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Cardiovascular diseases (CVDs) have been established as a major cause of
mortality globally. However, the exact pathogenesis remains obscure.
N6-methyladenosine (m6A) methylation is the most common epigenetic
modification on mRNAs regulated by methyltransferase complexes (writers),
demethylase transferases (erasers) and binding proteins (readers). It is now
understood that m6A is a major player in physiological and pathological cardiac
processes. m6A methylation are potentially involved in many mechanisms, for
instance, regulation of calcium homeostasis, endothelial function, different
forms of cell death, autophagy, endoplasmic reticulum stress, macrophage
response and inflammation. In this review, we will summarize the molecular
functions of m6A enzymes. We mainly focus on m6A-associated mechanisms
and functions in CVDs, especially in heart failure and ischemia heart disease. We
will also discuss the potential application and clinical transformation of m6A
modification.
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1. Introduction

Cardiovascular disease (CVD) is a leading major cause of death, responsible for 31.5% of

mortalities globally (1). Current evidence suggests that China and India have the highest

burdens of CVD worldwide (2).

The past decade has witnessed significant progress achieved in research on CVD, which

has led to the development of new therapeutic approaches, such as medications (e.g.,

angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs),

and statins) and interventional methods [e.g., coronary artery bypass surgery (CABG) and

percutaneous coronary intervention (PCI)]. However, current preventive and therapeutic

options for CVD remain limited.

With significant inroads achieved in science and technology over the past couple

of years, investigations on diseases have progressed to the genetic and epigenetic levels

(3, 4). Most of the traditional treatments for patients with CVD are protein-targeting

drugs. It has been established that mRNA is subject to tight regulation at the

transcriptional and post-transcriptional levels before translation into proteins. Therefore,

post-transcriptional targeting has huge prospects for drug development. Above 150 post-

transcriptional modifications have hitherto been documented in RNAs in living

organisms. A frequent RNA epigenetic modification at the post-transcriptional stage is

observed at the N6 position of adenosine, which undergoes N6-m6A RNA methylation.

Although Desrosiers et al. (5, 6) first reported m6A in the 1970s, it is only recently that

the mechanisms underlying the specificity of m6A modification and biogenesis in cells
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have been uncovered. m6A RNA methylation usually occurs at

the RRm6ACH consensus motif, which is enriched in internal

long exons and 3′ untranslated regions (3′UTRs) near stop

codons. Furthermore, m6A occurs in precursor mRNAs

(pre-RNAs) and long noncoding RNAs (lncRNAs).

In recent years, N6-methyladenosine methylation has been

associated with important processes in mammals, such as

embryonic development (7), sex determination (8), circadian

rhythm (9), neurogenesis (10), stress responses (11) and cancers

(12). The functions of m6A methylation in cardiovascular

diseases have been recognized (13, 14), however, further studies

are warranted.

Herein, we discuss the m6A proteins respectively. Secondly, we

provide a comprehensive overview of the roles of m6A methylation

in CVDs, laying emphasis on cardiac hypertrophy, heart failure

and ischemic heart disease (IHD). Also encompassing

atherosclerosis, aortic dissecting aneurysm (ADA), aortic valve

calcification, hypoxic pulmonary hypertension (HPH), dilated

cardiomyopathy (DCM) and cardiotoxicity. Finally, we discuss

future research directions of the application of m6A for CVD

treatment.
2. m6A RNA methylation

The m6A modification process involves methyltransferase

complexes (writers), demethylase transferases (erasers), and
FIGURE 1

Dynamic m6A modification and mediated functions. m6A mRNA methylation
m6A-binding proteins (“readers”). METTL3, methyltransferase-like 3; METTL1
VIRMA, KIAA1429; METTL16, methyltransferase-like 16; RBM15, RNA binding
homologue 5; YTHDF1/2/3, YTH N6-methyladenosine RNA binding prote
containing 2; eIF3, Eukaryotic translation initiation factor 3 subunit A; IGF2BP
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binding proteins (readers) (15) (Figure 1). m6A modification can

be catalyzed by “writers” and removed by “erasers”. Thus this

methylation-dependent process can be reversed and controlled.

“Readers” can specifically identify and link RNA methylation

modification sites to perform specific biological functions (16),

such as RNA splicing, translation and stability (Figure 1).
2.1. Methyltransferases/writers

The m6A methyltransferase complex is comprised of

Methyltransferase-like 3 and 14 (METTL3 and METTL14),

which form a stable heterodimer to serve as the catalytic core.

Although both METTL3 and METTL14 contain a

methyltransferase domain, crystal structure analysis shows that

only METTL3 functions as catalytic core, while METTL14 serves

as an allosteric adapter to stabilize interaction with RNA binding

and improve methylation efficiency. Several auxiliary cofactors

facilitate m6A deposition as adaptor proteins, by interacting with

the core to guide methylase specificity, localization, binding, and

activity. These cofactors include Wilms’ tumor 1-associating

protein (WTAP), VRIMA (KIAA1429), RBM15 (RNA-binding

motif protein 15) and ZC3H13. WTAP helps recruit and anchor

the methylases to target RNAs, interacts with both METTL3 and

METTL14, and guides the specificity and levels of methylation.

