.5 ± 8.3
40.3 ± 9.9

♂ ♀ SBP≥ 160 mmHg and/or DBP ≥
95 mmHg

HR:−
SBP/DBP: =

BHT, borderline hypertensive individuals; BP, blood pressure; DBP, diastolic blood pressure; EHT, essential hypertensive individuals; EP, epinephrine; HR, heart rate; HT,

hypertensive individuals; MA, mental arithmetic task; MBP, mean arterial blood pressure; NEP, norepinephrine; NT, normotensive individuals; NT + PH, NT with parental

hypertension; NT−PH, NT without parental hypertension; PST, public speaking task; sAA, salivary alpha-amylase; SBP, systolic blood pressure; SCWT, stroop-color-

word-conflict test; SNS, sympathetic nervous system; TSST, trier social stress test;., not reported; + , hyperreactivity in HT; = , similar reactivity; −, diminished reactivity

in HT.

Walther and Wirtz 10.3389/fcvm.2023.1215710
2.2.1.1.2. Cardiovascular reactivity. Blood pressure: In the majority

of studies on BP reactivity to AMS, HT and NT exhibited similar

SBP (20, 42, 99, 102, 105, 119, 130, 131, 133–136, 138–142, 144,

145), DBP (20, 42, 99, 101, 102, 107, 112–114, 116, 118, 120,

122, 130, 131, 133–136, 138–141, 143–145), and/or mean BP

(MBP) (129, 137) stress reactivity with HT having comparatively

higher overall BP levels. In contrast, comparably fewer studies
TABLE 2 Summary of studies on stress reactivity to AMS in EHT with respect

Authors PNS
parameter

Stressor
(duration in

min)

Participant chara

n

Increased reactivity to AMS of at least one PNS parameter in EHT
Langewitz
et al. (117)

HF MA (5) 34 HT
41 BHT
54 NT

Ruediger
et al. (146)

HF MA (6) 20 EHT
20 NT

Comparable PNS reactivity to AMS between EHT and NT
Garafova
et al. (99)

HF
HFnu

SCWT (10) 8 EHT with BMI <25 kg/m2 (HT)
10 EHTwith BMI >30 kg/m2 (HT-O
13 NT with BMI <25 kg/m2 (NT)
14 NT with BMI >30 kg/m2 (NT−O

Itoh et al.
(115)

HF MA (10) 26 EHT
24 NT

Seipäjärvi
et al. (147)

RMSSD TSST–group
version (26)

73 patients with
cardiometabolic risk
factors (EHT and/or
prediabetes or type 2
diabetes) (PT)
63 young NT (HY)
61 middle-aged NT (HM)

DBP, diastolic blood pressure; EHT, essential hypertensive individuals; HF, high frequ

variability expressed in normal units; HT, hypertensive individuals; MA, mental arithm

RMSSD, root mean square of successive differences; SBP, systolic blood pressure; SC
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report elevated SBP (100, 101, 107, 109–114, 116–118, 120–122,

124–126), DBP (100, 105, 109–111, 117, 119, 121, 124–126),

and/or MBP (98, 103, 108, 115, 123, 127) reactivity to AMS in

EHT. A more detailed look on methodological differences

between the studies revealed that elevated SBP (100, 101, 107,

109–112, 114, 116, 117, 120–122, 125), DBP (100, 109–111, 117,

119, 121, 125), or MBP reactivity (98, 108, 115) was
to PNS parameters.

cteristics Hypertension cut-
offs

Results

Age Sex

44 ± 7 ♂ HT: SBP≥ 160 mmHg
and/or DBP≥ 95 mmHg
BHT: SBP 140–159 mmHg
and/or DBP 90–94 mmHg

HF:
BHT vs. NT:+
HT vs. NT: +

30.5 ± 6.0
25.3 ± 6.0

♂ >135/85 mmHg HF: +

B)

B)

23.0 ± 3.0
28.0 ± 4.0
23.0 ± 5.0
27.0 ± 5.0

♂ SBP 140–159 mmHg and/
or DBP 90–99 mmHg

HF/HFnu: =; no significant
stress-induced changes

30–59 ♂ SBP≥ 140 mmHg and
DBP≥ 90 mmHg

HF: =; no
significant stress-induced
changes

53 ± 8

26 ± 3
52 ± 5

♂ ♀ . RMSSD: =

ency powers of heart rate variability; HFnu, high frequency powers of heart rate

etic task; NT, normotensive individuals; PNS, parasympathetic nervous system;

WT, stroop-color-word-conflict test; TSST, trier social stress test; not reported.
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TABLE 3 Summary of studies on stress reactivity to AMS in EHT with respect to HPA axis parameters.

