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Research progress of non-coding
RNA in atrial fibrillation
Zongqian Xue, Jinbiao Zhu, Juan Liu, Lingli Wang and Jijun Ding*

Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, China

Atrial fibrillation (AF) is a common arrhythmia in clinic, and its incidence is
increasing year by year. In today’s increasingly prevalent society, ageing poses a
huge challenge to global healthcare systems. AF not only affects patients’ quality
of life, but also causes thrombosis, heart failure and other complications in
severe cases. Although there are some measures for the diagnosis and
treatment of AF, specific serum markers and targeted therapy are still lacking. In
recent years, ncRNAs have become a hot topic in cardiovascular disease
research. These ncRNAs are not only involved in the occurrence and
development of AF, but also in pathophysiological processes such as myocardial
infarction and atherosclerosis, and are potential biomarkers of cardiovascular
diseases. We believe that the understanding of the pathophysiological
mechanism of AF and the study of diagnosis and treatment targets can form a
more systematic diagnosis and treatment framework of AF and provide
convenience for individuals with AF and the society.
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1. Introduction

Atrial fibrillation (AF) is a common arrhythmias in clinic, with a high risk of death,

stroke, and peripheral embolism, and its incidence has been increasing year by year. Risk

factors for AF are closely related to cardiovascular disease, with organic or functional

heart problems being more common. In addition, age, gender and genetic factors are also

important factors leading to the occurrence of AF (1, 2). AF not only affects life quality

of the patients, but also has complications such as thrombosis and heart failure in severe

cases. Atrial remodeling is considered to be the basis of the occurrence and development

of AF, including structural remodeling, electrical remodeling, neural remodeling, etc (3–5).

The diagnosis of AF mainly depends on electrocardiogram findings, which are often found

after complications occur, and there is a certain lag (6). Therefore, biomarkers have potential

value in the early diagnosis of AF. Currently, drug therapy for AF patients has poor efficacy

and side effects. Radiofrequency ablation is more effective than drug therapy, but the patients

are yet able to avoid the operational risks, postoperative recurrence, and high healthcare cost

(7–9). Actively searching for new diagnosis and treatment strategies and exploring the

molecular mechanism of AF have great clinical significance and translational prospects.

In recent years, non-coding RNA (ncRNA) has become a research hotspot in

cardiovascular diseases. ncRNA mainly includes miRNA, LncRNA and CircRNA. These

ncRNAs can not only participate in the occurrence and development of AF, but also play

a part in the pathophysiological processes such as myocardial infarction and

atherosclerosis, which are potential biomarkers for cardiovascular diseases (10). This

article reviews the pathophysiological mechanism of AF, introduces the mechanism and

potential value of ncRNAs in AF, and provides a theoretical basis for the diagnosis,

treatment and prognosis monitoring of AF (Figure 1, Tables 1, 2).
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FIGURE 1

The schematic highlights ncRNAs associated with myocardial electrical remodeling, fibrosis, neurohormone disorders, and exosomes, while including
plasma markers associated with AF diagnosis and prognotic monitoring.

Xue et al. 10.3389/fcvm.2023.1210762
2. Pathophysiology of AF

AF can be classified as paroxysmal, persistent and permanent

according to the duration of the attack. The pathogenesis of AF

involves a variety of factors, mainly including electrical

remodeling, structural remodeling, and neurohormonal disorders.

These mechanisms lead to the development and maintenance of

AF (83, 84). Although the pathogenesis of AF is complex, it is

mainly related to electrical remodeling and structural remodeling.

Existing studies suggest that ncRNAs play an important role in

its occurrence and development (Table 1) (85–87).
3. miRNAs involved in the diagnosis
and prognostic monitoring of AF

The early symptoms of AF are not obvious, the main clinical

manifestations are palpitation, dyspnea and dizziness, which are
Frontiers in Cardiovascular Medicine 02
easy to be ignored by patients, and routine electrocardiogram is

difficult to monitor, so the diagnosis is often missed (88, 89). At

present, BNP and troponin are the main clinical biomarkers for

the diagnosis of cardiovascular diseases, but they are mainly used

for the diagnosis of heart failure and myocardial infarction, and

have no significant significance for the diagnosis of AF. In recent

years, the research on ncRNA has become increasingly in-depth.

