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Background: Current treatments of chemotherapy-induced cardiomyopathy
(CCM) are of limited efficacy. We assessed whether repeated intravenous
injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC)
could represent a new therapeutic option and whether EV manufacturing
according to a Good Manufacturing Practices (GMP)-compatible process did not
impair their bioactivity.
Methods: Immuno-competent mice received intra-peritoneal injections (IP) of
doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then
intravenously (IV) injected three times with EV-CPC (total dose: 30 billion).
Cardiac function was assessed 9–11 weeks later by cardiac magnetic resonance
imaging (CMR) using strain as the primary end point. Then, immuno-competent
rats received 5 IP injections of DOX (3 mg/kg each; cumulative dose 15 mg/kg)
followed by 3 equal IV injections of GMP-EV (total dose: 100 billion). Cardiac
function was assessed by two dimensional-echocardiography.
Results: In the chronic mouse model of CCM, DOX+ placebo-injected hearts
incurred a significant decline in basal (global, epi- and endocardial)
circumferential strain compared with sham DOX-untreated mice (p= 0.043, p=
0.042, p=0.048 respectively) while EV-CPC preserved these indices. Global
longitudinal strain followed a similar pattern. In the rat model, IV injections of
GMP-EV also preserved left ventricular end-systolic and end-diastolic volumes
compared with untreated controls.
Abbreviations

DOX, doxorubicin; CCM, chemotherapy-induced cardiomyopathy; iPSC, induced-pluripotent stem cells,
CPCs, cardiac progenitor cells; EV, extracellular vesicles; GMP, Good Manufacturing Practices; MSCs,
mesenchymal stromal cells; MI, myocardial infarction; CS, circumferential strain; LS, longitudinal strain;
LV, left-ventricle; ESV, end systolic volume; EDV, end diastolic volume.
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Conclusions: Intravenously-injected extracellular vesicles derived from CPC have cardio-
protective effects which may make them an attractive user-friendly option for the
treatment of CCM.

KEYWORDS

cardiovascular progenitor, extracellular vesicles, chemotherapy-induced cardiomyopathy, cardiac

strain, cardio-oncology, regenerative medicine
Introduction

Cancer survivors who have been treated with anthracyclines are

at risk of developing a left ventricular (LV) dysfunction (1), even

several years after the end of their cancer treatment (2). The

incidence of this chemotherapy-induced cardiomyopathy (CCM)

can be as high as 48% for those who have received the highest

cumulative anthracycline doses and is exacerbated by the

presence of other cardiovascular risk factors (3). These patients

require careful monitoring, sometimes a reduction in dosing

regimens or heart failure preventive therapies, whose benefit on

improving patient outcomes still remains variable, especially after

an anthracycline-based regimen (4, 5). Hence, new therapeutic

options are eagerly awaited. Cell therapy has emerged as one of

them, as documented by the protective effects of mesenchymal

stromal cells (MSCs) or embryonic stem cells on post-

doxorubicin cardiomyopathy (6, 7). Although the recently

completed SENECA trial [(7), NCT02509156], which entailed a

single catheter-based endomyocardial injection of allogeneic

MSCs, did not meet its primary end point, it also reported some

encouraging efficacy signals.

Although cell transplantation has been initially conceived as a

“replacement” therapy whereby grafted cells would structurally

engraft in the myocardium and replace dysfunctional

cardiomyocytes, there is now mounting evidence that cells exert

their beneficial effects through paracrine signaling mediated by

the cellular secretome whose content is largely packaged in

proteolipid bilayered extracellular vesicles (EV). These particles

are able to transfer their biologically active cargo (composed of

proteins, lipids and coding and non-coding nucleic acids) into

recipient cells through membrane fusion, endocytosis or ligand/

receptor binding, thereby harnessing endogenous repair pathways

in the target cells (8, 9). The role of these EV in mitigating post-

chemotherapy cardiac dysfunction has been reported for EV

derived from cardiovascular progenitor cells (CPCs) (8) and

MSCs (9). Similarly, the secretome of human amniotic fluid-

derived multipotent stem cells has been shown to limit

doxorubicin-induced toxicity on human CPCs (10). While the

precise mechanism of action of the cells still remains elusive,

what is known from the identity of their secreted biomolecules

leads to speculate that they could act on specific chemo-triggered

abnormalities which primarily include DNA damage, oxidative

and energetic stress leading to inflammation, extracellular matrix

remodeling and defects in heart contractility, all of which can

contribute to LV dysfunction (1, 11, 12).