Authors HPA
parameter

Stressor (duration
in min)

Participant characteristics Hypertension cut-offs Results

n Age Sex

Increased cortisol reactivity to AMS in EHT or HT-prone individuals
Baumann et al.
(109)

CORT
(plasma)

MA (14) 30 EHT
20 NT

15–20 ♂ . CORT: +

Nyklíček et al. (20) CORT
(salivary)

MA (7),
rest (5),
PST (5)

37 EHT
20 NT

43.8 ± 6.0
44.8 ± 5.6

♂ ♀ SBP≥ 140 mmHg and/or
DBP≥ 90 mmHg

CORT: +

Wirtz et al. (42) CORT
(salivary)

TSST (15) 22 EHT
26 NT

46.3 ± 3.0
42.0 ± 2.6

♂ SBP≥ 140 mmHg and/or
DBP≥ 90 mmHg

CORT: +

Al’Absi &
Wittmers (148)

CORT
(salivary)

PST (24) 21 High Risk NT
26 Low Risk NT

18–59 ♂ ♀ High risk: above median
resting SBP

CORT: + in high-risk
individuals

Comparable cortisol reactivity to AMS between EHT and NT
Hollenberg et al.
(137)

CORT
(plasma)

IQ Test (20) 15 EHT
24 NT

40.1 ± 4.0
38.9 ± 3.9

. . . CORT: =; no significant
stress-induced changes

ACTH, adrenocorticotropic hormone; BP, blood pressure; CORT, cortisol; DBP, diastolic blood pressure; EHT, essential hypertensive individuals; HPA axis, hypothalamus-

pituitary-adrenal axis; MA, mental arithmetic task; NT, normotensive individuals; PST, public speaking task; SBP, systolic blood pressure; SCWT, stroop-color-word-conflict

test; TSST, trier social stress test;., not reported; +, hyperreactivity in HT; =, similar reactivity; −, diminished reactivity in HT.
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predominantly observed in studies using MA with a duration

between 4 and 15 min. Neither studies using MA of shorter

duration [increased BP reactivity in HT (103, 113, 127); similar

BP reactivity (112, 113, 136, 138, 142, 144, 145); decreased BP

reactivity in HT (142)], nor other similarly mild mental stressors

[increased BP reactivity in HT (105, 118, 123, 124, 126); similar

BP reactivity (99, 105, 118, 131, 135, 137, 140, 141)], nor

stronger stress induction tasks [increased BP reactivity in HT:

(126); similar BP reactivity (20, 42)]: were capable of reliably

inducing higher BP reactivity in HT as compared to NT.
TABLE 4 Summary of studies on stress reactivity to AMS in EHT with respect

Authors RAAS
parameter

Stressor
(duration in min)

Participant chara

n Age

Increased reactivity to AMS of at least one RAAS parameter in EHT
Hollenberg et al.
(137)

PRA
ANG-II
ALD

IQ Test (20) 15 EHT
24 NT

40.1 ±
38.9 ±

Gideon et al. (149) ALD TSST (15) 21 EHT
25 NT

46.43 ±
41.76 ±

Comparable RAAS reactivity to AMS between EHT and NT
Baumann et al.
(109)

PRA MA (14) 30 EHT
20 NT

15–2

Dimsdale et al.
(144)

PRA MA (3) 21 EHT
25 NT

39 ±
37 ±

Ducher et al. (141) PRA
ALD

SCWT (20) 10 EHT
10 NT+PH
10 NT−PH

39 ±
30 ±
42 ±

Esler & Nestel
(135)

PRA Visual puzzles (45) 10 EHT
6 NT

.

Hjemdahl &
Eliasson (131)

PRA SCWT (20) 7 EHT
7 NT

34.6

Tomoda et al.
(107)

PRA
ALD

MA (10 min) 11 EHT-I
13 EHT-II
14 NT

40 ±
49 ±
42 ±

ALD, aldosterone; BP, blood pressure; DBP, diastolic blood pressure; EHT, essential h

NT+PH, NT with parental hypertension; NT−PH, NT without parental hypertension

systolic blood pressure; SCWT, stroop-color-word-conflict test; TSST, trier social stre

reactivity in HT.
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Moreover, there was no clear evidence for effects of age or

stressor severity (i.e., mild vs. moderate vs. strong) on BP stress

reactivity in HT as have been associated with catecholamine

reactivity (see above). Taken together, these findings suggest that

elevated BP reactivity in HT seems to specifically relate to MA of

a minimum length. Given that HT did not show a higher BP

reactivity to other cognitive or stronger mental stressors, it might

be speculated that the stressfulness of a task does not account for

BP reactivity differences in HT. Whether the BP reactivity

difference in HT relates to cognitive processes and related brain
to RAAS parameters.

