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Sepsis-Induced myocardial
dysfunction: heterogeneity of
functional effects and clinical
significance
Tatyana Shvilkina* and Nathan Shapiro

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

Sepsis is a life-threatening disease state characterized by organ dysfunction and a
dysregulated response to infection. The heart is one of the many organs affected
by sepsis, in an entity termed sepsis-induced cardiomyopathy. This was initially
used to describe a reversible depression in ejection fraction with ventricular
dilation but advances in echocardiography and introduction of new techniques
such as speckle tracking have led to descriptions of other common abnormalities
in cardiac function associated with sepsis. This includes not only depression of
systolic function, but also supranormal ejection fraction, diastolic dysfunction, and
right ventricular dysfunction. These reports have led to inconsistent definitions of
sepsis-induced cardiomyopathy. Just as there is heterogeneity among patients
with sepsis, there is heterogeneity in the cardiac response; thus resuscitating
these patients with a single approach is likely suboptimal. Many factors affect the
heart in sepsis including inflammatory mediators, catecholamine responsiveness,
and pathogen related toxins. This review will discuss different functional effects
characterized by echocardiographic changes in sepsis and their prognostic and
management implications.
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1. Introduction

Sepsis is a life-threatening disease state characterized by organ dysfunction and a

dysregulated response during infection, with a mortality rate of approximately 27%

worldwide (1). The heart is one of many organs affected in sepsis, in an entity called sepsis-

induced cardiomyopathy, or sepsis-induced myocardial dysfunction, which occurs in

10%–70% of patients with sepsis (2). This range in incidence is wide likely due to differing

definitions and echocardiographic techniques used to assess function, timing of

echocardiography assessment during the clinical course, and the potential dynamic nature of

cardiac functional changes. Fluid resuscitation, inotrope and vasopressor therapy, and

mechanical ventilation can alter venous return, cardiac contractility, pulmonary vascular

resistance, and left ventricular afterload, which affect traditionally measured

echocardiographic parameters. In the 1980s Parker and colleagues demonstrated reversible

depression in left ventricular ejection fraction (LVEF) and ventricular dilation in a subset of

patients with sepsis (3). These characteristics are used most frequently to describe sepsis-

induced myocardial dysfunction (3, 4). Subsequently, with advances in echocardiography,

this term has expanded and other cardiac abnormalities are described and included such as

diastolic dysfunction, right ventricular (RV) failure, and supranormal LVEF (Figure 1).

Although no formal definition exists, sepsis-induced myocardial dysfunction is generally
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FIGURE 1

Visual representation and pathophysiology of echocardiographic findings in sepsis. EF, ejection fraction; CO, cardiac output; RV, right ventricle; LV, left
ventricle; LVESV, left ventricular end-systolic volume; SVR, systemic vascular resistance; LVOT, left ventricular outflow tract; LVEDV, left ventricular end-
diastolic volume; RVESV, right ventricular end-systolic volume.
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characterized as an acute process that is not caused by acute coronary

syndrome and is typically reversible in seven to ten days which

manifests as biventricular systolic and/or diastolic dysfunction with

left ventricular dilation that is poorly responsive to fluid and

catecholamines (5).

There are many events that occur during sepsis affecting

cardiac performance and with advances in echocardiography we

see considerable heterogeneity in this group. There is potential

benefit to a more individualized approach to the hemodynamic

resuscitation of this diverse patient group. In addition to

reviewing echocardiographic features observed in patients with

sepsis, this review will discuss their implications for treatment

and prognostication as well as possible mechanisms for the

various cardiac responses. Patient and disease specific factors
Frontiers in Cardiovascular Medicine 02
may result in the differences seen in the cardiac responses to

sepsis, and an understanding of these should help drive a more

individualized approach to care.
2. Echocardiographic features in
patients with sepsis

2.1. Depressed left ventricular systolic
function

While the typical clinical picture of the heart in sepsis is a

hyperdynamic state with elevated cardiac output (CO), since the

1950s it was recognized that a low CO syndrome exists in some
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patients (6, 7). Studies have outlined numerous mechanisms to

explain the reduction of CO and LV systolic function:

inflammatory factors (e.g., Toll-like receptors and interleukins),

mitochondrial damage, abnormal calcium handling,

catecholamine desensitization, and aberration of coronary

microvascular blood flow due to endothelium abnormalities,

neutrophil aggregation, and procoagulant factors (8–17).

