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Cardiac remodeling is a basic pathological process that enables the progression of
multiple cardiac diseases to heart failure. Fibroblast growth factor 21 is considered
a regulator in maintaining energy homeostasis and shows a positive role in
preventing damage caused by cardiac diseases. This review mainly summarizes
the effects and related mechanisms of fibroblast growth factor 21 on
pathological processes associated with cardiac remodeling, based on a variety
of cells of myocardial tissue. The possibility of Fibroblast growth factor 21 as a
promising treatment for the cardiac remodeling process will also be discussed.
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Introduction

Cardiac remodeling refers to a series of changes in the heart that lead to increased

ventricular dilation, cardiac dysfunction, and molecular changes which can be caused by a

diminished variety of factors (1), such as myocardial infarction (MI), hypertension,

obesity, and valvular heart diseases (2). Numerous kinds of cells, including endothelial

cells, immune cells, and fibroblasts, are involved in the remodeling process, which aims to

cope with risk factors, reduce myocardial damage and initiate repair processes to fill the

damaged area (3). However, cardiac remodeling can also lead to diminishing cardiac

contractility and a restricted supply of energy substrates and oxygen, resulting in elevated

levels of cardiac fibrosis and hypertrophy (4, 5). Although cardiac remodeling is initially

considered an adaptation to restore cardiac function after damage. The unlimited

pathological change results in cardiomyocyte disarrangement and dysfunction (6),

eventually leading to heart failure (HF), the outcome of cardiac adverse events (7).

Accordingly, the use of interventions in the early stages to preserve the structure

and cardiac function is necessary to delay the progression and improve patients’ quality

of life (8).

One potential intervention for cardiac remodeling is the use of fibroblast growth factor

21 (FGF21). FGF21 is initially identified in the liver and subsequently is also found to be

expressed in brown adipose tissue, skeletal muscle, and pancreas, where it shows its

effects mainly through a paracrine manner (9). While the heart is traditionally viewed as

an effector organ of FGF21, studies have also shown that it can produce FGF21 in

response to damage. By binding to the receptor fibroblast growth factor receptor (FGFR)1

and cofactors β-klotho, FGF21 activated the downstream genes to play a crucial role in

cardioprotection (10). However, a recent study has pointed out that FGF21-FGFR4

signaling promoted cardiac hypertrophy (11).

After damage occurs, cardiomyocytes secrete FGF21 in an autocrine manner and

reduced myocardial injury (12). Besides, FGF21 originating from other tissues has been

shown to contribute to the limitation of cardiac damage and the reversal of cardiac
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remodeling. Following MI, the liver played a significant role as a

major source of circulating FGF21 levels (13). Additionally,

FGF21 derived from brown adipose tissue was found to attenuate

adverse cardiac remodeling in mice with hypertension (14).

Studies have shown that FGF21 resists cardiac remodeling and

the following damage through ways such as promoting

autophagy, alleviating inflammation, oxidative stress, and

regulating energy metabolism (12, 15–17).

FGF21 has been shown to play a protective role in various

cardiovascular diseases including MI, atherosclerosis, and diabetic

cardiomyopathy in different studies (18–20), and FGF21

knockout mice tend to present pathological phenotypes (21).

Moreover, FGF21 levels predict the prognosis of many heart

diseases such as hypertension, dilated cardiomyopathy, and MI

(22–24).

Recent studies report that FGF21 is involved in the prevention

of cardiac damage. The review examines the mechanisms of FGF21

against cardiac remodeling, providing potential survival benefits

through a range of pathways including autophagy, metabolic

stability, oxidation, inflammation, and fibrosis. The mechanism

by which FGF21 exerts protective effects on the heart are listed

in Figure 1. Additionally, this review discusses the potential

implications for clinical research on FGF21-related drugs.
FIGURE 1

The molecular mechanism and effect of FGF21 in protecting against cardiac re
cardiac remodeling. FGF21 inhibited PI3K/Akt/mTOR pathway and upgrade
CAMKK2-eNOS to elevate the vasomotor capacity and alleviate oxidative str
antioxidant proteins and transcription factors associated with oxidative stre
under the action of FGF21, is inhibited by SIRT1, ERK1/2. FGF21 attenuates
the secretion of large amounts of collagen by fibroblasts which may cause co
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FGF21 in autophagy

Cellular autophagy is a process that makes cellular energy reuse

by degrading autophagic vesicles containing cytoplasmic material.