Methyltransferase-like 16 (METTL16), as a newly identified m6A
is regulated by methyltransferases (“writers”), demethylases (“erasers”) and
4, methyltransferase-like 14; WTAP, Wilms tumor 1- associated protein;
motif protein 15; FTO, fat mass and obesity-associated; ALKBH5, AlkB
in 1/2/3; YTHDC1, YTH domain containing 1; YTHDC2, YTH domain
2, insulin-like growth factor 2 mRNA binding protein 2.
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methyltransferase, is the homolog of METTL3 (17). Besides,

VIRMA, RBM15 and ZC3H13 are required for m6A methylation.
2.2. Demethylases/erasers

The m6A modification can be removed by “erasers”, including fat

mass and obesity-associated (FTO) and AlkB Homolog 5 (ALKBH5).

FTO is predominantly expressed in the nucleus, suggesting that any

demethylation will occur before mRNA export, and even suggesting

that FTO prevents m6A addition rather than actively erasing the

mark. It has been observed that FTO demethylation in the

cytoplasm during cancerous states, DNA damage responses and

heat shock, indicating that this may be a specialized pathway. The

second known demethylase ALKBH5 was discovered in 2013 (18),

which is more likely to serve as a specific eraser of m6A, because

the expression of ALKBH5 consistently correlates with reduced

methylation both in human tissues and mice. Similar to FTO,

ALKBH5 exhibits nuclear localization, indicating that cytoplasmic

demethylation is largely nonexistent.
2.3. Readers

Reader proteins can recognize and bind to the mark, thus paly

different downstream effects. They employ effectors to specify

transcript splicing, processing, stability, translation, and

localization (19). YT521-B homology (YTH) domain containing

proteins bind to methyl moiety on the RNA molecule directly

and mediate methylated transcript regulation, including YTH

domain family proteins (YTHDF1, YTHDF2 and YTHDF3),

YTH domain containing 1 and 2 (YTHDC1 and YTHDC2).

Other m6A regulators bind indirectly, by weaking binding to

m6A or via m6A structural switches, such as eukaryotic

translation initiation factor 3H (Eif3), insulin-like growth factor 2

mRNA-binding proteins (IGF2BPs) and heterogeneous nuclear

ribonucleoproteins (HNRNPs) (20, 21).
3. Cardiac hypertrophy and heart
failure (HF)

3.1. Pathological hypertrophy and heart
failure

Heart failure represents the terminal stage of various

cardiovascular diseases, featuring poor cardiac performance and

left ventricular dilatation. Besides, pathological cardiac

hypertrophy often results in HF. Clinically, HF is classified into

two major subtypes: HF with preserved ejection fraction (HfpEF,

EF≥ 50%) and HF with reduced ejection fraction (HfrEF, EF≤
40%). The mechanisms underlying HFpEF are largely obscure.

Recently, m6A has been closely associated with heart failure in

many studies. In this respect, it has been reported that FTO was

upregulated in HFpEF patients and mice (22), while FTO was

downregulated in HfrEF (13). This differential expression might
Frontiers in Cardiovascular Medicine 03
be caused by pathophysiological differences. Mathiyalagan et al.

(13) demonstrated that FTO was downregulated in failing

mammalian hearts and hypoxic primary cardiomyocyte (CM)

cells. Overexpression of FTO can reportedly increase the m6A

level in failing hearts and improve cardiac contractile function, as

indicated by higher ejection fraction, fractional shortening, and

improved wall motion. Similarly, Berulava et al.’s study showed

that m6A methylation levels were altered in the myocardium of

HF and hypertrophy. In cardiac-specific FTO knockout mice,

heart failure progression was accelerated, ejection fraction was

decreased, and cardiac dilation was increased. METTL3 and FTO

knockout may impair the myocardial response to stress load

(23). Another study based on a transverse aortic constriction

(TAC) model consistently showed that the m6A expression

gradually increased with time. FTO is the main contributor to

increased m6A levels. FTO plays a predominant role in increased

m6A levels. FTO expression was significantly reduced at 8 weeks

after TAC, and minimal changes were observed at 1, 3, and

7 days after TAC. FTO overexpression could attenuate cardiac

hypertrophy and remodeling and improve cardiac dysfunction

and stamina compared with TAC mice (24). Furthermore, FTO

plays an important role in cardiomyocyte metabolic homeostasis;

the loss of function of FTO has been reported to reduce the

glycolytic capacity of cardiomyocytes (24). Mechanistically, FTO

targets SERCA2a (a contractile protein) and demethylates

SERCA2a resulting in increased SERCA2a expression and cardiac

function improvement in mice failing hearts (13) (Table 1).