In the 1980’s Parker and colleagues published findings

introducing the concept of LV dilation and LVEF depression in a

subset of patients with sepsis that reversed to normal within two

weeks as patients recovered (3, 4). In those studies, patients with

ventricular dilation and lower LVEF had lower mortality

compared to patients who did not have these features. This

finding was also observed in animal studies (18). The theory

behind this finding is that CO is maintained in the setting of low

EF by dilation of the ventricles to maintain stroke volume (SV),

provided that volume resuscitation is sufficient (3). Other authors

also observed reduced LV end-diastolic volume (LVEDV) in

non-survivors despite adequate fluid loading; however, these

authors did not observe LV dilation comparable to the Parker

studies in survivors (19). The concept of ventricular dilation was

subsequently challenged, as the restrictive nature of the

pericardium should limit significant ventricular dilation (20).

Subsequent studies failed to reproduce these findings (19, 20).

This discrepancy may be due to differences in techniques used to

measure LVEF and CO, however it remains unclear whether a

lower LVEF is cardioprotective or represents a deleterious state

(19, 20).

Most recent studies use echocardiography to evaluate LV

systolic function, using <40%–50% as a definition for decreased

LVEF. Studies have yielded mixed results with respect to

outcomes. Some studies found that decreased LVEF was

associated with increased mortality (21), others reported

improved survival (19), and others found no difference in

survival based on LVEF (22–24). A 2013 meta-analysis showed

no difference in survival based on presence of low LVEF or LV

dilation (25).

A challenge with using LVEF is its dependence on preload and

afterload conditions. A patient with significant contractile

dysfunction can appear to have a normal LVEF in a setting of

hypovolemia or low mean arterial pressure, as is often the case

in sepsis. LVEF can change rapidly and significantly depending

on arterial pressure and volume status, without reflecting the

change in true contractility of the myocardium (26). Thus, it is

not surprising that studies based on LVEF have shown such

variability in prognostication.

The more recently developed speckle-tracking

echocardiography (SPE) is less dependent on loading conditions

and is potentially more reflective of intrinsic myocardial function

(27). SPE shows myocardium movement by tracking ultrasound

echoes in the myocardium throughout the cardiac cycle. Strain is

the difference between the length at rest and the final length, and

represents contractility (28). There are differences in global

longitudinal strain (GLS) values depending on the vendor and

software so at this time there is no uniform consensus, but

normal is around −20% per the American Society of
Frontiers in Cardiovascular Medicine 03
Echocardiography, with less negative numbers indicating

decreased contractility (29). Studies on GLS as a predictor of

outcome have shown more uniform results than LVEF, with a

recent meta-analysis showing that lower strain (less negative

values) i.e., lower contractility, is associated with higher mortality

(28, 30). In this same study LVEF was not associated with

mortality differences. GLS is more sensitive than LVEF, and

declining cardiac contractility by GLS is observed before LVEF or

decreased CO is apparent (28). With earlier identification of

dysfunction, even at a subclinical level, the question remains of

how to interpret and integrate this into management

decisions, and further research is needed on the significance of

these findings.

