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Background: Short-term unplanned readmission is always neglected, especially
for elderly patients with coronary heart disease (CHD). However, tools to predict
unplanned readmission are lacking. This study aimed to establish the most
effective predictive model for the unplanned 7-day readmission in elderly CHD
patients using machine learning (ML) algorithms.
Methods: The detailed clinical data of elderly CHD patients were collected
retrospectively. Five ML algorithms, including extreme gradient boosting (XGB),
random forest, multilayer perceptron, categorical boosting, and logistic
regression, were used to establish predictive models. We used the area under
the receiver operating characteristic curve (AUC), accuracy, precision, recall, the
F1 value, the Brier score, the area under the precision-recall curve (AUPRC), and
the calibration curve to evaluate the performance of ML models. The SHapley
Additive exPlanations (SHAP) value was used to interpret the best model.
Results: The final study included 834 elderly CHD patients, whose average age was
73.5 ± 8.4 years, among whom 426 (51.08%) were men and 139 had 7-day
unplanned readmissions. The XGB model had the best performance, exhibiting
the highest AUC (0.9729), accuracy (0.9173), F1 value (0.9134), and AUPRC
(0.9766). The Brier score of the XGB model was 0.08. The calibration curve of
the XGB model showed good performance. The SHAP method showed that
fracture, hypertension, length of stay, aspirin, and D-dimer were the most
important indicators for the risk of 7-day unplanned readmissions. The top 10
variables were used to build a compact XGB, which also showed good
predictive performance.
Conclusions: In this study, five ML algorithms were used to predict 7-day
unplanned readmissions in elderly patients with CHD. The XGB model had the
best predictive performance and potential clinical application perspective.
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1. Introduction

Coronary heart disease (CHD) is a common noncommunicable chronic cardiovascular

disease in the elderly (1). Many elderly CHD patients require repeated hospitalizations due

to poor disease control. Readmission refers to the patient returning to the hospital for the

same or related treatment within a certain period after discharge (2). Readmission rates
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have become an important hospital performance measure for

healthcare efficiency and quality improvement because

unplanned readmission often means the failure of the initial

intervention, especially for short-term readmission patients (3).

Because of impaired mobility in elderly patients, repeated

readmissions may be a difficult experience for patients and their

families (4). In addition, frequent readmissions can increase the

financial burden of patients, reduce their quality of life, and

cause excessive consumption of medical resources. Therefore, it

is of great significance to reduce the readmission of elderly

CHD patients.

To that end, screening tools already exist to identify patients

who may be readmitted to the hospital (4–7). However, these

screening tools were developed primarily from data of 30-day or

1-year readmitted patients, which limited the accuracy of these

tools in assessing patients’ 7-day unplanned readmission. Studies

have shown that 84% of 7-day readmissions are avoidable (8).

Therefore, developing a predictive model to assess the risk of

readmission is the key to reducing 7-day unplanned readmission.

Further, predicting the high risk of 7-day readmission may help

avoid short-term unplanned readmission by targeted

interventions. However, to our knowledge, there have been no

established protocols for 7-day unplanned readmission in elderly

patients with CHD.

A careful evaluation of the rehospitalization risk of elderly

CHD patients plays a fundamental role in the clinical

management of each patient. In recent years, the application of

machine learning (ML) algorithms to predict clinical events has

been actively conducted (9–11), and the development of a

complicated and reliable classification tool has become possible.

Therefore, we hypothesized that combining ML algorithms with

patients’ basic information might make it possible to produce

reliable prediction models to predict the 7-day unplanned

readmission of elderly CHD patients. The purpose of this study

was to collect patients’ basic information from the electronic

medical record (EMR) system to establish an ML model for the

prediction of unplanned readmission within 7 days of discharge

in elderly patients with CHD.
2. Materials and methods

2.1. Study population and data source

We retrospectively collected the data of elderly CHD patients

who underwent 7-day readmission in Sichuan Provincial

People’s Hospital from July 2018 to June 2020. Also, we

matched the non-readmission patients to the 7-day

readmission patients by the ratio of 5:1. CHD, as a principal

diagnosis, was confirmed by using the International

Classification of Disease (ICD-10) codes (I20–I25). The

patients aged <60 years, transferred to other hospitals, or

readmitted by some specific treatments such as hemodialysis

or radiation therapy will be excluded. We also excluded the

patients with missing severe data or who died in the hospital.