Erkens et al. (52) found that SERCA2a was downregulated in

Nrf2 KO mice, associated with LV dysfunction and cardiac

hypertrophy, while FTO demethylates SERCA2a, suggesting that

FTO is a key factor in Nrf2-associated cardiac hypertrophy. As

for cardiac energy metabolism, PGAM2 is involved to a certain

extent in the glycolytic changes in vitro and in vivo. Thus, FTO

regulates glycolysis in an m6A-dependent way while regulating

glucose uptake, possibly by modulating the AKT–GLUT4 axis

(24). METTL3, as a “writer” protein, yields an opposite effect

compared with “erasers” on cardiac hypertrophy in an m6A-

dependent manner. Dorn et al. (14) demonstrated that METTL3

expression was increased in hypertrophic cardiomyocytes.

Significant m6A modification was observed in genes associated

with protein kinase mRNAs and intracellular signaling pathways,

including members of the MAPK signaling cascade. METTL3

knockout myocardium showed morphological and functional

changes of heart failure. Inhibition of METTL3 was sufficient to

block hypertrophy in vitro, while enhancing METTL3 expression

could induce cardiomyocyte hypertrophy without additional

stimuli in vitro and in vivo (14). Kmietzyk et al. (35) found that

METTL3 overexpression reduced pathological cardiac

hypertrophy, myocardial fibrosis and collagen transcription. FTO

knockout attenuated cardiomyocyte hypertrophy in

phenylephrine-stimulated cardiomyocyte hypertrophy, while

METTL3 knockout increased cell size. These studies overlap in

their assertion that METTL3 plays an important role in

supporting cardiac homeostasis and hypertrophic stress responses

in mice. A subsequent study by Lu et al. (36) validated the

effects of METTL3 overexpression on myocardial hypertrophy. A
frontiersin.org
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TABLE 1 Roles of m6A enzymes in the cardiovascular system.

Cardiovascular
disease

Effector Expression Targeted
genes

Ref.

IHD
METTL3 Upregulation primary miR-

143; TFEB;
DGCR8; Smad2/
3; lncRNAH19

(25–29)

WTAP Upregulation ATF4 (30)

METTL4 Upregulation Wnt1;
lncRNAH19

(28, 31)

FTO Downregulation SERCA2a (32)

METTL3 Downregulation Bax and PTEN (33)

Cardiac hypertrophy and HF
HF FTO Downregulation SERCA2A,

MYH6/7, RYR2;
Mhrt; FOXO1,
FOXO4, ELF2,
EIF5a; SMYD1,
DICER1,
RBM20; ERK,
MDM2; Pgam2

(13, 23,
24, 34)

Pathological
hypertrophy

METTL3 Upregulation Arhgef3, Myl2;
MAP3K6,
MAP4K5,
MAPK14; P300;
miR-221/222

(14,
35–37)

Physiological
hypertrophy

METTL14 Downregulation Phlpp2 (38)

Hypoxic stress myocardium
ALKBH5 Upregulation WNT5A (39)

METTL3 Upregulation NCBP3 (40)

ADA
FTO Upregulation Klf5 (41)

METTL14 Downregulation No mention (42)

Aortic valve calcification
METTL3 Upregulation TWIST1 (43)

Myocardial inflammation and sepsis
FTO Downregulation IL-6 and TNF-α (44)

Atherosclerosis
METTL14 Upregulation FOXO1; Myd88 (6, 45)

METTL3 Downregulation EGFR (46)

Cardiomyopathy
Hyperlipidemia-
induced
Cardiomyopathy

FTO Upregulation CD36 (47)

DCM YTHDC1 Downregulation Titin (48)

FTO Downregulation Mef2a, Klf15,
Bcl2l2, Cd36,
and Slc25a33

(49)

Hypoxic pulmonary arterial hypertension
METTL3 Upregulation PTEN (50)

METTL14 Upregulation SETD2 (51)

IHD, ischemia heart disease; HF, heart failure; ADA, aortic dissecting aneurysm;

DCM, dilated cardiomyopathy.
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post-translational process termed ubiquitination has been reported

to mediate protein stability, intracellular trafficking, and enzyme

activity. Lu et al. revealed that USP12 promoted Ang II-induced

cardiomyocyte hypertrophy; METTL3 expression was induced by

Ang II but was downregulated in USP12 knockdown neonatal rat

cardiomyocytes (NRCMs). Upregulation of METTL3 reversed the
Frontiers in Cardiovascular Medicine 04
decrease in myocardial hypertrophy induced by AngII in USP12-

silenced NRCMs. Similarly, METTL3 was interacted with Parp10

mRNA, and participate in the prohypertrophic effect of CHAPIR

(53). Xu et al. (54) found that the m6A reader YTHDF2 was

increased in both human and mice HF samples. Furthermore,

YTHDF2 suppressed cardiac hypertrophy via m6A-mediated

degradation of Myh7 mRNA. These studies indicate the potential

roles of m6A in pathological cardiac hypertrophy and HF

(Figure 2).
3.2. Physiological cardiac growth and
regeneration

Loss of cardiomyocytes following cardiac injuries plays a key

role in the development of heart failure. In mammals,

cardiomyocytes have long been considered as permanent cells

with no ability to proliferate. However, recent studies show that,

in fact, cardiomyocytes in mammals have some degree of

regenerative capacity during development and very soon after

birth (55). m6A is involved in cardiomyocyte proliferation

and differentiation (56). A study showed that m6A modification

and m6A peaks were lowest in 1-day-old mouse hearts than at

7 and 28 days after birth (57). Zhenbo Han et al. (58)