There is little evidence to guide management of patients with

depressed systolic function. It is an unresolved question whether

the dysfunction is deleterious or protective, and accordingly how

aggressively clinicians should intervene to improve systolic

function in the acute setting, as opposed to treating the

underlying sepsis and allowing function to recover over time. In

patients with sepsis-induced myocardial dysfunction and ongoing

hypoperfusion after adequate volume resuscitation the Surviving

Sepsis Campaign guidelines suggest inotropic therapy, with either

addition of dobutamine to norepinephrine, or epinephrine alone,

based on low quality of evidence (31). Dobutamine therapy is

associated with improved cardiac function parameters (32), but

numerous studies including network meta-analyses show varying

results with respect to mortality benefit (32–37). Use of

dobutamine to achieve supranormal cardiac index has shown

harm (38). Prior studies were performed in a heterogeneous

septic shock population, without classification or selection by

echocardiography, so it is possible there is a subgroup of patients

with decreased cardiac contractility that would benefit from

inotropic medications. There is an ongoing trial of dobutamine

for treatment of patients with septic shock and septic

cardiomyopathy with reduced LVEF which may provide clarity

(NCT04166331).
2.2. Hyperdynamic left ventricular systolic
function

The hyperdynamic heart with low systemic vascular resistance

is considered the typical cardiac response to sepsis. Hyperdynamic

cardiac function can be a compensation for vasoplegia or

insufficient intravascular volume, but can also be seen in a

hyperadrenergic state from excess endogenous or exogenous

catecholamine stimulation.

Investigations of hyperdynamic LV function show increased

mortality (20, 39, 40). When comparing groups with low,

normal, and supranormal LVEF, Chotalia and colleagues found

in a study of just over one thousand patients that those with

supranormal (greater than 70%) LVEF had worse outcomes

compared to those with normal or even low LVEF (39). In this

study a supranormal EF was associated with lower SVR so it is

possible this finding represented a group with persistent

vasoplegia which was potentially the driver of mortality. These
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patients also had higher heart rates, so the hyperdynamic state may

have resulted from excessive catecholamine release. It is a plausible

hypothesis that this subset of hyperdynamic patients was the

reason that those with lower EF seemed to fare better in

comparison in earlier studies.

While tachycardia does not necessarily indicate a

hyperdynamic LVEF, there is an association seen (39). Beta-

blockers have been studied to reduce heart rate and increase

filling time to improve SV in patients with inappropriate

tachycardia. In a meta-analysis of 7 studies including 613

patients, the use of short-acting beta-blockers esmolol or

landiolol in septic patients with tachycardia after resuscitation

resulted in a decreased mortality (41). While these studies do not

specifically investigate patients with hyperdynamic LVEF, beta

blockers may represent a potential therapy for hyperdynamic

LVEF but further research is warranted. There is concern that

beta blockade can suppress compensatory tachycardia in the

setting of low preload, causing a drop in CO and worsening

hemodynamics. A potential approach to optimize risks and

benefits is to identify which patients are persistently tachycardic

due to hyperadrenergic states vs. due to inadequate preload, and

administer targeted beta-blocker therapy only to the

hyperadrenergic population. One such suggested method is using

strain echocardiography, as patients with tachycardia in the

setting of high preload were observed to have worse LV strain

values, which identifies a subpopulation with tachycardia due to

hyperadrenergic state (42).

A specific finding in some patients with hyperdynamic cardiac

function is dynamic left ventricular outflow tract obstruction

(LVOTO), where blood rapidly flowing through an underfilled

ventricle causes anterior motion of the mitral valve and

obstruction of flow through the outflow tract, similar to the

obstruction seen in hypertrophic obstructive cardiomyopathy

(Figure 1). LVOTO is observed in 22%–30% of septic shock

patients and can occur due to high catecholamine states,

inotrope administration, and hypovolemia, and typically indicates

fluid responsiveness; studies show an association between

LVOTO and mortality (43, 44). There is an important clinical

implication as catecholamine administration typically worsens the

obstruction, resulting in unintended worsening of hemodynamic

status. Authors have suggested using vasopressin instead of

adrenergic agents in these patients, with one small study finding

hemodynamic and respiratory improvement using vasopressin

and down-titrating norepinephrine in patients with severe

LVOTO (45). Beta-blockers are also a plausible treatment for this

patient group, as they are recommended for treatment of

LVOTO in other conditions (46, 47). There are few data on their

use in the septic population specifically but are a promising

therapy (48–50). None-the-less, the optimal approach is in need

of further research.
2.3. Left ventricular diastolic dysfunction

Sepsis can lead to abnormal ventricular relaxation due to

elevated catecholamines, tachycardia, and abnormalities of
Frontiers in Cardiovascular Medicine 04
calcium uptake in the sarcoplasmic reticulum which impairs the

active relaxation process in cardiac myocytes (51). In the healthy

heart, frequency-dependent acceleration of relaxation is observed

during tachycardia to maintain ventricular filling. In sepsis this

can become deranged due to disruption of normal calcium

transients, and result in inadequate filling (51). Excessive or

rapid fluid loading can also cause impaired diastolic function and

elevated filling pressures (52). Diminished relaxation of the

ventricle leads to reduced filling time, decreasing SV and

coronary perfusion. Diastolic dysfunction is seen in almost half

of patients with sepsis (53).