We collected the general information, records of diagnoses,
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medications, and comorbidities of the patients (7). For

multiple laboratory results, we selected the last results of

patients before discharge. This study was approved by the

Ethics Committee of the Sichuan Academy of Medical Sciences

and Sichuan Provincial People’s Hospital. Due to the

retrospective nature of the study, informed consent was

waived. Also, we hid the patients’ personal information during

the study.
2.2. Data preprocessing

First, all variables were blinded to eliminate subjective

influence. Then, categorical variables were represented by 0 and

1, continuous variables were standardized using the Z-score, and

laboratory examinations were represented by 1, 2, and 3 (1,

below the normal range; 2, within the normal range; and 3,

above the normal range). The variables with missing data >90%,

a single value occupying >90%, or the coefficient of variation

<0.1 were deleted. Finally, we used random forest (RF) to replace

the missing value, and Lasso was used for variable selection.
2.3. Machine learning algorithms

To establish the best prediction model, we used five

representative ML algorithms, including extreme gradient

boosting (XGB), RF, multilayer perceptron (MLP), categorical

boosting (CB), and logistic regression (LR), as prediction model-

based algorithms.

XGB is an ensemble classifier based on regression tree, which

has the characteristics of short training time and high precision

(12). XGB uses residuals to improve the model and adds an

internal regularization to prevent overfitting and enhance the

robustness of the model.

RF is also an ensemble classifier composed of hundreds to

thousands of decision trees (13). The final classification result is

determined by the mode of the output result by each tree.

Moreover, this classifier has strong stability and robustness for

small amounts of noise and outliers.

MLP is an ML algorithm developed by feedforward neural

networks, which are composed of ordered layers comparable to

human neuron processing (14). Structurally, the MLP model

comprises an input layer, an output layer, and one or more

hidden layers (15).

CB is an ML classification technique based on oblivious trees,

which can deal with classification problems efficiently and

reasonably (16). CB solves the problem of gradient bias and

prediction shift to reduce the overfitting risk and improve the

accuracy and generalization ability of the algorithm.

An LR model describes and estimates the relationship between

one or more independent variables and one binary dependent

variable (17). LR is used to compute the probability of an

occurrence of binary outcomes (18). It has a powerful

interpretation and has been widely used in diverse areas of

medical research.
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2.4. Model establishment

XGB, MLP, RF, LR, and CB were used to build the prediction

models. The model establishment was as follows. All patients were

randomly divided into a training set and a test set in the proportion

of 8:2. The training set was used to build the classification models,

and the test set was used to evaluate the predictive performance.

Moreover, the borderline synthetic minority oversampling

technique (SMOTE) (19) was used to solve the issues associated

with the imbalanced data in the training set. Borderline SMOTE

is an improved oversampling algorithm over SMOTE. Also,

borderline SMOTE can generate new data from borderline data,

thereby improving the category distribution of samples.

Meanwhile, we trained the ML models on original data and

evaluated their predictive performance on the test set.
2.5. Model evaluation

To evaluate the predictive performance of the ML models, we

calculated five representative performance evaluation measures,

including area under the receiver operating characteristic curve

(AUC), accuracy, precision, recall, and F1 value. Meanwhile, as

precision and recall are more meaningful in clinical practice, we

also computed the area under the precision-recall curve

(AUPRC) to assess the model performance. The model’s

calibration was evaluated by the Brier score and calibration plot.

The model was considered to have favorable calibration when the

Brier score was ≤0.25 (20). SHapley Additive exPlanations

(SHAP) values were used to measure the contribution of each

variable to the best model.
2.6. Sample size assessment

We chose a repeated bootstrapping method to evaluate the

appropriateness of sample size. First, we randomly selected 10%,

20%, and 30%–100% subsets from the training set by 100 times,

respectively. Then, these subsets were used to establish prediction

models combined with the best ML algorithm selected by model

evaluation. Finally, we calculated the AUC of the test set based

on the established models to assess the sample size.
2.7. Statistical analysis

Chi-square tests were used to analyze categorical variables

expressed as counts and percentages. Continuous variables were

expressed as means ± standard deviations or medians with first to

third quartiles (median, Q1–Q3). We used the t-test or Mann–

Whitney test to analyze the statistical significance. P-values <0.05

were considered statistically significant. Statistical analyses were

performed by using SPSS software version 25 (IBM SPSS

Statistics, IBM Corporation, Armonk, NY, United States). Model

building was implemented using the stats and sklearn packages

in Python (Version 3.8).
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3. Results