investigated the importance of m6A alteration in heart

regeneration during postnatal and adult injury. As expected,

m6A demethylase ALKBH5 was downregulated, while the global

m6A level was increased after birth. Cardiac function and

regeneration ability decreased significantly in ALKBH5

knockout mice after neonatal apex resection. After induction of

ALKBH5 expression, the myocardial infarction area was

significantly reduced, cardiac function was restored, and CM

proliferation was promoted after myocardial infarction in young

and adult mice. ALKBH5 promoted YAP translation by

increasing YTHDF1 levels. Interestingly, two similar proteins,

YTHDF1 and YTHDF3, reportedly yield distinct effects on the

same biological process (59). Recent evidence revealed that

although YTHDF1 and YTHDF3 play diverse roles in

embryonic stem cell-derived cardiac differentiation, they exhibit

decreased levels. Loss of YTHDF1 could downregulate

cardiomyocyte-specific genes and impair their differentiation. In

contrast, YTHDF3 knockdown promoted differentiation by

upregulating CM-specific genes (59).

Multiple studies have demonstrated that the endogenous

regenerative potential of cardiomyocytes in the adult heart can

be activated by interventions like exercise, and exercise can

induce physiological cardiac hypertrophy in the heart. Although

pathological cardiac hypertrophy and physiological cardiac

hypertrophy appear similar, the underlying mechanisms that

exist are fundamentally different. m6A is reportedly essential for

exercise-induced physiological cardiac hypertrophy (38).

METTL14 is downregulated during exercise-induced

physiological cardiac hypertrophy, while METTL14 knockdown

impairs cardiac dysfunction during ischemia-reperfusion

remodeling. Mechanistically, METTL14 mediates cardiomyocyte

development and apoptosis by suppressing Phlpp2 mRNA m6A
frontiersin.org
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FIGURE 2

m6A methylation in cardiac hypertrophy and heart failure (HF). See main text for more details.

FIGURE 3

m6A methylation in ischemia heart disease. See main text for more details.
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modifications and activates Akt-S473. microRNAs are important in

both cardiac pathologies and physiologies. microRNA-222 (miR-

222) was upregulated in exercise-induced physiological cardiac

hypertrophy, protecting heart against adverse remodeling (60). It

has been reported METTL3 directly regulate miR-221/222 by

promoting miR-221/222 maturation in Ang-II-induced cardiac

hypertrophy, subsequently activating the Wnt/β-catenin pathway

(37). Overall, these studies indicate m6A is essential in preserving

cardiac homeostasis and associated with cardiac regeneration.
Frontiers in Cardiovascular Medicine 05
The above findings support the important roles of m6A

modification in cardiac hypertrophy (physiological and

pathological) and heart failure, highlighting that it is a

promising therapeutic strategy for the diagnosis and

therapy of HF. In addition, finding the targets of

physiological cardiac hypertrophy may be of great significance

for the treatment of pathological cardiac hypertrophy,

and the m6A-dependant way may be an important target

(Figure 2).
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FIGURE 4

m6A methylation in atherosclerosis. See main text for more details.

FIGURE 5

m6A methylation in hypoxic pulmonary hypertension. See main text for more details.
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4. Ischemic heart disease

4.1. Myocardial infarction (MI)

IHD represents a significant threat to public health worldwide.

Gong et al. (25) demonstrated that myocardial infarction was

decreased and cardiac function improved in METTL3 knockout

mice, consistent with findings reported by Song et al. (26), who

demonstrated that METTL3 is a negative regulator of autophagy

in cardiomyocytes; however, ALKBH5 has the opposite effect.
Frontiers in Cardiovascular Medicine 06
There is an increasing consensus that METTL3 and METTL14

are increased in hypoxic and reoxygenated(H/R) cardiomyocytes

and IR myocardium (26, 31, 40). The upregulation of METTL3

was found to suppress autophagic flux and potentiate apoptosis

in H/R-treated cardiomyocytes. TFEB is a key downstream target

gene of METTL3, and TFEB mRNA expression decreases after

METTL3 overexpression. Overexpression of TFEB or ALKBH5

reversed the effect of METTL3 on H/R cardiomyocytes. In

addition, METTL3 interacted with NCBP3, facilitating the

translational process in the myocardium under hypoxia stress
frontiersin.org
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(40). Thus, METTL3-mediated m6A modification represents a

pivotal hypoxic stress response.

m6A level is increased in fibrotic tissues after an MI and in

TGF-β1-treated CFs. METTL3 is the most significantly altered

protein. It has been reported that METTL3 overexpression

activated CF deposition and promoted collagen synthesis and

deposition, while its inhibition improved myocardial fibrosis and

cardiac function (27).