cteristics Hypertension cut-offs Results

Sex

4.0
3.9

. . . REN: +
ANG-II: +
ALD: +

3.15
2.64

♂ SBP≥ 140 mmHg and/or DBP≥
90 mmHg

ALD: +

0 ♂ . REN: =

5
6

. . SBP≥ 140 mmHg and DBP≥
90 mmHg

REN: =

1
3
2

♂ ♀ DBP >95 mmHg REN:=
ALD: =; no significant stress-
induced changes

. . BP >145/90 mmHg REN: =; no significant stress-
induced changes

. . . REN: =; no significant stress-
induced changes

4
3
4

♂ ♀ EHT-I: SBP 130–139 mmHg and/
or DBP 80–89 mmHg
EHT-II: SBP >140 mmHg and/or
DBP >90 mmHg

REN:=
ALD: =

ypertensive individuals; MA, mental arithmetic task; NT, normotensive individuals;

; PRA, plasma renin activity; RAAS, renin-angiotensin-aldosterone system; SBP,

ss test; not reported; +, hyperreactivity in HT; =, similar reactivity; −, diminished
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TABLE 5 Summary of studies on stress reactivity to AMS in EHT with respect to intermediate biological risk factors for cardiovascular disease.

Authors Risk parameter Stressor
(duration in

min)

Participant characteristics Hypertension cut-
offs

Results

n Age Sex

Increased reactivity to AMS of at least one risk parameter in EHT
Palermo
et al. (106)

Tissue plasminogen
activator
Tissue plasminogen
antigen

MA (5) 15 EHT
15 NT

39 ± 3 ♂ . Tissue plasminogen antigen:+
Tissue plasminogen activator: −

Tomoda
et al. (107)

Primary aggregation to
reagents
ß-thromboglobulin level
ADP threshold for
biphasic aggregation
(ADP)

MA (10) 11 EHT-I
13 EHT-II
14 NT

40 ± 4
49 ± 3
42 ± 4

♂ ♀ EHT-I: SBP 130–
139 mmHg and/or DBP
80–89 mmHg
EHT-II: SBP >140 mmHg
and/or DBP >90 mmHg

Primary aggregation to
reagents:
EHT-I vs. NT:+
EHT-II vs. NT: =

ß-thromboglobulin level: EHT-
I vs. NT:+
EHT-II vs. NT: +

ADP threshold:
EHT-I vs. NT:−
EHT-II vs. NT: =

Wirtz et al.
(75)

FVII:C
FVIII:C Fibrinogen
D-Dimer

TSST (15) 21 systolic HT (SHT;
with or without DHT)
22 diastolic HT (DHT;
with or without SHT)
17 NT

44.2 ± 14.8

46.0 ± 12.4

41.0 ± 14.3

♂ SBP≥ 135 mmHg and/or
DBP ≥ 85 mmHg

FVII:C:+in DHT
FVIII:C:+in DHT
D-Dimer:+in DHT Fibrinogen: =

Wirtz et al.
(13)

TC
LDL-C
HDL-C
TG

TSST (15) 22 EHT
23 NT

46.3 ± 3.0
44.6 ± 2.4

♂ SBP≥ 140 mmHg and/or
DBP ≥ 90 mmHg

TC:+
LDL-C:+
HDL-C:=
TG: =

Degroote
et al. (81)

TC
LDL-C
HDL-C
TG
TC/HDL-ratio

MIST (30) 28 EHT
28 NT

49.82 ± 2.04
49.75 ± 2.22

♂ SBP≥ 140 mmHg and/or
DBP ≥ 90 mmHg

TC/HDL-ratio:+
TC:=
LDL-C:=
HDL-C:=TG:-

Comparable reactivity to AMS in risk parameters between EHT and NT
Von Känel
et al. (150)

Thrombin–
antithrombin III
complex (TAT)
D-Dimer

PST (6),
rest (15),
Mirror Tracking
Task (3)

6 HT
13 NT

39 ± 5 ♂ ♀ SBP >140 mmHg and/or
DBP >90 mmHg

TAT:=
D-Dimer: =

DBP, diastolic blood pressure; EHT, essential hypertensive individuals; FVII: C, blood clotting factor VII; FVIII:C, blood clotting factor VIII; HDL-C, high-density-lipoprotein

cholesterol; HT, hypertensive individuals; LDL-C, low-density-lipoprotein cholesterol; MA, mental arithmetic task; MIST, Montreal Imaging Stress Test; NT, normotensive

individuals; PST, public speaking task; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides; TSST, trier social stress test; not reported; +, hyperreactivity in

HT; =, similar reactivity; −, diminished reactivity in HT.
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activity or psychophysical demands associated with MA or other

mild mental stressors (e.g., SCWT) remains to be elucidated

(154–156).