3.1. Study population

We enrolled 139 patients who underwent 7-day unplanned

readmission and matched the non-readmission patients (695) by

a ratio of 5:1 in this study. A total of 834 elderly CHD patients

were included, of which 426 (51.1%) were men and 408 (48.9%)

were women. The average age was 73.5 ± 8.4 years, and the

length of stay was 6 (3, 11) days. The general information of the

patients is presented in Table 1. The whole process of the study

is shown in Figure 1.
3.2. Data processing and variable selection

A total of 178 variables were collected, and the variables

assignment results are shown in Supplementary Table S1. These

variables included three general information (X1–X3), 15

comorbidities (X4–X18), 32 medications (X19–X50), and 128

laboratory tests (X51–X178). Sixty-five variables with missing

value >90%, a single value occupying >90%, and a coefficient of

variation <0.1 were deleted (Supplementary Table S2). Lasso

was used for variable selection of the rest 113 variables, and 83

variables remained in the subsequent study (Supplementary

Table S2).
3.3. Establishment and evaluation of the
model

XGB, MLP, RF, LR, and CB were combined with 83 variables

to establish ML models to predict 7-day unplanned readmission

in elderly patients with CHD in the training set. The predictive

performance of the ML models was checked in the test set.

Table 2 presents the AUC, accuracy, precision, recall, and F1

value of the models. Among the models, XGB had the best

performance, showing the highest AUC (0.9729), accuracy

(0.9173), and F1 value (0.9134). To improve the clinical

application of the model, a compact XGB model was applied

by the top 10 variables according to the mean absolute SHAP

value, which indicates their importance for prediction. The

AUC, accuracy, precision, recall, and F1 value of the compact

XGB model were 0.9474, 0.8630, 0.9015, 0.8151, and 0.8561,

respectively (Table 2). Moreover, the receiver operating

characteristic (ROC) curves of the ML models are shown in

Figure 2A. In the ML models trained on original data, the

CB model had the highest AUC (0.9149). The AUC, accuracy,

precision, recall, and F1 value of the XGB model were 0.8446,

0.8443, 0.7500, 0.3529, and 0.4800, respectively

(Supplementary Table S3). The ROC curves of the ML models

trained on original data are shown in Supplementary

Figure S1A.

Recall was defined as the proportion of 7-day unplanned

readmission patients who are correctly identified, and
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TABLE 1 Baseline characteristics of 7-day readmission vs. non-readmission
patients.

Feature 7-day
readmission
(n = 139)

Non-
readmission
(n = 695)

P-values

Age, years 76 (68, 82) 72 (66, 78) <0.01

Gender 0.853

Male 72 (51.8%) 354 (50.9%)

Female 67 (48.2%) 341 (49.1%)

Length of stay 7 (3, 12) 6 (3, 10) 0.080

Hypertension <0.001

Yes 91 (65.5%) 114 (16.4%)

No 48 (34.5%) 581 (83.6%)

Diabetes 0.701

Yes 50 (36.0%) 262 (37.7%)

No 89 (64.0%) 433 (62.3%)

Fracture <0.001

Yes 10 (7.2%) 403 (58.0%)

No 129 (92.8%) 292 (42.0%)

Heart failure 0.468

Yes 32 (23.0%) 141 (20.3%)

No 107 (77.0%) 554 (79.7%)

Osteoporosis <0.001

Yes 20 (14.4%) 223 (32.1%)

No 119 (85.6%) 472 (67.9%)

Aspirin <0.001

Yes 53 (38.1%) 379 (54.5%)

No 86 (61.9%) 316 (45.5%)

Danhong injection <0.01

Yes 30 (21.6%) 240 (34.5%)

No 109 (78.4%) 455 (65.5%)

Isosorbide mononitrate 0.248

Yes 36 (25.9%) 149 (21.4%)

No 103 (74.1%) 546 (78.6%)

Iodixanol <0.001

Yes 7 (5.0%) 186 (26.8%)

No 132 (95.0%) 509 (73.2%)