Diastolic dysfunction in sepsis is commonly assessed

measuring doppler flow through the mitral valve at early diastole

(E) and late diastole (A), the ratio of E/A, or by using tissue

doppler imaging (TDI) to measure the velocity of the

myocardium at the lateral or septal aspect of the mitral valve

annulus (e’). The ratio of E/e’ is used as a measurement of filling

pressure (54). Lateral e’ <10 cm/s and septal e’< 7 cm/s indicate

dysfunction (55). The ratio of E/e’ ≥13–15 is used as a

measurement of elevated filling pressure (54). Although there is

concern for loading conditions affecting parameters of diastolic

function, TDI, particularly the lateral e’ measurement, seems to

be relatively unaffected by preload alterations (56). A meta-

analysis of 16 studies shows an association between higher

mortality and lower e’ values and higher E/e’ ratios which are

both indicative of diastolic dysfunction (23, 53, 57).

Patients with diastolic dysfunction are particularly prone to

worsening hemodynamics in the setting of tachycardia and

reduced filling time (58). This group may benefit from heart rate

reduction in the setting of inappropriate tachycardia but as

mentioned previously more research is needed to identify these

patients. Reduced compliance of the LV may make fluid loading

potentially harmful in this group. If filling pressures are elevated

and LV cannot relax and fill adequately in diastole to augment

SV, pressure increases can cause pulmonary vascular congestion

(53). However, diastolic dysfunction does not necessarily indicate

fluid nonresponsiveness. In fact in one study, patients with

diastolic dysfunction who were fluid responsive had improvement

of LV relaxation as evidenced by an increase in the early diastolic

mitral annular velocity E’, compared to those who were not fluid

responsive, when challenged with volume expansion (59). Since

relaxation is an energy dependent process, this improvement may

be from enhanced coronary artery perfusion from an increased

SV (59). Thus, patients with diastolic dysfunction may

particularly benefit from assessment of fluid responsiveness.
2.4. Right ventricular dysfunction

Many factors affect the RV during sepsis, in addition to those

that affect the LV as described earlier. Pulmonary vasoconstriction

can occur with hypoxia, hypercarbia, and acidosis which are

common in sepsis (60–62). Systemic hypotension can be further

detrimental and cause pulmonary vasoconstriction due to

adrenergic stimulation (60). Sepsis contributes to pulmonary

vasoconstriction due to elevation of factors such as endotoxin,
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endothelin, thromboxane, and IL-6 (63). Mechanical ventilation,

increased positive end expiratory pressure, and acute respiratory

distress syndrome (ARDS) also increase RV afterload. Since the

RV is used to a low pressure, high compliance circuit of the

normal pulmonary vasculature, it is not well equipped to handle

large increases in afterload, so these factors can contribute to RV

dysfunction.

Echocardiographic assessment of RV function in sepsis is

conventionally defined as tricuspid annular plane systolic

excursion (TAPSE) <1.6cm, TDI S’<10cm/s, increased RV/LV

size ratio, and fractional area change (FAC) <35% (64). Using

strain echocardiography, RV function can be assessed globally

with GLS, or by RV free wall strain which does not include

interventricular septal function which is affected by the LV.

Although studies suggest increased prognostic value of strain

imaging for the RV, it is not yet in widespread use and the

choice of imaging remains unresolved (65–68). RV dysfunction is

observed in approximately one third to one half of patients with

sepsis and septic shock, even up to 72% using STE (67–70).