It is a positive implication for cardiomyocytes in resisting stress

(25, 26). Recycling misfolded proteins back as energy substrates

reduces the demand of cells for external nutrients, removing

mitochondria residuals, toxic metabolic substrates, and reactive

oxygen species (ROS) in mitochondrial dysfunction (27).

The activation of autophagy helps to maintain cardiac

homeostasis and prevent myocardium hypertrophy. The energy

provided by autophagy supports cell survival, helping to

maintain the number of cardiomyocytes and preserve cardiac

function after stress (28). A study has reported that after MI,

autophagy limited cardiac damage by reducing the scar size and

holding cardiac function (29). The inhibition of autophagy would

lead to pronounced signs of cellular hypertrophy in the

myocardium (28). Angiogenesis is beneficial for improving

postinfarction collateral perfusion, reducing infarct size, and

attenuating the negative effect on contractility of the infarcted

area, and autophagy plays a role in initiating angiogenesis (30).

Both mTORC1 and Beclin1 are autophagy-associated

molecules, playing key roles in cardiac plasticity (31). As a
modeling. FGF21 regulates multiple signaling pathways to protect against
d the miR-145 level to enhance the autophagy level. FGF21 promotes
ess injury. via activation of FOXO1 and PGC1 α, SIRT1 results in multiple
ss levels. NF-kB, as a key transcription factor related to inflammation,
this adverse alteration. Reducing TGF-β/Smad signaling also helps avoid
llagen deposition and fibrosis.
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serine/threonine kinase, mTORC1 acts to inhibit autophagy

activity at various levels. By inhibiting the transport of nuclear

transcription factor EB(TFEB), mTORC1 reduced the

transcription of autophagy related (Atg) genes (32). The

phosphorylation of DCP2 induced by mTORC1 made specific

Atg mRNA degradation (33). The autophagosome formation

discontinued after the phosphorylation of unc-51-like autophagy

activating kinase 1 (Ulk1) at Ser757 (34). Beclin1 is another well-

known protein in autophagy initiating, regarded as a marker of

autophagy activity. By protein interaction, Beclin1 was one of the

vital components of the Class III phosphatidylinositol 3-kinase

(PI3K)-III complex, which acted as a platform to recruit multiple

proteins to form mature autophagosomes (35).

FGF21 in cellular autophagy can be beneficial for attenuating

cardiomyocyte damage after stress. As a peroxisome-proliferator-

activated receptor agonist, the protective effect of Fenofibrate in

the diabetes-induced cardiac remodeling was depended on

FGF21- Sirtuin-1 (SIRT1) activated autophagy (17). The lack of

FGF21 led to the impairment of autophagy and accumulation

of fatty acid, making high-fat-diet mice cardiomyocytes

hypertrophy (36).

FGF21 regulated autophagy through different pathways. By

increasing TFEB transcriptional activity, FGF21 administration

enhanced the autophagy effect and relieved the ischemia-

reperfusion (I/R) injury in vascular endothelial cells (37). FGF21

protected against I/R injury, enhancing cell autophagy and

reducing inflammation through regulating miR-145, with the

upregulation of lc3b (lc3b I/II) and Beclin1 (38). Through KEGG

pathway analysis, the PI3K-Akt-mTOR pathway was thought to

be associated with FGF21. FGF21 promoted autophagy by

inhibiting PI3K-Akt-mTOR transduction (39). Another study

proved that FGF21 inhibited atherogenesis by up-regulating

autophagy, enabling cholesterol efflux and reducing lipid

accumulation in foam cells, this effect was related to the

activated rack-1 pathway (18).
FGF21 in energy metabolism

The alteration in energy supply is closely associated with

pathological cardiac hypertrophy. They can even precede the

appearance of a detectable cardiac hypertrophic result. The shift of

substrate metabolism was viewed as an important feature of

cardiac hypertrophy (40). Physiologically, cardiac energy was

supplied by fatty acids, and approximately 70% ATP was provided

by lipid substrates (41). However, cardiac tissue still preserved the

ability to use various types of energy substrates including ketone

bodies under different conditions, which was known as metabolic

flexibility (42). Since deviating in metabolic pathways

simultaneously led to cardiac hypofunction and maladaptive

hypertrophy, the inhibition of related pathways might restore

regular metabolic capacity while attenuating cardiac remodeling.