The differential expression of ncRNAs in cardiac tissue and

blood of patients with AF may become auxiliary diagnostic

biomarkers for AF (Table 2) (90, 91).

Risk stratification of subsequent cardiovascular events in

patients with AF helps guide prevention strategies. Nossent AY

et al. analyzed differentially expressed miRNAs in 26 patients

using sequencing technology, and screened out one miR-411-5p

in combination with clinical prognosis as a potential valuable

prognostic biomarker for patients with AF (69). Recurrent AF

after catheter ablation seriously affected the prognosis of patients.

Therefore, Garcia-Seara J et al. recruited 42 patients with AF for

catheter ablation. The analysis measured the expression of 84
frontiersin.org
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TABLE 1 ncRNAs involved in the pathophysiology of AF.

ncRNAs Expression Remodeling Targets Ref.
miR-205-5p Downregulation Structural

remodeling
EHMT2/
IGFBP3

(11)

miR-181b Upregulation Structural
remodeling

Sema3A (12)

miR-423 Downregulation Electrical
remodeling

Calcium
handling
protein

(13)

miR-29b Downregulation Structural
remodeling

TGFβR1 (14)

miR-34a Upregulation Electrical
remodeling

TASK1 (15)

miR-21 Upregulation Structural
remodeling

IL-18
FGFR1

(16)

miR-662 Upregulation Electrical
remodeling
Neurohormonal
disorders

CREB1 (17)

miR-425-5p Upregulation Structural
remodeling

CREB1 (18)

miR-135b Downregulation Structural
remodeling

TGFβR1 (19)

miR-146b-5p Upregulation Structural
remodeling

TIMP4 (20)

miR-199a-5p Upregulation Electrical
remodeling

NCX (21)

miR-22-5p Upregulation Electrical
remodeling

NCX (21)

miR-101a-3p Downregulation Structural
remodeling

EZH2 (22)

miR-1202 Upregulation Structural
remodeling

nNOS
TGFβ1

(23)

miR-133a Downregulation Structural
remodeling

CTGF (24)

miR-205 Upregulation Structural
remodeling

P4HA3 (11, 25)

miR-4443 Upregulation Structural
remodeling

THBS1 (26)

miR-155 Upregulation Electrical
remodeling

CACNA1C (27)

miR-29b-3p Downregulation Structural
remodeling

PDGFB (28, 29)

miR-324-3p Downregulation Structural
remodeling

TGFβ1 (30)

miR-210 Upregulation Structural
remodeling

Foxp3 (31)

miR-27b-3p Downregulation Structural
remodeling

CX43 (32)

miR-23 Upregulation Structural
remodeling

TGFβ1 (33)

miR-133 Downregulation Structural
remodeling

ZFHX3 (34)

miR-10a Upregulation Structural
remodeling

TGFβ1
Smads

(35)

miR-155-5p Upregulation Neurohormonal
disorders

eNOS (36)

miR-24-3p Upregulation Neurohormonal
disorders

eNOS (36)

miR-138-5p Downregulation Structural
remodeling

CYP11B2 (37)

miR-27b Downregulation Structural
remodeling

ALK5 (32, 38)

miR-30c Downregulation Structural
remodeling

TGFβRII (39)

(Continued)