Heart rate: With respect to HR reactivity, the majority of

studies could not reveal significant reactivity differences either to

mild (20, 42, 99, 101, 102, 105, 110–112, 114–116, 118–120, 124–

127, 129–131, 133, 134, 136–140, 142, 143, 145), moderate (20,

126), or strong (42) AMS between HT and NT. Increased HR

reactivity to mild AMS in terms of MA in HT was observed in

five studies that were all performed in younger HT (98, 100, 103,

107, 109). This further supports the above outlined hyperkinetic

state in young HT and those in the early stages of hypertension

(151, 152) (see Catecholamine reactivity). Moreover, one study

reports increased HR reactivity to MA in individuals with

hypertension grade 2 but not with hypertension grade 1 as

compared to NT (107). Of all studies only two studies found

diminished HR reactivity in reaction to MA in middle-aged EHT

(144, 145). Taken together, there is weak evidence for a HR

hyperreactivity to AMS in EHT, except for a subgroup of

hyperkinetic HT.
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2.2.1.1.3. Salivary alpha amylase. In the hitherto only study

investigating sAA reactivity to AMS in EHT, we recently found

that HT exhibit greater sAA reactivity to the TSST as a strong

mental stressor as compared to NT with higher sAA increases

+1 min and +10 min after TSST cessation (128). This suggest

that the stress-induced physiological hyperreactivity in EHT also

extends to the SNS parameter sAA.

2.2.1.2. Parasympathetic nervous system (PNS)
So far, PNS reactivity to AMS in manifest EHT without further

comorbidity has been investigated in four studies that applied

mild mental stressors and assessed the PNS parameter HF (see

Table 2). Two of the studies could not find significant stress-

induced HF changes, neither in NT nor in HT to MA (115) or

SCWT (99). However, the other two studies observed greater HF

decreases in HT as compared to NT in reaction to MA pointing

to a reduced parasympathetic cardiac control during stress in HT

(117, 146). In line with the latter, a recent study investigated the

RMSSD response to the TSST as strong mental stressor in

patients with cardiometabolic risk factors, i.e., with EHT and/or
frontiersin.org
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either prior evidence of prediabetes or type-2 diabetes as compared

to healthy NT (147). Patients with cardiometabolic risk factors had

overall lower RMSSD values during rest as well as during stress.

PNS reactivity to AMS in hypertension-prone individuals has not

yet been investigated. Taken together, these studies may suggest

that the reduced parasympathetic cardiac control under resting

conditions (157, 158) seem to extend to AMS, in terms of a

greater reduction of PNS activity under stress, most likely

dependent on the intensity of the stressor.

Taken together, the above summarized findings regarding

stress reactivity of the autonomic nervous system suggests that

SAM axis hyperreactivity cannot generally be observed in HT but

occurs only in response to specific mental stressors or in an early

hyperkinetic stage of HT (see Table 6).

2.2.2. Hypothalamus pituitary adrenal (HPA) axis
Regarding HPA axis reactivity to AMS in human EHT (see

Tables 3, 6), previous studies focused on the HPA axis stress

hormone cortisol whereas ACTH has hitherto not been

investigated in EHT. Compared to NT, HT exhibited larger

elevations in plasma (109, 148) as well as salivary cortisol (20,

42) during and after mild, moderate, and strong mental stress,

however not unequivocally (137). Also, hypertension-prone

individuals have been reported to show higher salivary cortisol

responses to moderate mental stress (148). There are hitherto no

studies investigating ACTH reactivity to AMS in hypertension-

prone individuals. Notably, animal studies point to an HPA axis

hormone-spanning stress hyperreactivity with hypertension (159,

160). Whether the heightened HPA axis stress reactivity in

human EHT already occurs at the level of the pituitary gland

where ACTH is secreted from the portal system into the

circulation, remains to be elucidated. Moreover, given the

observed prospective association between higher cortisol

reactivity to AMS and incident hypertension (6), it can be

assumed that increased HPA axis reactivity is present before the

onset of hypertension. Thus, the magnitude of HPA axis stress

reactivity may constitute one possible mechanism through which

acute stress may influence the risk of hypertension and CVD (4, 6).