The present study was designed to assess the effects of EV

isolated from CPCs in two rodent models of post-doxorubicin
02
cardiomyopathy. The parental cell source, CPC, was selected on

the basis of previous studies from our laboratory (13) and others

(8) showing that EV derived from CPCs can mitigate

inflammation and adverse remodeling in models of acute

myocardial infarction (MI) and post-MI chronic heart failure. As

both events are also pathological hallmarks of anthracycline-

induced cardiomyopathy (11, 12), we hypothesized that EV

derived from CPCs (EV-CPC) could also positively counteract

them and thus contribute to improve heart contractility. We also

tested whether a process compliant with a clinical-grade

manufacturing scale-up and Good Manufacturing Practices

(GMP)-compatible methods would not impair EV bioactivity.
Methods

Vesiculation and EV isolation

EV-CPC
CPCs differentiated from human induced pluripotent stem

cells (iCell® CPC, FCDI) were thawed and plated on fibronectin

pre-coated culture plates (CellBIND® HYPERFlask®, Corning) in

an enriched medium (William’s E Medium supplemented by

Cocktail B from Hepatocyte Maintenance Supplement Pack,

human bFGF and Gentamicin) as previously described (14). EV-

CPC were then isolated from the conditioned medium after 2

days of serum-free and growth factor-free culture (only William’s

E Medium and gentamicin), clarified by a series of

centrifugations (400 g, 10 min; 2,000 g, 30 min; room

temperature), purified by ultrafiltration (centrifugal filter unit

with vertical membrane, Amicon Ultra-15, PLTK, 30 kDa,

Merck) and cryo-preserved at −80°C.

GMP-EV
Human iPSC-derived CPC were produced at the Innovation

Facility for Advanced Cell Therapy (iFACT, FUJIFILM Cellular

Dynamics, Inc, Madison, USA). CPC generation was performed

in a GMP suite using a novel differentiation process with GMP-

compatible methods, materials and reagents at a Phase 1 clinical

manufacturing scale (prototype-GMP-CPC) (Ravel et al.,

manuscript in preparation, patent pending). These CPC were

then cryo-preserved and shipped to the MEARY Cell and Gene

Therapy Center, AP-HP Paris, France, where they were thawed

and processed for vesiculation. Following collection of the

conditioned medium, EV were isolated using tangential flow

filtration according to GMP-compatible procedures (Patent

pending).
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EV-CPC characterization

EV-CPC were characterized with regard to the number of

particles (by Nanoparticle Tracking Analysis [NTA]; (NanoSight

LM-10, Malvern), morphology (by immuno-gold labelling and

cryo-transmission electron microscopy [CryoTEM (13)], surface

marker expression (by flow cytometry using the MACSPlex

Exosome Kit, Miltenyi Biotech) and protein content (Bicinchoninic

Acid Assay).
Proteomic analysis of EV-CPC

The proteomic cargo of EV-CPC was processed and analyzed

as extensively described in Supplemental Material. The mass

spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository

with the dataset identifier PXD022129 (Username:

reviewer_pxd022129@ebi.ac.uk, Password: Z8DFhSCS).
Rodent models of CCM, administration of
EV and functional cardiac evaluations

All procedures were approved by the Institutional Ethics

Committee from Paris University (project #15616 and #33136)

and complied with European legislation (European

Commission Directive 2010/63/EU) on animal care. They are

illustrated in Figures 1A,B and detailed in Supplemental

Material.

In brief, immune-competent BALB/c mice received 3 weekly

intra-peritoneal (IP) injections of doxorubicin (DOX; 4 mg/kg

each; cumulative dose: 12 mg/kg), were then intravenously (IV)

injected three times with EV (total dose: 30 billion) over 2 weeks

and finally assessed 9–11 weeks later by cardiac magnetic

resonance imaging (FLASH cine sequences on a 4.7 T preclinical

Bruker scanner) (Figure 1A). Absolute values of Circumferential

Strain (CS) and Longitudinal Strain (LS) measures (Tissue-

tracking module, Circle Cardiovascular Imaging software,

Biomedical Imaging Research Laboratory CREATIS, Lyon,

France) are expressed both as a percentage and in percentage

change (%Δ) from mean baseline values set at 100%. These

baseline values correspond to the functional measurements taken

at the onset of the protocol in 5 healthy mice.