Unlike retina angiogenesis (61), no METTL3 upregulation has

been observed in hypoxic cardiac microvascular endothelial cells

(CMECs) (39). In contrast, significant ALKBH5 upregulation was

observed in hypoxic CMECs, which impaired their proliferation,

migration, and tube formation, while m6A levels were decreased.

ALKBH5 knockdown increased angiogenic phenotypes in

hypoxic but not in normoxic CMECs. ALKBH5 regulated

postischemic angiogenesis by post-transcriptional modulating and

destabilizing WNT5A mRNA in an m6A-dependent manner

(39). In addition, sympathetic hyperactivity after myocardial

infarction is related to METTL3 (62), which supports the old

concept of the brain-heart axis in neurocardiology (63).
4.2. Myocardial ischemia-reperfusion (MI/R)

Timely revascularization is the standard care treatment of IHD,

but the recovery of blood flow after myocardial ischemia can cause

further tissue damage [myocardial ischemia-reperfusion (MI/R)

injury] (64). An increasing body of evidence from recently

published studies suggests that m6A modification is present in

many important pathological processes, such as cell death

(apoptosis, pyroptosis), autophagy, and endoplasmic reticulum

stress, which have played significant roles on MI/R and were

validated by bioinformatics analysis (65).

Oxidative stress and apoptosis are important pathological

processes in ischemia-reperfusion injury (IRI) (66). The

pathophysiological processes can be fine-tuning via epigenetic

post-transcriptional modifications, such as m6A methylation, by

regulating post-transcriptional RNA levels. METTL14, as a

“writer” protein, is upregulated during ischemia-reperfusion and

oxidative stress-induced cardiomyocyte injury. METTL14

deficiency aggravates myocardial injury and dysfunction. It has

been reported that METTL14 overexpression significantly

alleviated infarct size and apoptosis and improved cardiac

function during I/R injury. Further study found that METTL14

activated the Wnt/β-catenin signaling pathways through

methylating Wnt1 mRNA. Wnt1 knockout eliminated the

METTL14-mediated protective effect against myocardial injury

and apoptosis (31). Shen et al. (34) demonstrated that FTO

inhibits H/R cardiomyocyte apoptosis by regulating Mhrt mRNA.

Hypoxic preconditioning/ischemic preconditioning(HPC/IPC) is

reportedly protective against myocardial ischemia/reperfusion

(MIRI) (67). H19, an imprinted lncRNA, participates in MIRI

and cardiomyocyte hypertrophy (68, 69). Y. Su et al. (28)

demonstrated that METTL3 and METTL14 interact with lncRNA

H19 to reduce H9c2 cell apoptosis, highlighting their importance

in HPC treatment.
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Current evidence suggests that during myocardial IRI,

endoplasmic reticulum (ER) stress is important in I/R-induced

damage mediated by m6A. Wang et al. (30) demonstrated that

WTAP targeted activating transcription factor 4 (ATF4), one of

the stress-responsive transcription factors, by activating ATF4

mRNA stability. Mechanistically, WTAP knockdown

downregulated ATF4 mRNA stability and protected

cardiomyocytes against apoptosis and ER stress. In contrast,

overexpression of WTAP induced apoptosis and ER stress.

Pyroptosis is involved in many pathological processes,

including MI/R injury, METTL3 aggravated cardiomyocyte

pyroptosis through promoting DGCR8 binding to pri-miR-143-

3p, thus inhibiting PRKCE transcripton (29).

Xuan Su found that the global level of m6A methylation and

METTL3 protein were down-regulated both in young and elderly

hearts after I/R injury, while FTO was only decreased in aging

myocardium (33). In line with this, in vitro studies revealed that

FTO was decreased in hypoxic cardiomyocytes (13, 70).

Overexpression FTO reversed MI-induced high levels of m6A,

reduced the myocardial infarction area and the degree of fibrosis,

and enhanced angiogenesis (13). FTO targets SERCA2a and plays

an important role in calcium homeostasis, enhancing the energy

metabolism of H/R cardiomyocytes and cardiac contraction

(13, 32). FTO enhanced the stability of YAP1 mRNA in

cardiomyocytes following H/R injury by disrupting the m6A

modification of YAP1 mRNA (70) (Figure 3). myocardial fibrosis

was relieved after FTO overexpression. It has been confirmed the

interaction between FTO demethylates and a series of mRNAs,

such as Mef2a, Klf15, Bcl2l2, Cd36, Slc25a33 (49).

Overall, m6A expression in myocardial ischemia-reperfusion

injury is complex. Similar proteins often have different functions in

the heart and exhibit significant heterogeneity in distribution with

age and body part. Even the distribution of m6A proteins varied in

different parts of the heart (71). Further research is warranted to

uncover the different functions of m6A modifications in MI/R.
5. Aortic dissecting aneurysm (ADA)

It is widely acknowledged that ADA features an intimal flap

separating the true and false lumens (72). Growing evidence

suggests that the m6A methylation is significantly altered in ADA

tissue (41, 42), although significant inconsistencies have been

reported in the literature.