Cardiac diseases can exhibit diverse metabolic preference

profiles. Heart failure relied on glycolysis and lactate for energy,

whereas diabetes-induced cardiomyopathy was typically

characterized by a dominance of lipid metabolism (43–45). For
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late-stage patients, the instability of the energy supply directly

affected contractile function, and the limited metabolic pathways

further interfered with ATP generation, ultimately causing HF

(40, 46). Based on a proteomic study, FGF21 was found to

restore the levels of pyruvate kinase isozymes M1/M2, which

improved the energy supply after I/R injury (47).

FGF21 acted on upstream signals to regulate AMPK(Adenosine

5′-monophosphate -activated protein kinase)/SIRT1/PGC

(peroxisome proliferators-activated receptor γ coactivator)-1α

pathways. AMPK/SIRT1/PGC-1a was considered a target pathway

involved in the regulation of metabolic stability, with its effects

including the coordination of ATP levels, modulation of

mitochondria function, and lipid metabolism (48–51). CD36 was a

fatty acid translocase that can activate the AMPK pathway to

accelerate lipid metabolism under fatty acid mediation (52). In

FGF21 knockout mice’s hearts, there was severe lipid accumulation

and CD36 levels upregulation, accompanied by a decrease in

phosphorylation levels of AMPK protein and PGC-1α expression,

showing that CD36 cannot activate AMPK/SIRT1/PGC-1α

pathway without FGF21 presence and thus led to metabolic

dysregulation (16, 53). LKB1 was essential for AMPK activation.

The inhibition of LKB1 weakened FGF21 promoting effect of

mitochondrial function, demonstrating that the benefits of FGF21

promoting mitochondrial synthesis and mitochondrial oxidative

capacity required the AMPK/SIRT1/PGC-1α pathways (54).

A study using angiopoietin 2-induced cardiac hypertrophy

mice noted that FGF21 treatment increased SIRT1

deacetylation activity, promoted AMPK phosphorylation, and

reduced cardiac hypertrophy in a SIRT1-dependent pathway

(55). In brown adipose tissue, upon adenosine binding to the

surface receptor A2AR, released FGF21 can be upregulated by

phosphorylating AMPK and PGC-1 α against cardiac

hypertrophy (14). In MI model mice with the activated AMPK/

SIRT1/PGC-1α pathway, circulating FGF21 levels were greatly

higher even at the early onset and lasted up to a week (56).

The ability of the FGF21-AMPK pathway to rapidly respond to

early ischemic injury suggested that it may serve as a key to

reducing MI injury.
FGF21 in oxidation

ROS-mediated oxidative stress injury contributed to the

progression of cardiac remodeling and HF. The balance between

various oxidant and antioxidant enzymes, including catalases,

glutathione peroxidases, xanthine oxidases, and NADPH oxidase

(NOX), generally maintains ROS levels at low levels. In situations

of overloading or insufficient blood supply, mitochondrial

dysfunction made hearts generate insufficient ATP, increased

oxidative stress (57), overproduction of hydrogen peroxide, which

ultimately led to cardiomyocyte necrosis, left ventricular

dysfunction, and eventually HF (58). The experiment proved that

cardiomyocyte apoptosis induced by oxidative stress was one of

the reasons for myocardial decompensation (59).

ROS promoted the imbalanced growth of cardiomyocytes

through multiple pathways, ultimately causing cardiac
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hypertrophy and remodeling (60). By directly activating the

transcription factor NF-kB, ROS induced the transcription of

more pro-hypertrophic genes (61). NADPH oxidase was a major

source of superoxide in the cardiovascular system (62). The

reaction between excessive superoxide anion and Nitric Oxide

(NO) formed the peroxynitrite (ONOO-), decreasing NO

bioavailability, causing vasoconstriction, and leading to the early

formation of atherosclerotic plaques (63). Animal studies have

shown a positive relationship between increased levels of

oxidative stress and disease progression in multiple animal

models of HF (64–66). Similarly, FGF21 levels were also

specifically elevated in patients with poor prognosis HF (67), a

coincidence that has led to thoughts about a possible relationship

between FGF21 and the effects of oxidative stress.

In cardiomyocytes, FGF21 production was regulated by ROS level

in an autocrine manner. High levels of ROS, which were stimulated

by calcium ions released from endoplasmic reticulum, triggered a

signal transduction pathway known as the unfolding protein

response (UPR) which activated several transmembrane sensors,

ultimately resulting in elevated FGF21 expression levels (68).