Then, Wistar rats received 5 IP injections of DOX (3 mg/kg

each; cumulative dose 15 mg/kg) followed by 3 equal IV

injections of GMP-EV (total dose: 100 billion), one every 2 days

(Figure 1B). Cardiac function was assessed by two dimensional-

echocardiography (parasternal long axis views in B-mode using

the single-plane area-length method, VEVO Lab) at baseline

before DOX treatment, between DOX and the first GMP-EV

treatment at day 10 (D10) and 29 days after the first DOX

injection at the end of the study.

In order to avoid selection bias, DOX-treated animals (both

mice and rats) were allocated to the EV-CPC or GMP-EV and
Frontiers in Cardiovascular Medicine 03
control groups on the basis of their clinical status at the end of

drug treatments, mostly their weight loss from baseline so as to

ensure the comparability of measurements. Myocardial contour

tracing was processed by the same operator, blinded to the

treatment group and echocardiographic measurements were

double-checked by a senior cardiologist.
qRT-PCR from explanted mouse hearts

RNA was isolated from mouse hearts and processed for

qRT-PCR as presented in Supplementary Figure S4.
Statistics

Statistical analyses are detailed in Supplemental Material. To

estimate the effect size of EV treatment, the Cohen’s d index for

unequal variance was calculated and interpreted according to a

commonly accepted stratification where small, medium, large and

very large effect sizes are considered for values of 0.2, 0.5, 0.8

and 1.3, respectively.
Results

EV-CPC characterization

Following the MISEV 2018 guidelines (15), the CPC secretome

was characterized by multiple and complementary methods which

demonstrated that intracellular material was encapsulated in

particles exhibiting a lipid bilayer membrane, the smallest of

which (<100 nm) were densely CD81 positive (Figure 2A). As

shown in Figure 2B, particles ranged in size from 50 nm to

450 nm (with almost 85% of them with a size below 200 nm)

and expressed key surface markers (LAMP1/2, CD9, CD63,

CD81) (Figures 2C,D). The presence of cytosolic proteins with

lipid or protein binding capabilities (TSG101, HSC70, ALIX and

ITGB1/5 and ITGA2/3/5/6) was also confirmed. The median

protein content in the final EV-CPC suspension was 140 µg/ml

and the median number of particles per CPC was 25,000.
EV-CPC improve heart contractility in CCM
mice

To validate the ability of our DOX regimen to induce a

cardiomyopathy, end-study data recorded in DOX-injected mice

were compared with baseline values collected at the onset of the

protocol in 5 healthy mice. Compared with these normal mice,

DOX resulted in a significant impairment of Global Longitudinal

Strain (GLS; −13.35 vs. −14.80, p≤ 0.046). Likewise, compared

with sham-operated (DOX-free, saline-injected) mice, those

injected with DOX incurred declines in diastolic mass and ejection

fraction, an increase in LV volumes (Supplementary Figures S1A–

E) and a QTc interval lengthening with a decreased cardiac output

(without changes in heart rate) (Supplementary Figures S1F–J).
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FIGURE 1

Rodent CCM model experimental protocols. (A) Mice were subjected to 3 weekly intraperitoneal injections of doxorubicin (DOX) (cumulative dose = 12
mg/kg). Sham-operated mice underwent isotonic buffer injections without DOX treatment.Three equal doses of EV-CPC (total dose of 30E+9 particles)
were given intravenously (IV) by the retro-orbital sinus (n= 30) according to 3 slightly different time frames: starting 15 days after the last Dox injection and
performed every 4-5 days (one series) or every 3-4 days (one series) or starting the day after the last Dox injection and performed every 4-5 days (one
series). A placebo control group underwent injections of isotonic buffer according to the same timing and delivery protocol. Cardiac MRI and EKG
measurements were performed to assess cardiac function. Baseline values correspond to the functional measurements which were taken in 5 healthy
mice at the onset of the protocol. (B) Wistar female rats received 5 IP injections of DOX (3mg/kg each; total cumulative dose 15mg/kg) followed by 3
intravenous injections of GMP-EV (100E+9/injection, one every 2/3 days; n= 12). Control rats were placebo-injected with saline (n= 11) or sham-
treated (no DOX; n= 6). Cardiac echocardiography measurements were acquired at baseline before DOX treatment, between DOX and GMP-EV
treatment at day 10 (D10), and 29 days after the first DOX injection (end-of-study). At this time, EKG and blood pressure measurements were also
performed. Rats were sacrificed at end-of-study, 29 days after the beginning of DOX treatment. In order to avoid selection bias, DOX animals were
randomized into the 2 different treatment groups relative to their clinical status, mostly their weight loss percentage compared to baseline. MRI,
magnetic resonance imaging; IP, intraperitoneal; IV, intravenous; EKG, electrocardiogram.