2.2.3. Renin-angiotensin-aldosterone system
In the context of human hypertension, reactivity of RAAS

parameters to AMS has so far hardly been investigated (see

Table 4). With respect to mental stress-induced plasma renin

reactivity, studies applying mild AMS could not find significant

differences between HT and NT (107, 109, 131, 135, 141, 144).

Notably three of them found negligible PRA changes in both,

HT and NT (131, 135, 144) and three observed slightly but not

significantly higher PRA increases in HT as compared to NT

(107, 109, 141). In response to a mild stress-inducing IQ-Test

however, HT exhibited increases in PRA as compared to the

decreases observed in the NT (137). This study is also the only

study investigating RAAS reactivity to AMS in hypertension-

prone individuals. Hypertension-prone individuals showed PRA

increases in-between NT and HT (137). Moreover, this study is

also the hitherto only one considering ANG-II reactivity to AMS

so far, revealing a similar reactivity pattern for ANG-II as
frontiersin.org
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observed for PRA, with increases in the hypertension-group,

decreases in the normotensive-group, and hypertension-prone

individuals to be in-between (137). So far, renin or ANG-II

reactivity to stronger AMS induction procedures have not yet

been investigated in or hypertension-prone individuals as

compared to NT. With respect to plasma aldosterone reactivity,

two of the three studies applying mild mental stressors, did not

reveal reactivity differences between HT and NT in reaction to

the SCWT (141) or in reaction to MA (107). In the second study

however, HT showed stress-induced aldosterone increases after

an IQ-test significantly differing from the decreases observed in

NT (137). We recently investigated aldosterone reactivity in EHT,

applying the TSST as a strong psychosocial stressor and

overserved significantly greater aldosterone increases in EHT as

compared to NT (149). There are hitherto no studies

investigating aldosterone reactivity to AMS in hypertension-

prone individuals.

Taken together, in reaction to mild AMS induction, results are

mixed but point to a (slightly) higher reactivity of all RAAS

parameters in hypertension, whereas strong AMS induction

induced significantly higher reactivity of the RAAS end-product

aldosterone in EHT (see Table 6). Overall, these results suggest

that the stress-induced physiological hyperreactivity in EHT

also extends to the RAAS depending on the intensity of the

stressor.
2.2.4. Intermediate biological risk factors for
cardiovascular disease
2.2.4.1. Coagulation activity
So far, four studies investigated coagulation activity in

response to AMS in HT as compared to NT (see Table 5).

In terms of mild mental stress, one study observed

attenuated fibrinolysis activation in terms of t-PA reactivity

(106) and another study found greater platelet activity (107)

in HT as compared to NT in response to MA. A third

study applied a speech task and a mirror tracking task in

randomized order as mild and moderate mental stressors,

respectively, and could not find group differences in stress-

induced increases in TAT and D-Dimer, notably in a rather

small sample of 6 HT and 13 NT (150). There is one study

examining coagulation reactivity in EHT in reaction to

strong mental stress (75). In this study, HT exhibited

exaggerated acute procoagulant responses as compared to

NT. These responses became most apparent during recovery

of hypercoagulability from stress depending on hypertension

subtype with diastolic HT showing higher FVII:C levels

immediately post-stress and at 20-min recovery, higher

FVIII:C levels at 20- and 60-min recovery as well as higher

D-dimer recovery (75). Coagulation activity in response to

AMS in hypertension-prone individuals as compared to NT

has hitherto not been investigated. Taken together, there is

compiling evidence for an exaggerated coagulation reactivity

to AMS in EHT, especially in diastolic HT, that seems to be

most apparent during recovery from prothrombotic changes

from stress (see Table 6).
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2.2.4.2. Blood lipids and lipoproteins
Blood lipid reactivity to AMS has hardly been investigated in EHT.

There are hitherto no studies investigating blood lipid reactivity in

reaction to mild or moderate AMS in EHT, however, two studies

investigated blood lipid reactivity in response to strong mental

stress (13, 81) (see Table 5). In reaction to the TSST,

hypertensive men exhibited greater TC and LDL-C responses as

compared to normotensive controls, with group differences

sustaining up to 60 min after TSST cessation and most

pronounced differences immediately after TSST cessation (13).