TABLE 1 Continued

ncRNAs Expression Remodeling Targets Ref.
miR-208b Upregulation Electrical

remodeling
CACNA1C
CACNB2
SERCA2

(40)

miR-29a Upregulation Electrical
remodeling

CACNA1C (41)

miR-31 Upregulation Neurohormonal
disorders

nNOS (42)

miR-30d Upregulation Electrical
remodeling

IK.ACh (43)

miR-30a Upregulation Structural
remodeling

Snail 1 (44)

miR-206 Upregulation Neurohormonal
disorders

SOD1 (45)

miR-146b-5p Upregulation Structural
remodeling

TIMP4 (20)

miR-132 Downregulation Structural
remodeling

CTGF (46)

miR-106b-25 Downregulation Electrical
remodeling

RyR2 (47)

miR-21 Upregulation Electrical
remodeling

CACNA1C
CACNB2

(16, 48)

miR-26 Downregulation Electrical
remodeling

KCNJ2 (49)

miR-221 Upregulation Electrical
remodeling

KCNJ5 (50)

miR-499 Upregulation Electrical
remodeling

SK3 (51, 52)

miR-328 Upregulation Electrical
remodeling

CACNA1C
CACNB2

(51)

HOTAIR Upregulation Structural
remodeling

PTBP1
Wnt5a

(9)

H19 Upregulation Structural
remodeling

VEGFA
TGFβ

(53)

NEAT1 Upregulation Structural
remodeling

NPAS2 (54)

LICPAR Upregulation Structural
remodeling

Smad2/3 (55)

LINC01013 Upregulation Structural
remodeling

TGF-β1 (56)

TUG1 Upregulation Structural
remodeling

miR-29b-3p (57)

PCAT-1 Upregulation Structural
remodeling

TGF-β1 (58)

TCONS00106987 Upregulation Electrical
remodeling

KCNJ2 (59)

GAS5 Upregulation Structural
remodeling

ALK5 (60)

MIAT Upregulation Structural
remodeling

TGFβ1 (61)

PVT1 Upregulation Structural
remodeling

TGFβ1 (62)

KCNQ1OT1 Upregulation Electrical
remodeling

CACNA1C (63)

AK055347 Upregulation Neurohormonal
disorders

MSS51 (64)

CAMTA1 Upregulation Structural
remodeling

TGFBR1 (65)

circ_0004104 Upregulation Structural
remodeling

TGFβ (66)

circ_0000672 Upregulation Structural
remodeling

TRAF6 (67)

circ_0005019 Upregulation Electrical
remodeling

Kcnn3 (68)
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TABLE 2 Potential biomarker of ncRNAs for AF.

ncRNAs Expression Biological
fluid

Function Ref

miR-411-5p Upregulation Blood Auxiliary diagnostic (69)

miR-451a Downregulation Blood Prognostic monitor (70)

miR-320a-3p Upregulation Plasma Prognostic monitor (28)

miR-214-3p Upregulation Serum Auxiliary diagnostic (71)

miR-342-5p Upregulation Serum Auxiliary diagnostic (71)

miR-1266 Upregulation Bloo Auxiliary diagnostic (72)

miR-4279 Upregulation Blood Auxiliary diagnostic (72)

miR-4666a-3p Upregulation Blood Auxiliary diagnostic (72)

miR-208a Downregulation Serum Auxiliary diagnostic (73)

miR-483-5p Upregulation Serum Prognostic monitor (73)

miR-199a Downregulation Blood Prognostic monitor (74)

miR-409-3p Downregulation Plasma Prognostic monitor (75)

miR-432 Downregulation Plasma Prognostic monitor (75)

miRNA-150 Downregulation Plasma Auxiliary diagnostic (76)

lncRNA H19 Upregulation Plasma Prognostic monitor (77)

LncRNA GAS5 Downregulation Plasma Auxiliary diagnostic
Prognostic monitor

(78)

has_circ_0006314 Upregulation Blood Prognostic monitor (79)

hsa_circ_0055387 Upregulation Blood Prognostic monitor (79)

hsa_circ_0070391 Upregulation Plasma Auxiliary diagnostic (80)

hsa_circ_0003935 Downregulation Plasma Auxiliary diagnostic (80)

circ 8196-RYR2 Upregulation Blood Prognostic monitor (81)

circRNA_2773 Upregulation PBMC Auxiliary diagnostic (82)

Xue et al. 10.3389/fcvm.2023.1210762
miRNAs in both non-relapsed and relapsed groups, the results

showed that miRNA-451a was down-regulated in relapsed

patients, and the recurrence of AF was positively correlated with

an increased percentage of scars. It is suggested that low

expression of miR-451a may play an important role in the

recurrence of AF by controlling fibrosis and progression (70).