FIGURE 2

EV-CPC characterization. (A) Cryo-TEM resolution of EV-CPC lipid bilayer membranes. Scale bar = 100 μm. (B) Size distribution of isolated particles by
NTA analysis measured on 5 different preparations of EV-CPC. (C) FACS detection of tetraspanin expression on EV-CPC by MACSPlex analysis compared
to a negative control, i.e., the CD31 endothelial marker (in technical duplicates; median +/− IQR). (D) Extract from the absolute quantification of
proteomic analysis. SD: standard deviation; NTA: Nanoparticle Tracking Analysis; Cryo-TEM: immuno-gold labelling and cryo-transmission electron
microscopy; CD: cluster of differentiation; MW: molecular weight.

Desgres et al. 10.3389/fcvm.2023.1206279
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Similar trends were observed when papillary muscles were included

in the segmentation of the inner diameter (Supplementary Figures

S2A–F). However, although DOX also caused liver damage

(Supplementary Figure S3A) treated mice did not exhibit

pulmonary edema (Supplementary Figure S3B) or extensive

fibrosis, as assessed by histology (Supplementary Figures S3C,D)

or qRT-PCR (Supplementary Figures S3E-G), thereby suggesting

that our protocol captured an early stage of ventricular dysfunction.

EV-CPC significantly improved the early survival of mice

compared with placebo-injected controls (Figure 3A) even

though curves subsequently tended to merge, likely because of

DOX-induced disease progression and the related clinical

deterioration (Figure 3B). Furthermore, while DOX + placebo

hearts incurred a significant decline in basal (global, endo- and

epicardial) CS (Figures S3C–E) compared with sham mice (p =

0.043, p = 0.048, p = 0.042 respectively), EV-CPC preserved these

indices which did not significantly differ from those of the sham

group. Similar patterns of changes were seen for GLS

(Figure 3F). Furthermore, if one sets at −15% the threshold for

a clinically relevant decline in GLS predictive of LV dysfunction

(16, 17), there were twice as many placebo-injected mice in this

subgroup than EV-CPC-treated ones (Effect size Cohen’s d index

of 0.4). Finally, while DOX-treated placebo-injected hearts

demonstrated an upregulation of genes involved in fibrosis

(Galectin 3) along with fetal and pathological gene expression

associated with heart failure (decrease in the myosin heavy chain

Myh6/Myh7 ratio, increase in NPPA) compared with DOX-free

sham-operated mice (Figures 3G–I), EV-CPC treatment partially

prevented these changes conducive to maladaptive remodeling

and LV systolic dysfunction (effect size Cohen’s d index of 0.4,

0.2 and 0.9 for Galectin 3, Myh6/Myh7 and NPPA respectively).
GMP-EV preserve left ventricular volumes in
CCM rats

To confirm the effects of CPC-derived EV and assess them in a

more translational perspective, we repeated the protocol but in a

different animal species and with EV which had been

manufactured according to GMP-compatible procedures (Figure 1B).

Among the 27 initially included rats, 4 died before the end-of-

study time point, thereby leaving 6 sham-operated, 11 placebo- and

12 EV-injected animals available for the final analysis. At this time

point, our DOX infusion protocol fostered LV dysfunction

characterized by a decrease in LVEF (Supplementary

Figure S5A), an impaired systolic elastance (assessed on the

systolic blood pressure/LVESV ratio) without a noticeable

elevation of blood pressure (Supplementary Figures S5B,C) and

a slower LV-depolarization (Supplementary Figure S5D). To

adjust for the variability in the response of rats to chemotherapy,

end-study data are presented as percent changes from those

recorded at day 10, i.e., the end of DOX treatment, and

allocation of rats to GMP-EV of placebo injections was then

made as to ensure their comparability at this time point. While

LVESV volumes were significantly increased in placebo-injected

hearts compared with DOX-untreated sham (p = 0.033), they
Frontiers in Cardiovascular Medicine 05
were preserved by GMP-EV injections (effect size Cohen’s d

index of 0.4) (Figures 4A,B). Likewise, the percentages of

“responder” rats which did not increase their LVEDV volumes

by more than 5% from their post-DOX pre-treatment values

were 58% (7 out of 12) vs. 28% (3 out of 11) in GMP-EV- and

placebo-injected hearts, respectively (effect size Cohen’s d

index of 0.5).
Discussion

So far, none of the drugs commonly used for preventing CCM

have shown unequivocal efficacy. Among potential new treatments,

stem cells have been successfully tested in animal models (6, 18).