There were no reactivity differences in HDL-C and TG. In

reaction to the MIST, notably performed within an fMRI

environment in lying position wearing goggles, HT showed a

more pronounced rise in TC/HDL-C ratio scores and a slower

decrease in TG levels as compared to NT but no reactivity

differences in TC, HDL-D, and LDL-C (81). Notably,

complementary analyses using MAP as continuous measure of

hypertension assessment confirmed the linear nature of the

observed effects in both studies. Whether the observed reactivity

differences in some of the lipid markers are generalizable and

relate to differences between the TSST and the MIST, e.g., such

as perceived stressor intensity, remains to be elucidated. There

are no studies investigating blood lipid reactivity in response to

AMS in hypertension-prone individuals.

Taken together, the above outlined studies indicate an

exaggerated blood lipid stress reactivity with hypertension, at

least to strong mental stress (see Table 6). Whether this extends

to mild mental stressors remains to be elucidated.

2.2.4.3. Inflammatory markers
So far, there are no studies investigating reactivity of inflammatory

markers to AMS in human EHT or in hypertension-prone

individuals (see Table 5). Notwithstanding, there is few evidence

pointing to a potentially exaggerated inflammatory responses to

AMS in EHT. Two studies in manifest HT investigated stress

reactivity of immune parameters related to secretion of

inflammatory markers (20, 161). In reaction to mild mental

stress, HT exhibited a circulatory environment conducive to

increased leukocyte adhesion including higher increases in T-

lymphocytes (161), both central to atherogenesis, as well as

higher levels of the antibody type immunoglobulin A measured

from saliva (20) as compared to NT controls. Moreover, studies

investigating associations between inflammatory markers and BP

instead of EHT, similarly point to a potentially exaggerated

inflammatory stress response with increasing BP and thus EHT.

Two cross-sectional studies, notably in NT, report associations

between cardiovascular and inflammatory reactivity to mild

mental stress (162, 163). Increasing BP stress reactivity was

found to be associated with higher levels of IL-6 and IL-1

receptor antagonist (162) as well as higher stress-induced IL-1β

gene expression (163).

To sum it up, differences in inflammatory reactivity to AMS

between HT and NT have not been investigated so far (see

Table 6). However, results from studies investigating stress

reactivity of immune parameters in HT or associations between

inflammatory stress reactivity and BP stress reactivity suggest that
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elevated stress reactivity of inflammatory markers might relate to

EHT, in particular prospectively.
3. Potential mechanisms underlying
physiological hyperreactivity to AMS in
essential hypertension

Potential mechanisms underlying the above summarized

physiological hyperreactivity to AMS in EHT have

conceptually been divided into three different systemic levels

of influence (164): the cognitive-emotional level, the

hypothalamic and brainstem level, and the peripheral level.

Alterations in physiological stress reactivity with EHT may

arise from systematic differences at the cognitive-emotional

level encompassing perception and evaluation of and affective

responses to (mental) stressors as well as the concomitant

cortical processing. Notably, these processes depend on the

activity of the corticolimbic system and are important

determinants of the physiological reactivity. Differences in

physiological stress reactivity may (additionally or

alternatively) emerge at the hypothalamic and brainstem level,

where inputs from the corticolimbic systems are converted

into autonomic or neuroendocrine (re)activity (39). Last,

stress reactivity differences may result from tissue alterations

at the peripheral level, such as alterations in vascular or

receptor functioning.
3.1. Cognitive-emotional level

Various psychological factors have been proposed to affect the

perception and evaluation of a stressor as well as the affective

response that may contribute to the tonic elevation of

sympathetic drive and to the frequent and intense bouts of

stressor-evoked reactivity observed in HT (164, 165). These

psychological factors include social support, affect management

or emotional regulation respectively, chronic stress, in addition to

cognitive appraisal of the stress situation (165). Interestingly,

differences between HT and NT have repeatedly been observed

with respect to some of these variables with HT reporting lower

levels of social support and higher levels of perceived chronic

stress (42, 166–168). They were found to differ in emotional

regulation strategies, in particular with deficits in positive

strategies, but interestingly not in the cognitive appraisal of a

standardized stressor (42). Despite these observed differences, the

role of psychological factors in physiological stress reactivity in

HT has hardly been investigated so far. The hitherto only study

investigating associations of psychological factors with

physiological AMS reactivity in EHT examined associations of

social support, hedonistic emotional regulation (HER), and

cognitive appraisal with endocrine stress reactivity to strong

mental stress (42). With respect to social support, HT with lower

perceived social support showed higher EP reactivity to the TSST

as compared to NT and HT with higher perceived social support.
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With respect to HER, HT with lower HER exhibited higher NEP

reactivity and higher cortisol reactivity to the TSST as compared

to NT and HT with high HER. In sum, findings of that study

suggest a possible role for social support and emotional

regulation in modulating endocrine stress reactivity in EHT.