Laboratory results

GGT, U·L−1 27 (16, 44) 23 (17, 36) 0.126

ALB, g·L−1 38.0 (34.6, 42.0) 40.2 (37.1, 43.4) <0.001

ALT, U·L−1 18 (13, 27) 22 (15, 32) <0.05

TG, mmol·L−1 1.22 (0.94, 1.79) 1.38 (0.94, 1.91) 0.109

eGFR, ml·min−1 78.8 (56.3, 89.1) 84.8 (67.0, 93.4) <0.01

Urea, mmol·L−1 6.42 (5.01, 9.13) 5.98 (4.94, 7.79) 0.201

AST, U·L−1 27 (22, 34) 27 (22, 35) 0.577

TC, mmol·L−1 3.74 (2.92, 4.32) 3.98 (3.23, 4.77) <0.05

TBIL, µmol·L−1 13.5 (10.3, 17.7) 13.6 (10.2, 18.1) 0.733

TP, g·L−1 67.2 (61.5, 72.5) 68.6 (63.9, 72.9) 0.090

WBC, *109·L−1 6.4 (5.1, 8.1) 6.2 (5.2, 7.7) 0.370

RBC, *1012·L−1 4.1 (3.6, 4.6) 4.3 (3.8, 4.6) <0.05

HCT, % 38.6 (33.5, 41.5) 39.4 (35.7, 42.6) <0.05

HGB, g·L−1 123 (109, 137) 130 (117, 141) <0.01

Cholinesterase, KU·L−1 6.5 (5.1, 8.0) 7.4 (6.1, 8.7) <0.001

LDLC, mmol·L−1 1.8 (1.3, 2.7) 2.1 (1.5, 2.7) 0.094

HDLC, mmol·L−1 1.16 (0.98, 1.40) 1.19 (1.00, 1.41) 0.725

IBIL, µmol·L−1 8.3 (5.2, 11.9) 9.0 (6.4, 12.3) 0.159

ALP, U·L−1 80.0 (62, 102.2) 79.5 (63.9, 95.0) 0.853

Globulin, g·L−1 27.3 (24.3, 31.0) 27.8 (24.6, 31.2) 0.321

Hematocrit 38.6 (33.5, 41.6) 39.4 (35.7, 42.6) <0.05

D-dimer, mg·L−1 0.70 (0.42, 1.80) 0.43 (0.24, 0.91) <0.001

TSH, miu·L−1 1.98 (1.18, 3.30) 1.82 (1.09, 2.71) 0.314

(Continued)

TABLE 1 Continued

Feature 7-day
readmission
(n = 139)

Non-
readmission
(n = 695)

P-values

HS-TNTI, ng·L−1 8.2 (3.7, 33.4) 5.2 (2.2, 19.2) <0.05

Creatinine, µmol·L−1 77.9 (63.3, 93.2) 69.9 (59.2, 87.3) <0.05

Myoglobin, ng·mL−1 58.2 (39.0, 92.9) 45.6 (33.7, 69.7) <0.01

Creatine kinase, U·L−1 79 (54, 119) 90 (63, 138) 0.066

Uric acid, µmol·L−1 345 (274, 438) 340 (266, 411) 0.402

Total bile acid, µmol·L−1 5.4 (3.2, 8.4) 4.2 (2.5, 8.1) 0.303

hsCRP, mg·L−1 4.0 (1.0, 28.0) 1.5 (0.5, 7.2) <0.01

Lymphocyte, *109·L−1 1.2 (0.9, 1.6) 1.3 (0.9, 1.7) 0.168

Basophil, *109·L−1 0.029
(0.020, 0.040)

0.027
(0.019, 0.039)

0.320

Eosinophil, *109·L−1 0.110
(0.052, 0.194)

0.104
(0.059, 0.186)

0.965

Data are presented as the number (%) or median (Q1, Q3). GGT, γ-glutamyl

transpeptidase; ALB, albumin; ALT, alanine aminotransferase; TG, triglyceride;

eGFR, estimated glomerular filtration rate; AST, aspartate aminotransferase; TC,

total cholesterol; TBIL, total bilirubin; TP, total protein; WBC, white blood cell;

RBC, red blood cell; HCT, hematocrit; HGB, hemoglobin; LDLC, low-density

lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol; IBIL, indirect

bilirubin; ALP, alkaline phosphatase; TSH, thyroid stimulating hormone; HS-TNTI,

HIGH-sensitivity cardiac troponin I; hsCRP, hypersensitive C-reactive protein.
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precision was defined as the proportion of actual readmission

within the predicted readmission patients. For patients and

doctors, precision and recall are perhaps clinically more

meaningful for the prediction of 7-day unplanned

readmission. Therefore, we also used precision-recall curves to

evaluate the ML models’ predictive performance (Figure 2B).