In Ma et al.’s study (41), FTO expression was significantly

upregulated in human aortic dissection (AD) tissues compared to

the aortic aneurysm (AA) group. Another study reported

significantly decreased FTO expression in AD tissue samples

compared with normal samples, while METTL14 was

significantly upregulated (42).

Current evidence suggests that forced expression of FTO

potentiates vascular smooth muscle cell proliferation and

migration and upregulation of its target gene, Klf5 (41). m6A

levels play a determining role in the abdominal aortic aneurysm

(AAA) and ADA (73), regulating the metabolism and stability of
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mRNA, suggesting that m6A represents a potential target to

prevent aortic diseases.
6. Aortic valve calcification (AVC)

Aortic valve calcification is one of the most common cardiac

valvulopathies. Current evidence suggests that human aortic valve

interstitial cells (hVICs) are predominantly found in the aortic

valve. It has been shown that METTL3 is upregulated, and twist-

related protein 1 (TWIST1) is downregulated in AVC. Luciferase

reporter assays and MeRIP-qRT-PCR confirmed the interaction

between METTL3 and TWIST1. Further study showed that

METTL3 inhibited TWIST1 and promoted osteogenic

differentiation of human aortic valve interstitial cells via an m6A-

YTHDF2-dependent pathway (43).
7. Inflammation and sepsis

Sepsis is an organ dysfunction-related systemic inflammatory

response to infection associated with high morbidity and mortality

rates globally (74). Cardiovascular dysfunction attributed to sepsis

was first documented in 1951 by Waisbren (75). A higher mortality

rate has been observed in sepsis patients presenting with

cardiovascular dysfunction than those without (76). Although many

pathways and mediators have been associated with myocardial

depression in sepsis, the exact cause remains obscure (77).

A study on sepsis-induced myocardial dysfunction revealed

that in septic heart tissues, the global m6A levels were

significantly decreased; The changes of the m6A modification

levels were significantly in mRNAs and lncRNAs. Pathway

analyses revealed significant enrichment in immune and

inflammatory response pathways (78). In contrast, Dubey et al.’s

research showed increased m6A modification with downregulated

FTO in LPS-induced myocardium in vitro and in vivo (44).

Although the two studies yielded contrasting findings, m6A

modification remains crucial in inflammatory signaling pathways

of the sepsis myocardial injury model. The genes of

inflammatory cytokines (IL-6, TNF-α, IL-1β) were upregulated,

and left ventricular function was reduced in the sepsis hearts

(44). Feng et al. found that by mediating the alternative splicing

of MyD88, METTL3 could inhibit the inflammatory response

triggered by lipopolysaccharides (79). In another study by Jian

et al. (6), METTL14 expression but not METTL3 expression was

significantly increased in endothelial cell inflammation induced

by TNF-α, suggesting that METTL3 and METTL14 play different

regulatory roles in m6A modification although they work

synergistically. Macrophages represent a vital immune system

component and are crucial in the inflammatory process. Rui Yu

et al. revealed upregulation of YTHDF2 during the LPS-induced

inflammatory response of macrophages (80). YTHDF2

knockdown promotes the release of proinflammatory cytokines

and exacerbates inflammation in LPS-stimulated RAW 264.7 cells

by activating MAPK and NF-κB signaling pathways.
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Overall, m6A modification represents a potential target to

attenuate cardiac inflammation and dysfunction during

endotoxemia or sepsis.
8. Atherosclerosis

Atherosclerosis is the dominant cause of cardiovascular

diseases, characterized by lipid accumulation in the walls of

arteries (81). Overwhelming literature substantiates

atherosclerosis as a chronic inflammatory disease associated with

lipid accumulation (82, 83). There is a rich literature available

substantiating that epigenetic processes, including DNA

methylation, histone modification and m6A RNA methylation,

play an important role in atherosclerosis (6, 46, 47, 84).

Growth factor receptors (EGFR) can accelerate the formation

of atherosclerotic lesions (85). It has been reported that METTL3

is decreased in atherosclerosis regions. Further studies

demonstrated that m6A modification of the EGFR mRNA 3′
UTR contributes to atherogenesis (46). A mechanistic analysis

revealed that m6A could interact with the EGFR mRNA; m6A

modification of the EGFR 3′UTR accelerated its mRNA

degradation leading to endothelial dysfunction. Moreover,

METTL3 overexpression significantly reduced EGFR activation

and endothelial dysfunction during oscillatory stress (OS).

Thrombospondin-1 (TSP-1), a shear-sensitive protein, is vital in

regulating vascular remodeling. Interestingly, TSP-1/EGFR

inhibition using shRNA and AG1478 prevented atherosclerosis

development. These results suggest that METTL3 and m6A

modifications could alleviate endothelial activation and

atherogenesis by accelerating the degradation of oscillatory

flow-induced EGFR mRNA expression (46). Jian et al. (6)

found that downregulated METTL14 expression could suppress

endothelial inflammation and atherosclerotic progression.