Whether such modulated endocrine stress reactivity in turn

affects intermediate biological CVD risk factors and whether

such a mechanism may link HT with poor cardiovascular

outcomes remains to be elucidated. With respect to chronic stress,

some studies in NT found increased cardiovascular or

neuroendocrine reactivity with higher chronic stress (169, 170),

but the role of chronic stress in physiological reactivity to AMS

in EHT has not yet been investigated.

In addition to psychological factors, the cognitive emotional

level is affected by the neural structure, function, and

connectivity of the corticolimbic system (171). In particular,

alterations of the corticolimbic system may relate to the stress

reactivity differences with EHT (172). In reaction to mild acute

stress, HT exhibited altered (re)activity in corticolimbic brain

areas proposed to be involved in stress regulation (39, 173),

including prefrontal and cingulate cortex, insula, hippocampus,

as well as the amygdala (174–176). While imaging studies that

additionally assess physiological stress reactivity are lacking in

HT, evidence from studies in NT points to a neural basis of

elevated cardiovascular and cortisol stress reactivity (173, 177,

178). Future studies are needed to test for a potential neural

basis of the observed elevated cardiovascular and cortisol stress

reactivity in EHT.
3.2. Hypothalamic and brainstem level

Multiple functional alterations of subcortical structures

including hypothalamus, medulla, and pons, have been observed

in HT and may relate to the stress reactivity differences with

EHT (179, 180). For instance, increased NEP release from

subcortical brain regions has been observed in HT as compared

to NT (181). This finding is in line with animal studies

investigating brain catecholamines and points to a disturbance of

catecholaminergic metabolism in the inferior part of the brain in

EHT (179, 182, 183). Further, functioning of the hypothalamic

paraventricular nucleus involved in sympathetic and

parasympathetic control of cardiovascular reactivity, have been

proposed to be altered with HT (184, 185). Moreover,

investigating CRH-producing neurons of the paraventricular

nucleus using post-mortem quantitative immunohistochemical

and in situ hybridization techniques, higher numbers of CRH-

producing neurons and higher amount of CRH mRNA have

been found in EHT as compared to healthy controls (186). Given

the central role of CRH in the activation the HPA axis but also

in the activation of the SNS (187), the suggested elevated CRH

synthesis and release may contribute to the hyperreactivity of the

SNS and the HPA axis. However, investigation of associations

between stress reactivity on the cerebral level with endocrine

and/or cardiovascular stress reactivity in EHT so lacking so far.
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FIGURE 2

Overview over potential mechanisms underlying the physiological hyperreactivity to acute mental stress in essential hypertension with respect to the
cognitive-emotional, brainstem and hypothalamic, as well as peripheral levels and the different stress reactive physiological systems. Potential
mechanisms with respective evidence are presented in regular font. Potential suggested mechanisms but not yet investigated in the context of acute
stress reactivity are presented in italics.
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3.3. Peripheral level

At the peripheral level, we investigated whether stress hormone

reactivity in terms of NEP, EP, and cortisol, contributes to blood

lipid and lipoprotein or procoagulant stress reactivity with

elevated BP (12, 13). We assessed plasma NEP, EP, cortisol as

well as FVII:C, FVIII:C, fibrinogen, D-dimer, and plasma lipid

profiles before and +1, +20, and +60 min after cessation of the

TSST in hypertensive men as compared to NT (12, 13). We

additionally considered the influence of resting mean arterial BP

(MAP) as a continuous indicator of hypertension status.

With respect to blood lipid parameter reactivity, we observed

that stress-induced NEP increases independently predicted higher

immediate stress increases in TC, TG, and LDL-C (13). We

hypothesized this association to result from NEP induced

lipolysis and release of free fatty acids which in turn may serve

as a substrate for the resynthesis of TG and hepatic production

of very-low-density lipoprotein cholesterol (13, 86). Moreover,

MAP interacted with NEP increases in predicting immediate

changes in HDL-C and LDL-C (13). Given this, NEP stress

reactivity seems to elicit proatherogenic changes of blood lipids

and lipoproteins in response to AMS, either alone or in

interaction with MAP, pointing to a further potential mechanism

by which stress might increase cardiovascular risk in HT.

With respect to coagulation activity, we observed that NEP

changes from rest to immediately after stress independently

predicted immediate D-Dimer changes (12). Also, cortisol

changes from rest to 10 min after stress independently predicted

immediate FVIII:C changes. In terms of associations between

integrated reactivity of stress hormone and coagulation factors

between rest and 60 min after stress cessation (total stress

reactivity), MAP interacted with the integrated release of EP in

predicting total stress reactivity of FVII:C and of fibrinogen.