Akselrod AS et al. found that plasma miR-320a-3p level in

patients with AF was higher than that in healthy controls, and

the expression level was positively correlated with CHADS-VASc

score (28). Sasano T et al. identified 11 candidate miRNAs using

high-throughput sequencing and clinical sample validation, and

found that miR-214-3p and miR-342-5p had high accuracy in

the diagnosis of patients with AF combined with

clinicpathological parameter analysis (71). Yang et al. observed

genome-wide differential expression profiles of miRNAs in 180

peripheral blood samples and found 14 miRNAs with significant

differential expression, among which miR-1266, miR-4279 and

miR-4666a-3p were significantly increased in expression, which

are potential targets for future diagnosis and treatment of AF

(72). About one-third of patients undergoing coronary artery

bypass grafting will develop postoperative AF, which seriously

affects the prognosis of patients. In order to monitor the

occurrence of postoperative AF, Athanasiou et al. prospectively

recruited 34 patients after surgery, and compared the myocardial

tissue with normal sinus rhythm after surgery, and found 16

differentially expressed miRNAs. The expression of miR-208a

was significantly decreased, and the expression of miR-483-5p

was significantly increased. It is suggested that these differentially

expressed miRNAs can be used to predict the recurrence of AF

after coronary artery bypass grafting (73). Kilic et al. recruited 63
Frontiers in Cardiovascular Medicine 04
patients after coronary artery bypass grafting and monitored

their heart rate until discharge. Among them, 20 patients

developed postoperative AF, and PCR detected the expression of

miR-199a and miR-195. The results showed that the expression

of miR-199a significantly decreased in the postoperative AF

group, demonstrate its effectiveness as a biomarker for cardiac

surgery management (74). By Solexa sequencing 100 patients

with AF who underwent catheter ablation and 100 healthy

individuals, Wu et al. found that miR-409-3p and miR-432 were

significantly reduced in the plasma of patients with AF and are

potential markers of AF (75). Xia et al. showed for the first time

that plasma miRNA-150 levels in patients with atrial fibrillation

are significantly lower than those in healthy individuals, which is

a potential biomarker to aid in the diagnosis of atrial fibrillation

(76). These studies indicate that miRNAs differentially expressed

in plasma of patients with AF and postoperative patients can

play an important indicator role in the diagnosis and prognosis

monitoring of AF.
4. miRNAs involved in the regulation of
electrical remodeling

Electrical remodeling of atrial muscle is closely related to the

occurrence of AF. Electrical remodeling refers to recurrent

episodes of AF or continuous atrial stimulation, which leads to

progressive shortening of the effective refractory period of the

atrium, and the decrease, reversal or disappearance of the

physiological frequency adaptation of the atrial refractory period,

making AF more likely to be induced and sustained (87, 92). AF

is caused by abnormal electrical activity of atrial myocardium.

During the occurrence of AF, many ion channels also have

significant changes, mainly including: L-type Ca2+ channel,

transient outward K+ channel, strong inward rectification K+

channel (IK1), acetylcholine-activated K+ channel (IK, ACh), and

ultra-fast delayed rectification K+ channel (IKur) (93, 94).