Furthermore, in vivo experiments were carried out in METTL14

knockout mice. After 12 weeks of western diet (WD) feeding, a

significant decrease in lesion size was observed in METTL14

knockout mice. METTL14 interacted with FOXO1 enhancing its

translation by increasing m6A modification, thus upregulating

the expression of adhesion molecules, regulating endothelial

monocyte adhesion, and participating in atherosclerosis

progression. Similarly, it has been reported that the knockdown

of METTL14 mitigates the macrophage inflammatory response

by promoting M2 polarization via the NF-κB pathway (45).

Since METTL3 and METTL14 are “writers”, they should

theoretically have similar functions. However, current evidence

suggests synergistic m6A proteins play diverse roles in different

models and pathways.

As mentioned above, lipid accumulation is an important

factor in atherosclerosis progression. It is now understood that

a high-fat diet (HFD) leads to cardiac lipid deposition in

obesity cardiomyopathy. In contrast, intermittent fasting (IF)

(ad libitum feeding alternated with fasting periods) has been

reported to yield cardioprotective effects (86). A study showed

that IF could ameliorate the effects of HFD-induced cardiac

dysfunction and serum lipid metabolic disorder (87). IF
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downregulated the mRNA levels of genes associated with fatty

acid uptake and synthesis, upregulated fatty acid catabolism

genes, and decreased the m6A methylation levels (decreased

METTL3 expression and increased FTO expression) in HFD-

induced obesity cardiomyopathy (87). Consistently, the LuHui

Derivative (LHD), a novel synthetic anthraquinone compound,

has been reported to reduce lipid deposition in cardiomyocytes

(47). Interestingly, the cluster of differentiation 36 (CD36) as a

downstream target of LHD participates in treating cardiac

inflammation triggered by palmitic acid. LDH can bind to FTO

and elevate intracellular m6A levels, alleviating hyperlipidemia-

induced inflammation in cardiomyocytes. Moreover, FTO

overexpression significantly upregulated CD36 expression and

inhibited LHD’s anti-inflammatory effects. Conversely,

silencing FTO inhibited cardiac inflammation induced by

palmitic acid by decreasing the stability of CD36 mRNA (47)

(Figure 4).
9. Hypoxic pulmonary hypertension

HPH is a cardiopulmonary disease featuring increased

pulmonary artery pressure and remodeled small pulmonary

arteries conducive to right heart failure (88, 89). Epigenetic

processes, such as DNA methylation, are pharmacologically

reversible, making them an attractive target as therapeutic

strategies for pulmonary arterial hypertension (PAH) (90). It is

widely thought that m6A modifications mediate the development

of HPH.

Qin et al. (50) and Hu et al. (91) used pulmonary artery

smooth muscle cells (PASMCs) and hypoxic rat models to

study m6A modifications in hypoxic pulmonary hypertension.

The results showed that METTL3 and YTHDF2 were highly

expressed in hypoxia-induced PASMCs and hypoxic

pulmonary arteries (50), similar to YTHDF1 (91). Phosphatase

and tensin homologue (PTEN) is reportedly the target gene of

METTL3, and its increased degradation has been strongly

associated with high YTHDF2 expression. Downregulation of

METTL3 prevented PASMC proliferation and migration

induced by hypoxia; however, downregulation of PTEN yielded

the opposite effects by triggering the PI3K/Akt signaling

pathway. The importance of the METTL3/YTHDF2/PTEN axis

in HPH has been established (50). Similarly, Hu et al.

confirmed that YTHDF1 knockdown could ameliorate

proliferation phenotype switch and pulmonary hypertension

development by targeting MAGED1 in vivo and in vitro.

YTHDF1 could recognize and promote the translation of

MAGED1. In addition, MAGED1 silencing mitigated

pulmonary artery smooth muscle cell proliferation induced by

hypoxia (91). Most importantly, Zhou et al. (51) found that

SETD2 and METTL14 are promising targets in PAH. SETD2

deficiency could alleviate pulmonary arterial pressure and

pathologic remodeling and improve right ventricular function

and cardiac hypertrophy in hypoxia-induced PAH.

Furthermore, silencing SETD2 in SMCs markedly decreased

METTL14 and global m6A levels in PAH (Figure 5).
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With a refined understanding of the epigenetic processes

involved in PAH, m6A RNA methylation has huge prospects as a

target to prevent and treat this patient population.
10. Dilated cardiomyopathy (DCM)

DCM is a condition whereby the left ventricle is dilated and

associated with systolic dysfunction (92). In DCM, the total

m6A levels were higher than normal hearts, while FTO protein

were downregulated. FTO overexpression improved cardiac

function in DCM mice (49). Genetic mutation of sarcomeric

genes is an important cause of DCM (92). Although its

mechanisms remain elusive, Gao et al. (48) established that

YTHDC1 knockdown led to DCM. Current evidence suggests

that Titin (TTN) mutations are responsible for 20%–25% of

sarcomeric gene mutations, and an increased ratio of N2BA:

N2B (two major Titin mRNA isoforms) is conducive to DCM.