The clinical experience is still more limited despite some hints of

efficacy in the recent SENECA trial (7). At the same time, the

increasing recognition that cells act primarily through paracrine

signaling, largely mediated by EV, has led to consider using these

particles instead of their parental cells since, from a translational

perspective, they feature clinically relevant advantages such as

stability under cryo-storage, off-the-shelf availability, lack of

immunogenicity (depending on the parental cell source) and

manufacturing processes more akin to those of pharmaceutics.

In this study, we used a molecular weight cut-off of the

ultrafiltration and tangential flow filtration membranes which

allowed to harvest a blend of cell-released biomolecules extending

beyond the exclusive collection of EV because superior outcomes

have been reported after delivery of almost the full cellular

secretome compared with highly purified exosomal or protein

fractions (19, 20). Thus, although the word EV has been used

throughout the manuscript, the tested product would be better

qualified as an EV-enriched secretome. Of note, in our

experiments, equally positive outcomes were observed with EV-

CPC (of research-grade, for mouse experiments) and GMP-EV

(for rat experiments), thereby providing the reassuring observation

that a process at clinical manufacturing scale and using GMP-

compatible methods does not seem to impair EV bioactivity.

Our choice of collecting this secretome from CPCs was dictated

by the finding that better outcomes have been reported when EV

are secreted by cells which belong to the same lineage as those of

the tissue targeted for repair (21–23) and, furthermore, are at an

early stage of differentiation which endows them with a higher

secretory profile (14, 19, 22). This concept of lineage matching

has also been demonstrated in models of lung fibrosis (24) or

thrombo-embolic stroke (25).

While the nature of the secreting cells is one of the factors of a

successful outcome, another equally important pre-requisite to a

sustained therapeutic effect is likely the repeated administration

of cells or their secreted products (26, 27). This implies the route

of delivery to be noninvasive and user-friendly which highlights

the interest of the intravenous approach. At first glance, such an

approach may look counterintuitive in view of biodistribution

studies which have shown that EV delivered intravenously are

predominantly sequestered in the lungs, spleen and liver, with

few of them reaching the heart (28–30). Nevertheless, several

experimental studies have documented the cardio-protective
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FIGURE 3

EV-CPC treatment improves heart contractility of CCM mice and decrease adverse remodeling. Survival Kaplan Meier curves with Log rank analysis test
performed (A) at 3 weeks after the beginning of DOX treatment and (B) at end-of-study. MRI evaluation of cardiac parameters (C-F): (C) CS measured by
MRI (Mean + /− SEM) at the basal global, (D) basal endocardial and (E) basal epicardial levels (Sham: n= 14; DOX+Placebo: n= 14, DOX+EV-CPC: n= 11);
and (F) GLS (Median +/− IQR) as a percent change from baseline (some mice, two in sham group and one in each EV or placebo group, could not be
included into GLS datasets due to unavailable 2-chamber views in MRI: Sham: n= 14; DOX+Placebo: n= 14, DOX+EV-CPC: n= 11). Relative mRNA
expression in mouse hearts of Gal3 (G; Mean +/− SEM), Myh6/Myh7 (H; Median +/− IQR) and NPPA (I; Median +/− IQR): these data integrated a
supplemental series of Sham and DOX+placebo animals exclusively used for PCR assessment. *p ≤ 0.05; ***p≤ 0.001. CS, circumferential strain (%);
GLS, Global longitudinal strain; Gal 3, galectin 3; Myh6/Myh7 ratio, myosin heavy chain α/myosin heavy chain β; NPPA, Atrial natriuretic peptide.
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FIGURE 4

GMP-EV treatment moderates left ventricular dilatation upon rats doxorubicin exposure. (A) LVESV and (B) LVEDV measured by echocardiography and
expressed as a percent change (Median+/−IQR) from day 10 (post-DOX administration). Sham: n= 6; DOX+Placebo: n= 11, DOX+GMP-EV: n= 12.
*p≤ 0.05; (Kruskal Wallis with Dunn’s correction test). LV-ESV/LV-EDV, left ventricular-systolic/diastolic function.