FGF21 treatment improved resistance to oxidative stress by

elevating the expression levels of oxidative enzymes such as

superoxide dismutase (SOD) and glutathione (69). It also

activates nitric oxide synthase (eNOS) to increase NO production

and reduce oxidation, guaranteeing the normal contractile

function of blood vessels and reducing the adverse effects of

peroxides on cells (70).

Studies have shown that FGF21 induced the expression of

antioxidant genes. Through the Sirt1-FOXO1 pathway, FGF21

enhanced catalases, SOD2 levels, and the pro-apoptotic protein BIM

lessened (55). In the absence of FGF21, SIRT1 effects that induced

the levels of uncoupling protein (UCP)3, peroxiredoxin5, glutathione

peroxidase1, catalase, and sequestosome1 were abolished (71).

Another study illustrated that recombinant FGF21 activated

CaMKK2/AMPKα signaling, enhancing eNOS phosphorylation

and reducing oxidative stress responses to ameliorate diabetes-

induced aortic endothelial disorders (72).

Via AMPK/PGC1α/SIRT1 signaling, FGF21 led to a rise of

nuclear factor erythroid 2–related factor 2 (Nrf2) and downstream

antioxidative enzymes activity such as NOX4, UCP2 (73).

For atrial remodeling induced by oxidative stress, FGF21

functioned by regulating the degradation of myofibrils and levels

of calpain, a calcium-dependent protease, which helped to

maintain cardiac function, improved arrhythmia symptoms, and

preserved electrophysiological function (74).
FGF21 in inflammation

The main reason for acute inflammatory responses is

cardiomyocyte necrosis in response to various adverse factors.

After damage happened, innate immune cells localized in the

heart were activated, recognizing endogenous damage-associated

molecular patterns, clearing necrotic cells, and releasing

proinflammatory factors. Circulating immune cells were then
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recruited, further infiltrating the damaged area (75). This early

inflammatory response was necessary to initiate the repair

process, protecting the heart from further damage. However, an

uncontrolled chronic inflammatory response can further

aggravate cardiac adaption (76).

Chronic inflammation was one of the most important stages in

the progression process of cardiac remodeling. Patients with HF

have shown significantly elevated levels of proinflammatory cells

and chemokines. Inhibition a series of pro-inflammatory

chemokines including IL-1 and TNF-α was beneficial for

attenuating adverse cardiac remodeling, maintaining cardiac

function, and reducing fibrotic area (77, 78).

Proinflammatory cell activation potentiated inflammatory

responses through different pathways, and their phenotypic

heterogeneity dictated that they played distinct roles in cardiac

inflammation.

Despite comprising only 6%–8% of noncardiomyocytes in

normal cardiac tissue, cardiac macrophages massively migrated

and proliferated in the remote area during the chronic healing

process of MI to mediate the onset of distant myocardial

remodeling, and high levels of blood-derived macrophages had a

strong link to heart failure with reduced ejection fraction

(HFrEF), whereas heart confined macrophages might be more

involved in post-MI repair (79).

Plasma FGF21 levels were significantly elevated in patients with

HFrEF, regardless of the presence of cardiac cachexia. This

elevation was independently associated with the inflammatory

marker IL-6, suggesting that the inflammatory response was a

contributing factor to elevated FGF21 levels (80).

Among peripheral blood leukocytes, FGF21 was highly

expressed in monocytes and neutrophils (81). By increasing the

expression of GLUT-1, FGF21 upregulated the ability to uptake

glucose in activated monocytes, which can be beneficial in

immune activation (82). FGF21 played a crucial role in aiding in

clearing damaged cell remnants in phagosomes, resulting from

the upregulation of NOX2 transcription and expression (81).

In addition to reducing infiltration of circulating immune cells,

FGF21 shifted innate macrophages towards the anti-inflammatory

M2 subtype rather than pro-inflammatory (83). FGF21 negatively

regulated the early formation of atherosclerotic plaques by preventing

the transformation of macrophages into foam cells and reducing

macrophagemigration by inhibiting the NF-kB signaling pathway (84).

CD4 + Th17 cells were thought to be directly involved in the

progression of adverse remodeling from hypertrophy to HF in

the situation of pressure overload (85). FGF21 regulated STAT3/

RORγ phosphorylation and pro-T-cell expansion IL-23 levels,

reducing splenic Th17 cell differentiation and proliferation, and

ultimately downregulating the levels of pro-inflammatory factor

IL-17, thereby alleviating arthritis in mice (86). This suggests that

FGF21 can induce inflammation by downregulating T cells

through the regulation of the Th17-IL-17 axis.