Dysregulated Titin pre-mRNA splicing results in an uneven

N2BA: N2B ratio. Further research indicated that YTHDC1

deficiency causes aberrant splicing of Titin, increasing the ratio

of N2BA: N2B isoform, ultimately leading to DCM. Overall,

YTHDC1-dependent Titin splicing has huge prospects for

treating DCM (48).
11. Cardiotoxicity

Cardiotoxicity is a well-known adverse effect of anticancer

drugs (93, 94). Acute cardiotoxicity often presents with

electrocardiogram (ECG) changes and arrhythmias, which lead

to palpitations, presyncope and syncope, and even cardiac

arrest. Chronic cardiotoxicity includes ventricular dysfunction,

dilated cardiomyopathy, and heart failure (94). Tumor therapy

drugs, such as doxorubicin (DOX) and cyclophosphamide

(CYP), have raised significant concern, given their

cardiotoxicity (95, 96). The past decade has witnessed a

burgeoning interest in the molecular pathways of cardiotoxicity,

including m6A modification.

Zhuang et al. found that ferroptosis is crucial in DOX-induced

cardiotoxicity and may be associated with m6A RNA modification

(95). The long noncoding RNA KCNQ1OT1, a miR-7-5p sponge,

is modified by m6A through the action of METTL14. Besides, it has

been established that miR-7-5p targets METTL14. Such a feed-

forward mechanism emphasizes METTL14’s crucial contribution

to ferroptosis and cardiotoxicity attributed to DOX. Our findings

suggest that a novel treatment strategy to manage DOX-induced

cardiac injury may involve selectively reducing ferroptosis in

cardiomyocytes, which is mediated by a METTL14/KCNQ1OT1/

miR-7-5p positive feedback loop. Interestingly, cyclophosphamide

has been associated with cardiac electrical and contractile

alterations. In addition, cyclophosphamide can reportedly induce

RNA m6A modification by upregulating METTL3 expression and

suppressing JPH2 expression (96). These findings indicate that

m6A is a potential target for preventing and treating drug-

induced cardiotoxicity.
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12. Conclusion and future perspectives

Epigenetics is a hot scientific research topic in recent years. In

this review, we provided a comprehensive overview of the critical

roles and mechanisms of m6A methylation in CVDs (Table 1).

In general, m6A exists commonly with significant and complex

roles. For example, the role of the same protein is distinct in

different cells and exhibits heterogeneous levels in the same

tissue (24, 61). In addition, different conclusions are gained from

the same research topic, in Ma et al.’s study, FTO expression was

elevated in human AD tissues (41), but downregulated in AD

tissue in another study (42). Even different levels of METTL3

and METTL14 proteins have been documented in anatomical

regions of mouse adult hearts, and these levels were altered with

aging (71).

With the rapid development of detection methods and artificial

intelligence (AI) are applied in discovery of m6A targeting drugs,

m6A modulators will be the potential and promising therapeutic

targets in the future.

To date, many compounds targeting m6A methyltransferase

and demethylases have been identified, especially in cancers.

For example, METTL3 inhibitor is emerging as a new target to

treat acute leukemia (97) and so is YTHDF2 inhibitor (98).

Paris et al. (99) found a new lead treatment with FTO inhibitor

in glioblastoma. FB23-2, an inhibitor of FTO, impairs

proliferation and enhances differentiation of acute myeloid

leukemia (AML) cells (100).

The cardiovascular regulating roles of m6A modulators are

relatively fewer than cancers. IOX1, an inhibitor of ALKBH5,

was loaded onto ferritin nanocage and it was found to

effectively improve cardiac function (101). FTO is

overexpressed in human artery specimens of obese individuals,

and its inhibitor rhein or FB23-2 exerts protective effect with

increasing prostaglandin D2 production and myogenic tone

(102). Thus, m6A modulators are of translational and

therapeutic interests in either cancers or cardiovascular

diseases. But only a few of identified regulators are druggable

and suitable for treatment. Due to the poor target

specificity, pharmacokinetics, therapeutic safety and efficacy

(99, 100), none of the regulators has been approved for

clinical treatment.

Since m6A targeted drugs are widely used in tumors. As

mentioned before, tumor drugs will cause cardiotoxicity in the

application process. If an m6A regulated drug can be developed,
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it will kill two birds with one stone by acting on tumors while

reducing their cardiotoxicity. Moreover, among all the studies of

HF and ischemia heart, FTO and ALKBH5 have been proved to

be therapeutic and studied most frequently, we speculate that

compounds of m6A erasers could hold translational therapeutic

value to treat ischemic hearts and HF. More experimental and

clinical evidence is needed to substantiate the role of m6A

methylation. Researching and developing targeted drugs for

different diseases and various stages of the same disease can be

challenging and promising, emphasizing the need for further

studies.
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