Yang et al. found that the expression of miR-328 was increased

in the atrial tissue of AF mouse models, and the high expression of

miR-328 could reduce the L-type Ca2+ current and shorten the

duration of atrial action potential. Mechanism studies have

confirmed that CACNA1C and CACNB1 are the target genes of

miR-328, and miR-328 can interact with L-type Ca2+ channel

protein subunits to participate in atrial electroremodeling in AF

(51). Nattel et al. found that the expression of miR-26 was

down-regulated in the atrial tissues of AF patients, and low-

expressed miR-26 was a potential regulatory gene for the

electrophysiological effects of Ca2+ dependent nuclear factor of

activated T cells (NFAT) signaling pathway, and an important

participant in the persistence of AF (49). Ricardo et al. found

that the high expression of miR-21 in cardiomyocytes of patients

with AF was negatively correlated with the expression of

CACNA1C and the density of I (Ca, L), suggesting that miR-21

may be involved in the downregulation of L-type Ca2+ I (Ca, L)

induced by chronic AF, and is the key to the persistence of AF

(95). Similarly, Qiu et al. found that CACNA1C is a direct target

gene of miR-29a-3p, and miR-29a-3p negatively regulates
frontiersin.org
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CACNA1C. miR-29a-3p may be a potential target for AF treatment

(41). Lee et al. found that miR-499 was significantly upregulated in

AF, resulting in downregulation of small conductance calcium-

activated potassium channel 3 (SK3), which may contribute to

electrical remodeling of AF and is a novel site associated with

the onset of AF (52). Katsushige et al. used high-throughput

sequencing analysis to find that miR-30d was significantly up-

regulated in myocardial cells of AF patients, and functional

enrichment analysis found that miR-30d was a candidate gene

for ion channel remodeling. Interference with miR-30d down-

regulated the expression of kcnj3/Kir3.1, accompanied by a

decrease in the acetylcholine-sensitive internal rectification K+

current (IK.ACh) (43). Barbara et al. found that miR-221

reduced the abundance and function of L-type Ca2+ channels

and Kcnj5 channels. MiR-221 can regulate L-type Ca2+ channels

and Kcnj5 channels, thus potentially contributing to the

generation and propagation of cardiac excitation (50).
5. miRNAs involved in the regulation of
structural remodeling

Electrical remodeling is the pathological change in the initial

stage of AF, while structural remodeling is the material basis for

the long-term maintenance of AF, and it is also the most

obvious change of atrium (96, 97). Atrial dilatation and fibrosis

are the main features of structural remodeling in AF. Atrial

fibrosis may lead to slowing of conduction velocity, conduction

block to promote reentry and increase susceptibility to AF (98).

Studies have shown that connective tissue growth factor

(CTGF) plays an important role in the process of fibrosis. Zhang

et al. found that the expression of miR-132 decreased in AF

cardiomyocytes. Luciferase assay confirmed that miR-132 could

bind to the 3 ‘-untranslated region of CTGF, thereby inhibiting

the expression of CTGF and regulating the fibrosis of cardiac

fibroblasts (46). Yang et al. found that overexpression of miR-10a

significantly prolonged the duration of AF and decreased Smad7

protein expression. TGF-β1 reversed the inhibitory effect of miR-

10a on Smad7, alleviated atrial remodeling, and ultimately

inhibited cardiac fibrosis (35). Similarly, Xu et al. found that

miR-29b-3p could reduce the degree of atrial fibrosis, and high

expression of miR-29b-3p could reduce the expression of fibrosis

markers collagen- I and a-SMA, and increase the protein

expression of Cx43, thus reversing atrial remodeling (29). Studies

have shown that the expression of miR-205-5p is decreased in

atrial tissues of patients with AF, and overexpression of miR-205-

5p can reduce the expression of TGF-β1, α-SMA, Col III and

other fibrosis-related proteins. Mechanism studies have shown

that miR-205-5p regulates H3 histone methylation by targeting

EHMT2, promotes IGFBP3 expression, and further affects atrial

myocyte fibrosis (11). The study found that the expression of

miR-29b was low in the atrial tissue of AF rats, overexpression

miR-29b can reduce atrial fibrosis, reduce the expression of

COL1A1, COL3A1 and TGFβ1, and shorten the duration of AF

in rats (14). In addition, the expression of miR-135b was down-

regulated in AF tissues, while the expression of miR-135b target
Frontiers in Cardiovascular Medicine 05
genes TGFBR1 and TGFBR2 was up-regulated in myocardial