Multiple studies have demonstrated hemagglutination

propensity, platelet activation, and levels of associated adhesion

molecules all increase in HF patients (87). After activation and

adhesion to the capillary wall, platelets secreted a variety of pro-
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inflammatory factors, promoted macrophage infiltration, and

regulated precursor cell to foam cell transformation, ultimately

leading to small vessel endothelial thickening and sclerotic

plaque formation of large vessels. Agglutination of platelets

following an acute cardiac event further enhanced microvascular

obstruction and potentiated the inflammatory response (88).

To reduce reperfusion injury after MI, antiplatelet and

antithrombotic drugs are routinely used in the clinic (89). FGF21

reduced factor VII expression which was a hallmark of the

extrinsic coagulation pathway. Variations in the fluorescence

intensity levels of platelet surface markers proved that FGF21

inhibited platelet activation, reducing hemagglutination. By

regulating the ERK1/2 and TGF(Transforming Growth Factor)-

β/Smad2 pathway, FGF21 promoted the expression of tPA and

suppressed the expression of PAI, so that fibrinolysis was

activated without bleeding risk (90).

FGF21 presented anti-inflammatory properties by modulating

the balance between pro-inflammation and anti-inflammation

factors. The administration of FGF21 led to a downregulation of

several pro-inflammatory factors and increased the expression of

anti-inflammatory cytokines over a long period (83). Another in

vitro experiment pointed out that this kind of action of FGF21

was related to IL-10 in the ERK1/2 pathway (15). Additionally,

FGF21 alleviated inflammation in vascular endothelial cells

through SIRT1-mediated NF-kB deacetylation (91). Figure 2

summarizes the roles of FGF21 in different cells of myocardial

tissue.
FIGURE 2

The cellular mechanisms by which FGF21 confers cardioprotection in cardiac t
and improves oxidative stress damage. FGF21 can mediate macrophage pola
alleviate inflammatory responses. FGF21 upregulates phagocytosis to elimi
deposition of the extracellular matrix and ameliorates cardiac fibrosis by F
activation. Blue arrow, upregulation; red arrow, downregulation. ECM, extrace
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FGF21 in cardiac fibrosis

Fibrosis is considered as a crucial process in heart remodeling.

After encountering pressure, fibroblasts secreted a large number of

collagen fibers to the interstitium, and this excessive fiber

deposition triggered the disarrangement of cardiomyocytes (92).

The hypertension phenotype presented an increased wall/lumen

ratio in resistance arteries, which was related to the activation and

decomposition of collagens and other extracellular matrix

components (ECM) components (93). After MI, fibroblast

activation resulted in the deposition of collagen to form a scar,

which helped to ensure the intactness of residual myocardial tissue

and avoided serious consequences such as cardiac rupture (4, 94).

During the post-infarction repair period, the distal area of the

myocardium without infarction had massive fibrin deposition,

leading to interstitial remodeling, reducing cardiac compliance, and

promoting ventricular diastolic dysfunction development (95).

By using an efficient carrier, FGF21 administration attenuated

cardiac fibrosis, resulting in decreased mRNA levels of cardiac

hypertrophy and fibrosis markers in diabetic cardiomyopathy

mice (96). FGF21 released from brown adipose tissue ameliorated

cardiac fibrosis and hypertension-induced myocardial remodeling

(14). In vitro experiments showed that FGF21 significantly

decreased myofibroblast markers α-SMA and ACTA2 mRNA

levels, suggesting that FGF21 was related to attenuating cardiac

fibrosis (14, 97). The administration of the homolog of FGF21,

LY2405319 in mice with liver fibrosis, reduced the levels of type
issue. FGF21 modulates cardiomyocyte energy metabolism and autophagy
rization to the anti-inflammatory subtype and regulate cytokine levels to
nate damaged remnants. The inhibition of fibroblast reduces collagen
GF21. FGF21 also downregulates hemagglutination by reducing platelet
llular matrix.
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1 collagen and α-SMA in tissue, resulting from inhibiting the

succinate- G-protein coupled receptor 91 pathway (98).

TGFβ is one of the key factors leading to cardiac remodeling,

accelerating fibroblast proliferation, and inducing accumulation

of ECM components, which led to impaired cardiac function

(99). FGF21 treatment attenuated the fibrotic phenotype by

upregulating the transcription factor EGR1 (100). FGF21 also

decreased collagen synthesis in MI mice through TGF-β1/Smad2/

3-MMP (metalloproteinase)2/9 signaling (101). FGF21

downregulated MMP9 levels through NF-kB [Z.-C (102)].