The result shows that the XGB model had the highest AUPRC

(0.9766), and the AUPRC of the compact XGB model was

0.9528. The precision–recall curves of the ML models trained

on original data are shown in Supplementary Figure S1B.

Meanwhile, we used calibration curves to analyze the

calibration ability. The calibration curves of the XGB and

compact XGB models showed good calibration performance

(Figure 3). The calibration curves of other ML models are

shown in Supplementary Figure S2. Furthermore, the Brier

score is an index to evaluate both calibration and

discrimination of the model. The Brier scores of XGB and

compact XGB models were 0.08 and 0.14, respectively

(Table 2).
3.4. Model interpretation

In Figure 4, the top 10 variables in the XGB model are

listed in descending order by the mean absolute SHAP

value. The most important 10 variables contributing to the

model were fracture, hypertension, length of stay, aspirin,

D-dimer, iodixanol, osteoporosis, danhong injection (a

traditional Chinese medicine injection used to treat

cardiovascular diseases), isosorbide mononitrate, and

diabetes. Meanwhile, the 10 variables were used to develop

a compact XGB model.
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FIGURE 1

Research roadmap of the study. XGB, extreme gradient boosting; RF, random forest; MLP, multilayer perceptron; CB, categorical boosting; LR, logistic
regression; AUC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.

Song et al. 10.3389/fcvm.2023.1190038
3.5. Sample size assessment

The repeatedbootstrappingmethodwasused to assess the adequacy

of the sample size, and the result is shown inFigure 5. As the percentage
TABLE 2 Predictive performance of machine learning models on the test set

Model AUC Accuracy Precisio
MLP 0.7708 0.5000 0.5000

LR 0.8885 0.7594 0.8000

RF 0.9701 0.8910 0.9727

CB 0.9720 0.9098 0.9360

XGB 0.9729 0.9173 0.9587

Compact XGB 0.9474 0.8630 0.9015

AUC, area under the receiver operating characteristic curve; MLP, multilayer perceptron

gradient boosting.

Bold values represent the maximum value for each evaluation indicator.

Frontiers in Cardiovascular Medicine 05
of sample size increased,AUCgradually increased and thefluctuationof

the AUC decreased gradually. When the sample size reached 70%, the

predictive performance of the model tended to be stable, indicating

that a sufficient sample size was included in this study.
.

n Recall F1 value Brier score
1 0.6667 0.50

0.6917 0.7419 0.24

0.8045 0.8807 0.11

0.8797 0.9070 0.09

0.8722 0.9134 0.08

0.8151 0.8561 0.14

; LR, logistic regression; RF, random forest; CB, categorical boosting; XGB, extreme
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FIGURE 2

(A) ROC curves and (B) precision–recall curves for the six ML models on the test set. MLP, multilayer perceptron; AUC, area under the receiver operating
characteristic curve; LR, logistic regression; RF, random forest; CB, categorical boosting; XGB, extreme gradient boosting; AUPRC, area under the
precision-recall curve.

FIGURE 3

Calibration plot for the XGB and compact XGB models. XGB, extreme
gradient boosting.
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4. Discussion

In this study, we used XGB, RF, MLP, CB, and LR algorithms,

combined with detailed clinical data to establish ML models to

predict 7-day unplanned readmission in elderly patients with CHD.
Frontiers in Cardiovascular Medicine 06
We chose XGB as the model with the best fit owing to several

factors because it had the highest AUC, accuracy, and F1 value.

Although the recall of the MLP model was slightly higher than that

of the XGB model, the low accuracy and precision of the MLP

model made it difficult to be accepted clinically. In addition, the

XGB model had good calibration capability, the best AUPRC, and

the best Brier score. Meanwhile, to improve the clinical utility of the

model, we used the 10 most important factors to develop a compact

XGB model, which also showed a good predictive performance.