fibroblasts. Quercetin can promote miR-135b expression, inhibit

TGF-β/Smads pathway, reduce atrial tissue fibrosis and collagen

deposition, and thus relieve AF (19). Xu et al. found that miR-

101a-3p may prevent AF in rats by targeting EZH2 to inhibit

collagen synthesis and atrial fibrosis, which provides a potential

target for the prevention of AF (22). miR-1202 was found to

negatively regulate atrial fibrosis by targeting nNOS by reducing

cell differentiation, collagen deposition, and TGF-β1/Smad2/3

pathway activity (23). Overexpression of miR-133a can inhibit

the proliferation and migration of atrial cells, reduce the

expression of fibrosis markers and CTGF protein, and improve

myocardial fibrosis (24).
6. miRNAs involved in the regulation of
neurohormonal disorders

Autonomic dysfunction is a type of dysfunction that occurs

when the balance between sympathetic and parasympathetic

nerves is disrupted. cardiac autonomic nerve remodeling (ANR)

refers to the changes in the distribution density and spatial

arrangement of the autonomic nerve caused by some diseases of

the heart (99–102).

Studies have shown that the contents of tetrahydrobioterin

(BH4) and NO are related to nerve regeneration. GCH1 is the

rate-limiting enzyme of BH4 synthesis. Hou et al. found that the

expression of miR-206 was increased in atrial fibrillation

myocarde. High expression of miR-206 could inhibit GCH1, thus

affecting the content of BH4 and NO in myocarde (103). In a

similar study, miR-206 expression was increased in the the left

superior ganglionated plexus (SLGPs). High expression of miR-

206 inhibited the expression of superoxide dismutase 1 (SOD1)

and increased the levels of reactive oxygen species (ROS) in vitro

and in vivo, further exacerbating ANR (45). miR-662 can also

regulate the expression of neuropeptides and participate in the

occurrence and development of AF after myocardial infarction

(17). It was found that the levels of miR-155-5p and miR-24-3p

were significantly decreased and the levels of eNOS and NO were

increased in patients with AF after ablation compared with those

who did not receive ablation therapy (36). Casadei B et al. found

that atrial specific upregulation of miR-31 in AF resulted in

inhibition of muscular dystrophin (DYS) translation and

accelerated degradation of nNOS mRNA, leading to significant

reductions in atrial DYS and nNOS protein content and nitric

oxide availability. Inhibition of miR-31 restores DYS and nNOS in

human AF and normalizes APD and rate dependence of APD (42).
7. ncRNAs and AF-beyond miRNAs

With the increase of studies on ncRNAs in AF, lncRNAs and

circRNAs play an increasingly significant role in AF. Therefore,

in addition to miRNAs, this manuscript also discussed the

current research content of other ncRNAs in AF.
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CHA 2 ds2-VASc score was originally used to stratify stroke

risk in patients with AF, in order to study whether lncRNAs

could improve the predictive ability of CHA 2 ds2-VASc score

for stroke. Li et al. added the ability of lncRNA expression level

to predict stroke in CHA 2 ds2-VASc scoring model. The results

showed that lncRNA H19 plasma expression level was correlated

with the risk of stroke in patients with AF, which could

significantly improve the ability to predict the risk of stroke in

patients with AF, and was a potential prognostic monitoring

marker (77). LncRNA GAS5 is significantly down-regulated in

the plasma of patients with AF, which is a potential biomarker

for the diagnosis and prognosis monitoring of AF (78). Similar

studies have found that has_circ_0006314 and hsa_circ_0055387

also have potential predictive value for postoperative AF (79).

Fan et al. used GEO database to screen out two different

circRNAs. The expression of hsa_circ_0070391 in plasma was

up-regulated and hsa_circ_0003935 down-regulated. The area

under ROC curve indicated that both of them had high

diagnostic efficiency (80). Wang et al. examined plasma circ

8196-RYR2 levels in 136 patients following ablation of AF,

suggesting that circ 8196-RYR2 could be used as a new predictor

of late recurrence after surgical ablation (81). Another study also

show that low expression of circRNA_2773 is a potential

diagnostic marker for AF (82).