Higher mortality is observed in septic patients with RV

dysfunction, with a study of 393 ICU patients showing 31% 28-

day mortality compared to 16% in those without RV dysfunction

(67) Consistent with this, in a study of 252 Emergency

Department patients with sepsis, Innocenti et al. observed a 44%

28-day mortality in patients with RV dysfunction compared to

23% in those without (70).

RV dysfunction has therapeutic implications as well. Although

fluids are recommended in sepsis to maintain adequate preload,

clinicians should administer fluids with caution as a dilated RV

with poor systolic function and high afterload will often have

difficulty accommodating an increase in volume. RV dysfunction

is a demonstrated predictor of a lower probability of fluid

responsiveness, so high volume fluid resuscitation is likely less

helpful in these patients which supports prioritization of

vasopressors in this population; albeit, there is a lack of definitive

clinical data supporting this hypothesis (71).

Although vasoactive agents such as epinephrine and

norepinephrine have been shown to increase pulmonary vascular

resistance in in-vitro studies (72, 73) their effects in vivo are less

clear. Norepinephrine is the first line vasopressor recommended

in sepsis. Norepinephrine increases RV systolic function without

a detrimental effect on pulmonary vascular resistance which is a

favorable profile for use in patients with RV dysfunction (31, 74,

75). Vasopressin has a neutral or even vasodilatory response

on the pulmonary vasculature and may be a good option as well

in patients with RV dysfunction, but more data are needed (76–

78). There is a paucity of evidence for how to treat RV

dysfunction in sepsis and this represents an important

opportunity for research.
3. Future directions: reducing
heterogeneity in sepsis

Recent efforts have focused on defining subgroups of patients

within the sepsis population with the goal of identifying targeted
Frontiers in Cardiovascular Medicine 05
therapeutic approaches. Several groups have attempted to define

subgroups using clinical data such as demographics, organ

dysfunction, vital signs, and laboratory values (79–82). Others

have investigated gene expression, showing differential expression

of genes related to innate and adaptive immune cell function,

endotoxin tolerance, and metabolic pathways (83–86).

Similar approaches are implemented in other pathologies such as

ARDS, with identification of a hyperinflammatory and a

hypoinflammatory subphenotype, yielding important information

about response to management strategies based on subphenotype

(87, 88).

A recent cluster-based study of patients with sepsis by Geri

and colleagues aimed to identify cardiovascular phenotypes,

using a combination of echocardiographic and clinical data to

determine five cardiovascular clusters (89). In this study of 360

patients, the groups were: (a) “well resuscitated” group: no

dysfunction and not fluid responsive, (b) LV systolic dysfunction

group: low LVEF and cardiac index, high lactate levels and

norepinephrine doses, and fluid nonresponsive, (c) hyperkinetic

group: elevated LVEF and not fluid responsive, (d) RV failure

group: normal or high LVEF, fluid unresponsive and associated

with lower PaO2/FiO2 ratios, and (e) hypovolemic group:

increased LVEF and fluid responsive despite receipt of the

largest amount of fluids in this group (89). Understanding

differences between cardiac responses to sepsis and how to best

treat them may help inform a more individualized

hemodynamic resuscitation. For instance, limiting fluids in

patients with LV systolic dysfunction and RV dysfunction, using

inotropes only for those patients with systolic dysfunction,

prioritizing vasopressin in RV dysfunction, and using beta

blockers and ensuring adequate fluid resuscitation for

hyperdynamic function and LVOTO, are all theoretical ways to

optimize cardiac function in sepsis, but more data are needed.
4. Conclusion

In summary, there are several cardiac abnormalities in sepsis

identified by echocardiography. Questions remain regarding the

best diagnostic and management strategies of sepsis-induced

myocardial dysfunction. Are our current definitions the best way

to define sepsis-induced myocardial dysfunction? Can

identification of cardiac subphenotypes to guide resuscitation

result in better outcomes? A better understanding of individual

patient responses in the sepsis state is an exciting potential for

individualized and targeted care. This, combined with evolving

technological echocardiographic assessment of the heart, holds

potential for future transformative personalized approaches to

resuscitation in sepsis.
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