Desgres et al. 10.3389/fcvm.2023.1206279
effects of intravenously infused EV [reviewed in (27)] and these

data are indirectly endorsed by the positive outcomes of clinical

trials which have tested the intravenous delivery of cells (31, 32)

which share the same biodistribution patterns as their EV

progeny. Of note, the benefits of systemically delivered EV have

also been reported in preclinical models of chronic kidney

disease, lung fibrosis, hepatic ischemia-reperfusion injury and

traumatic brain injury, to name a few, thereby supporting a

general mechanism of organ cross-talk. The link between

remotely trapped EV (or cells) and a beneficial cardiac effect

remains incompletely settled but seems to primarily involve a

systemic regulation of the immune response, particularly through

a shift of the phenotype of endogenous monocytes/macrophages

towards a pro-reparative pattern, as demonstrated in brain (25)

or lung (33) injury models; by travelling through the

bloodstream, these reprogrammed host immune cells would then

act as secondary mediators conveying the EV protective effects to

the target organ (34–36). This “bioreactor hypothesis” (35) is

supported by the direct tracking of labelled vesicles trafficking in

blood from the pulmonary capillary lumen to myocardial tissue

(36). The justification of using the intravenous route is reinforced

by a meta-analysis of the effects of EV in preclinical models of

myocardial infarction which failed to identify the route of
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delivery (intramyocardial or intravenous) as a predictor of a

successful outcome (37). Furthermore, one cannot exclude that

in our experiments cardiac homing may have been facilitated by

using EV derived from CPCs which may partly display the same

repertoire of surface receptors as the target cells (29).

The pathophysiology of anthracycline-induced cardiomyopathy

seems to primarily involve oxidative and DNA damages and

mitochondrial dysfunction (1, 11, 12). That these mechanisms

were, at least partly, handled by EV is supported by (1) an

improved early survival of DOX + EV-CPC mice compared to

placebo controls (which might have been prolonged by additional

EV-CPC injections), (2) a reduced cardiac functional impairment

in animals treated with EV, (3) the better maintenance of ATP

levels upon exposure of doxorubicin-stressed human

cardiomyocytes to EV in vitro (38) and (4) the consistency

between the nature of EV-CPC protein cargo and changes in gene

expression observed in EV-CPC treated hearts (38) which points

to a protective effect of EV-CPC against altered energy

metabolism and cardiomyocyte dysfunction, both of which are

characteristic of anthracycline toxicity. These regulatory changes

are actually in line with the finding that iPSC-derived

cardiomyocytes generated from patients of the SENECA trial and

exposed in vitro to DOX demonstrated an improved viability
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mediated by large mitochondria-enriched EV-CPC (39). Put

together, these changes translated into the ability of EV to

preserve LV function and particularly strain which is a sensitive

predictor of patient outcomes (40, 41). In particular, CS has been

reported as a relevant measurement for long-term follow up (42).
Limitations

Although we adapted our in vivo protocols from previously

published reports (43, 44), we recognize that both the severity of

clinical conditions and the variability in inter-individual animal

responses inherent in this model limited sample sizes and made

challenging to find a trade-off between an acceptable mortality

(whose the higher incidence in mice might have been

exacerbated by their male sex while rats were females) (45, 46)

and the development of a left ventricular dysfunction leaving

some room for demonstration of a therapeutic effect. For this

reason, common p-value-based statistical methods were

complemented by the assessment of effect sizes. It could also be

argued that the DOX doses administered were low compared

with the human ones (36 mg/m2 for human homothetic doses)

(47). The reason is that the IP route in rodents results in a

bolus-type of delivery which differs from the slow intravenous

infusions practiced in the clinics, which likely accounted for the

rapid clinical deterioration of mice and the presence of large

ascites in rats, thereby precluding a longer-term follow-up. We

cannot either exclude that the expected therapeutic effect of EV

was weakened by their clearance by the murine immune system

given the xenogenic setting of our protocol (48).
Conclusions

Despite these limitations, the study provides a proof of principle

that repeated IV administrations of EV can be effective to improve

DOX-induced cardiomyopathy at its earliest stages of development.

In the future, this therapeutic benefit might be further optimized

by improving EV cardiac targeting by surface changes engineered

to express ligands specific for inflamed myocardium (49). Finally,

it is important to stress that in the perspective of an upcoming

phase 1 clinical trial, we have been able to duplicate, in a rat

model of CCM, the benefits of EV-CPC following their

preparation compatible with GMP standards. Taking together,

these results justify further exploring this path as a means of

preventing and/or reversing energetic stress and cardiac remodeling

induced by anthracyclines before overt cardiac dysfunction. This

strategy would have the additional advantage of avoiding cessation

or dose limitation of anti-cancer treatments which may jeopardize

their effectiveness against the causative disease.
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