AF is often accompanied by excessive proliferation of cardiac

fibroblasts (CFs). It was found that the expression of HOTAIR

was increased in the myocardium of patients with AF, and Ang

II significantly increased the activity of atrial fibroblasts.

HOTAIR knockdown can significantly inhibit AF cardiac tissue

fibrosis by regulating Wnt signaling pathway (9). Knocking down

LINC01013 reduced baseline expression of fibrosis markers and

their response to TGF-β1. TGF-β1 stimulated atrial fibroblasts to

induce the expression of LINC01013, and its knockdown reduced

the activation of fibroblasts (56). Plasma H19 levels were

significantly higher in patients with AF compared with healthy

volunteers. Upregulation of H19 expression contributes to the

proliferation and synthesis of extracellular matrix (ECM) related

proteins, thereby promoting myocardial fibrosis (53). It was

found that the serum TUG1 level was elevated and the

expression of miR-29b-3p was low in patients with AF. Pearson

correlation analysis showed that TUG1 was negatively correlated

with miR-29b-3p expression in AF patients. TUG1 knockdown

inhibits vascular endothelium-induced cardiomyocyte proliferation

(57). NEAT1 expression was up-regulated in atrial tissues of

patients with AF, and was positively correlated with the

expression of type I collagen (coll I) and type III collagen (coll

III). In addition, the loss of NEAT1 attenuates angiotensin II

(Ang II), leading to atrial fibroblast proliferation, migration, and

collagen production. These findings suggest that NEAT1 plays an

important role in atrial fibrosis and is a new potential molecular

target for the treatment of AF (54). In AF patients, LICPAR and

TGF-β1 expression were up-regulated and positively correlated.

Further analysis showed that Ang II increased LIPCAR, Smad2/3

phosphorylation, and α-smooth muscle actin (α-SMA) levels.

Up-regulation of LIPCAR could further promote the promoting

effects of Ang II on the phosphorylation levels of LIPCAR,
Frontiers in Cardiovascular Medicine 06
Collagen I, Collagen II, α-SMA and Smad2/3, cell viability and

proliferation of atrial fibroblasts. These studies suggest that

lncRNA LICPAR regulates atrial fibrosis primarily by regulating

the TGF-β/Smad pathway (55). Studies found that down-

regulation of lncRNA MIAT could significantly relieve AF,

increase atrial effective refractory period (AERP), inhibit the

expression of fibrosis-related genes coll I, coll III, CTGF, TGF-β1,

and effectively reduce AF induced atrial fibrosis (61). PCAT-1

expression was increased in AF patients. PCAT-1 knockdown

inhibited the proliferation of AC16 cells. Mechanism studies

showed that TGF-β1 was the target of PCAT-1, and its

expression in AF tissues was positively correlated with that of

PCAT-1. PCAT-1 can promote the proliferation of AF cells by

promoting TGF-β1 (58). The expression of GAS5 in myocardium

of AF patients was significantly decreased. Overexpression of

GAS5 can inhibit the growth of AC16 cells. In addition, further

experiments showed that ALK5 was the target of GAS5, and its

expression in AF tissue was negatively correlated with that of

GAS5. lncRNA GAS5 may inhibit AF cell fibrosis by inhibiting

ALK5 (60). The expression of PVT1 in AF patients was

increased and positive for coll I and coll III. Overexpression of

PVT1 promoted Ang-II-induced atrial fibroblast proliferation,

collagen generation, and TGF-β1/Smad signaling activation, while

PVT1 knockdown did the opposite. Mechanically, PVT1 acts as a

sponge for miR-128-3p and promotes Sp1 expression, thereby

activating the TGF-β1/Smad signaling pathway (62).