MAP further interacted with integrated NEP release in predicting

total FVIII:C stress reactivity while D-dimer total stress reactivity

was predicted by NEP stress reactivity alone. These findings

suggest a sustained hypercoagulability over about 1 h after stress

in EHT which may represent a psychobiological mechanism

through which stress and hypertension may interact in increasing

the risk of atherothrombotic events (188).

Moreover, alterations in adrenergic receptor (AR) number and/

or functioning have been observed with EHT (189–191). Notably,

these AR alterations may add to the physiological reactivity

differences in EHT. With respect to cardiovascular reactivity, β-

AR mechanisms do not seem to mediate the higher reactivity in

HT as compared to NT (192–194), but we recently found

evidence pointing to a role for α-AR mechanisms (195). We

investigated α-AR mechanisms in the cardiovascular reactivity to

a standardized stress reactivity-mimicking NEP-infusion in EHT

as compared to NT by using the non-selective α-AR blocker

phentolamine. Non-selective α-AR blockade attenuated DBP

hyperreactivity to NEP-infusion observed in HT but not SBP

hyperreactivity in HT, suggesting a mediating effect of α-AR in

DBP hyperreactivity to stress in EHT. Whether alterations in α-

and/or β-AR number and/or functioning is involved in the
Frontiers in Cardiovascular Medicine 17
observed hyperreactivity of other stress-reactive parameters in

EHT remains to be elucidated.

In sum, there are several potential mechanisms operating

at different levels that may contribute to the altered

physiological reactivity to AMS with EHT (for summary see

Figure 2). However, the exact mechanisms and their

interactions are not fully understood and need to be

investigated in more detail.
4. Conclusion and future directions

In this comprehensive systematic review, we summarized the

hitherto published evidence on increased physiological reactivity

to AMS in EHT as compared to NT with respect to the SAM

axis, the HPA axis, the RAAS, as well as stress-reactive

intermediate biological risk factors for CVD. Taken together, our

review indicates that the expected physiological hyperreactivity to

AMS cannot generally (i.e., to mental stressors of all intensities,

across all stress-reactive physiological systems, and in all HT) be

observed in EHT. In fact, in reaction to acute mental stressors of

mild or moderate intensity, as applied by most studies

investigating physiological, in particular sympathetic, reactivity to

AMS in EHT, results were inconclusive, presumably due to

methodological issues. More precisely, our review indicates that

exaggerated reactivity to mild AMS occurs only in response to

mild mental stressors with specific characteristics, in an early

hyperkinetic stage of HT, or with respect to certain stress

systems. However, in reaction to acute mental stressors of strong

intensity, such as the TSST or the MIST, evidence strongly

suggests a physiological hyperreactivity across the investigated

stress-reactive physiological systems. Our review revealed that

there is considerable variation in the number of studies

investigating reactivity to AMS in EHT with respect to the

reviewed physiological systems. While reactivity of SAM axis

parameters has been extensively studied, there are comparatively

few studies examining reactivity to AMS with respect to PNS,

HPA axis, or RAAS as well as with respect to reactivity of

biological risk factors, pointing to the need for future research.

Further, given that the first studies on physiological stress

reactivity in EHT were published in the 1970s, the studies

included in this review employed a strikingly broad methodology

including statistical analysis methods. Future research replicating

previous findings or further investigating differences in stress

reactivity between HT and NT should apply state-of-the-art

methods for hypertension classification, AMS induction,

assessment of physiological parameters, as well as statistical

analyses. As a limitation, it should be noted that the majority of

studies included in our systematic review and the discussion of

potential underlying mechanisms of stress hyperreactivity in EHT

are cross-sectional studies and do not demonstrate a potential

causal role with respect to hypertension severity or

cardiovascular risk. Moreover, systematic reviews always entail

the risk of publication bias, which means that only studies with

significant results have been published.
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The mechanisms underlying the observed differences in

physiological reactivity to AMS between HT and NT are

beginning to be understood and warrant further study. We

discussed several potential mechanisms that may contribute to

the observed reactivity differences at different levels, the

cognitive-emotional level, the hypothalamic and brain stem level,

and the peripheral level. Notably, the discussed potential

mechanisms mainly come from study findings in samples of

healthy NT participating in laboratory experiments and

population-based studies, respectively. Further elucidation of the

mechanisms in HT as compared to NT subjects is of vital

importance, especially with regard to potential therapeutical

targets for cardiovascular risk prevention and/or reduction.

Concomitantly, potential modulating factors of the physiological

hyperreactivity to AMS with EHT remain to be elucidated.
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