Several studies have assessed 30-day or 1-year all-cause

readmissions after cardiovascular events (6, 21, 22), but to our

knowledge, none focused on 7-day unplanned readmissions in

elderly CHD patients. Okere et al. (21) used decision tree

algorithms to predict 30-day hospital readmissions of 346,390

hospitalized patients (≥40 years) with a primary diagnosis of

ischemic heart disease. The accuracy, precision, recall, and AUC

of the model were all above 0.95. However, this study lacked the

evaluation of model calibration ability. Gupta and colleagues (6)

used 6 ML algorithms, including LR, naïve Bayes, support vector

machine, deep neural network, RF, and gradient boosting, to

build predictive models of 30-day readmission, but the best C

statistic of the model was only 0.641. In China, 30-day

readmission is an important indicator to measure the medical

quality of third-class hospitals. Some Chinese researchers (22)

established nine ML models to predict the risk of 30-day

unplanned all-cause hospital readmissions with the AUC in the

range of 0.681–0.720. These models could not be used to predict

7-day unplanned readmissions. In fact, 7-day readmission is

always neglected, especially for elderly patients with chronic

diseases. Therefore, we developed predictive models to accurately
frontiersin.org
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FIGURE 4

SHAP summary plot of the 10 most important variables of the XGB model. In the SHAP plot, the horizontal axis symbolizes the contribution of variables to
the outcome, and the color of the dot represents the value of the variables. Red represents higher variable values, and blue represents lower variable
values. SHAP, SHapley additive exPlanations; XGB, extreme gradient boosting.

FIGURE 5

Sample size validation for the XGB model. The vertical bars represent the 95% confidence interval of AUC. XGB, extreme gradient boosting; AUC, area
under the receiver operating characteristic curve.

Song et al. 10.3389/fcvm.2023.1190038
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identify the elderly CHD patients more likely to be readmitted to

the hospital within 7 days.

It is worth noting that the classification model may have a

prediction bias. This is because 7-day unplanned readmission is rare

and model discrimination is driven by patients without readmission.

As a consequence, it is necessary to compare calibration with

discrimination simultaneously. In this connection, the Brier score

provides a more comprehensive assessment of model performance,

combining model discrimination and calibration (23). The Brier

score represents the mean square error between the predicted and

observed results. Therefore, when two models are compared, the

smaller the Brier score, the better the model performance. In our

study, the Brier scores of the XGB model were all lower than those

of other ML models, which showed that the XGB model had a good

calibration ability in predicting 7-day unplanned readmission in

elderly patients with CHD.

ML model, called black box frequently, one reason is that it can

only offer risk estimates but cannot explain the sources of the risk

(24). In recent years, SHAP has been widely used in model

interpretation (25, 26). Using the SHAP summary plot, we identified

the top contributors to the risk of 7-day unplanned readmission for

individual patients. The results of SHAP showed that patients with

fractures are unlikely to be readmitted to the hospital in the short

term after discharge. Elderly CHD patients with hypertension had

higher rehospitalization may due to poor blood pressure control.

Moreover, the length of stay has been proven to be an important

predictor of readmission of patients with cardiovascular diseases (21,

27, 28), which is consistent with the results of our study. Guidelines

routinely recommend aspirin for CHD patients (29). In our study,

elderly patients with CHD who did not use aspirin had a higher risk

of readmission. This proves that aspirin improves prognosis in

elderly patients with CHD. Furthermore, those elderly CHD patients

with higher D-dimer had a higher risk of 7-day unplanned

readmission because a higher D-dimer meant a higher risk of

pulmonary thromboembolism (30, 31).

This study has limitations. First, although we collected the

comorbidities of the elderly CHD patients from the EMR, relevant

information, such as the severity of the disease and the duration of

comorbidities, was not captured in our study and was, therefore,

not included in the evaluation. Second, this study was a single-

center study, and we were unable to evaluate the performance of

the ML models in other medical institutions. Third, due to the

retrospective nature of the study, we only collected the basic clinical

features. Other features such as socioeconomic factors and health

literacy, which may improve the readmission risk assessment,

should be validated in further studies. Then, the recall and F1 value

declined while the ML models were trained on original data,

indicating that a larger sample size is needed to further optimize

the model in the future. Finally, a prospective study is needed

before the model implements in clinical practice.
5. Conclusions

In conclusion, we established ML models to predict 7-day

unplanned readmission in elderly patients with CHD using ML
Frontiers in Cardiovascular Medicine 08
algorithms. The XGB model showed the best predictive

performance and had good calibration. In addition, the compact

XGB model, developed by the top 10 important indicators, can

predict 7-day unplanned readmission conveniently. This study

showed that an ML-based approach is feasible and effective with

a potential clinical application perspective on the reduction of 7-

day readmission and the improvement of quality of care to

elderly CHD patients.
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