Hou et al. found that lncRNA TCONS_00075467 may also

participate in atrial myocardial electrical remodeling. Interference

with TCONS_00075467 can shorten the effective refractory

period of the atria in vivo and reduce the duration of L-type

calcium current and action potential in vitro (104). Similarly,

lncRNA TCONS-00106987 is up-regulated in atrial tissue of

patients with AF. Mechanism studies have shown that

TCONS_00106987 induces the transcription of its target gene

KCNJ2 through miR-26, and increases the inward rectification

K+ current (IK1). Thus facilitating electrical reconfiguration (59).

Studies have shown that interference with lncRNA AK055347

can inhibit the activity of cardiomyocytes, accompanied by the

downregulation of Cyp450 and ATP synthase. Mechanism studies

have confirmed that AK055347 may regulate the mitochondrial

energy production by regulating Cyp450, ATP synthase and

MSS51, thus participating in the pathogenesis of AF (64).
8. Exosome-associated ncRNAs
involved in the regulation of AF

In recent years, it has been found that exosome-derived

ncRNAs have different expression profiles in various diseases and

are a potential non-invasive diagnostic biomarker, which has

been widely studied in the medical field. Similarly, exosomes can

also be detected in body fluids of patients with atrial fibrillation,

and the non-coding RNA carried by them is of great significance

for auxiliary diagnosis and prognostic monitoring of AF (105, 106).

Wei et al. demonstrated differences in the expression of

miRNAs in plasma exosomes in patients with AF. Among them,
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miR-92b-3p, miR-1306-5p and miR-let-7b-3p had significant

differences, and gene enrichment analysis showed that these

miRNAs and target genes were mainly involved in the

occurrence of AF through affecting biological processes such as

energy metabolism, lipid metabolism, inflammation and enzyme

activity (107). Similar studies have found that miR-483-5p, miR-

142-5p and miR-223-3p are also involved in the occurrence and

development of AF (108). Joung et al. found that exosomes in

the peripheral blood of patients with atrial fibrillation can reduce

cardiomyocyte viability, lead to abnormal Ca2+ channel and

induce reactive oxygen species (ROS) production. High-

throughput sequencing found that miR-30a-5p expression was

decreased in peripheral blood exosomes of patients with AF, and

exosomes with high expression of miR-30a-5p could attenuate

pacemaker induced Ca2+ channel abnormalities (109). Hou et al.

screened the differential miRNAs of peripheral blood and

exosomes in 40 patients with AF, and found that miR-124-3p

was significantly up-regulated, and the high expression of miR-

124-3p could improve the viability and proliferation ability of

myocardial fibroblasts. Mechanism studies have shown that miR-

124-3p can promote the activation and proliferation of fibroblasts

through AXIN1 by regulating the WNT/β-catenin signaling

pathway (110). Similarly, Exosomal lncRNAs are also potential

biomarkers for AF. Joung et al. identified 26 differentially

expressed lncrnas in serum exosomes from patients with

persistent AF. lncRNAs LOC105377989 and LOC107986997

continued to increase, has significant diagnostic effectiveness for

AF, and is a potential biomarker for the diagnosis of AF (106).

Lei et al. using GEO database, LINC00636 was found to be an

antifibrotic molecule with decreased expression in peripheral

blood exosomes of patients with AF. Mechanism studies have

shown that LINC00636 can promote the expression of miR-

450a-2-3p, thereby inhibiting the expression of MAPK1, and

thereby improve cardiac fibrosis in patients with AF (111).
9. Conclusions

In recent years, with the deepening of research, ncRNAs play

an important role in the occurrence and development of AF.

Differential expression of ncRNAs in peripheral blood of patients

with AF provides a new theoretical basis for auxiliary diagnosis
Frontiers in Cardiovascular Medicine 07
of AF. At the same time, ncRNAs are involved in myocardial cell

remodeling and ion channel remodeling, providing a new scheme

for the treatment of AF.

This manuscript reviews the research progress of ncRNAs in

the occurrence, treatment and potential biomarkers of AF.

According to the existing studies, we can find that ncRNAs are

closely related to AF and involved in the occurrence and

progression of AF, which is worthy of further study and has

great clinical significance.
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