Through the FGFR1/Syk/NLRP3 inflammasome pathway, FGF21

restrained the proliferation and migration of vascular smooth

muscle cells and neointimal hyperplasia, marked by increasing in

PCNA, cyclin D1 and MMP9 (103).

Galectin(Gal)-3 is mainly secreted by macrophages in the

heart, released into the cytoplasmic matrix in association with

collagen receptor action. It can promote macrophage migration,

cardiac fibroblast proliferation, and collagen deposition in the

matrix, leading to reduced ejection fraction (104). FGF21

regulated Gal-3 levels in H9c2 cells in a dose-dependent manner

and ECM-related proteins (fibronectin, collagen I) levels were

also decreased under FGF21 treatment (105). This suggested that

FGF21 may play a protective role in the heart by reducing the

level of cardiac fibrosis through downregulating Gal-3 levels.

However, due to the inadequacy of the available evidence, more

studies are still needed to further determine the relationship

between FGF21 and Gal-3.
Clinical application and prospects

FGF21, as a metabolically associated protective factor, has been

shown to have potential clinical applications in various diseases.

Elevated serum levels of FGF21 have been observed in response

to stress stimuli and have been associated with a higher risk of

morbidity and poor prognosis in multiple diseases. One analysis

indicated that FGF21 levels were useful in predicting the severity

and prognostic risk in patients with community-acquired

pneumonia (106). Clinical studies have also shown that FGF21 is

useful in predicting HF (107–110). Serum FGF21 levels were

higher under acute insufficient sleep conditions when adipose

tissue FGF21 promoter region was methylated (111).

Due to the short half-life and susceptibility to plasma proteases,

FGF21 was difficult to use in clinical practice. Therefore, diverse

chemical modifications have been used to increase its stability

and applicability (112). Current clinical studies targeting FGF21

mainly focus on its ameliorative effects on metabolic diseases.

The use of fibroblast activation protein inhibitors, BR103354,

successfully elevates FGF21 levels in cynomolgus monkeys (113).

Treatment of nonalcoholic fatty liver disease using bms-986036, a

PEGylated FGF21 analog, resulting in a considerable decrease in

liver fat and fibrosis in patients after 16 weeks of treatment, with

very limited adverse effects (114).

Preclinical pharmacological studies have extensively validated

the protective effects of FGF21 in damaged hearts. AMPK-FGF21

helped regulate the survival of cardiomyocytes under ischemic
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conditions after MI (56). FGF21 ameliorated atrial fibrillation

and tachycardia by reducing excessive fibrosis (74). FGF21 has

been shown to improve post-infarction arrhythmias and

preserve electrophysiological function through mediating

cardiac sodium current and inward rectifier potassium current

(115). By improving FGFR1 phosphorylation, long-term FGF21

administration helped to alleviate high-fat-diet-induced left

heart dysfunction and restored FGF21 sensitivity (116). In

alcoholic cardiomyopathy, FGF21 improved adverse effects

related to dysfunctional mitochondria by mediating autophagic

pathways (117). However, a recent study reported that

FGF21-FGFR4 signaling upregulated the activity of ERK1/2,

enhancing diabetes mouse concentric cardiac hypertrophy and

adverse cardiac remodeling (11). The FGF21 analog shows

promise as a candidate for the diagnosis and therapy of cardiac

diseases, but further investigation is needed to support its use

in the future.
Conclusion

The review mainly expounds on the possibility that FGF21, as a

promising cardioprotective factor, improves cardiac function and

ultimately retarding the progress of cardiac diseases. The actions

of FGF21 for the heart are extensive. On the one hand, FGF21

has a regulatory effect targeted to different populations of cardiac

tissue, including cardiomyocytes, immune cells, and fibroblasts.

On the other hand, by acting on AMPK/SIRT1/PGC-1α, PI3K-

Akt, ERK1/2, and TGF-β/Smad2 to mediate vital mechanisms,

including autophagy, energy metabolism, oxidative stress,

inflammation, and fibrosis, it is verified that FGF21 acts as a

possible cardiac protective molecule. Therefore, the next steps in

the development of relevant studies on targeted therapy of

FGF21 in cardiac remodeling will be promising directions.
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