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Background: Ischemic stroke (IS) is one of the most common serious secondary
diseases of atrial fibrillation (AF) within 1 year after its occurrence, both of which have
manifestations of ischemia and hypoxia of the small vessels in the early phase of the
condition. The fundus is a collection of capillaries, while the retina responds differently
to light of different wavelengths. Predicting the risk of IS occurring secondary to AF,
based on subtle differences in fundus images of different wavelengths, is yet to be
explored. This study was conducted to predict the risk of IS occurring secondary to
AF based on multi-spectrum fundus images using deep learning.
Methods: A total of 150 AF participants without suffering from IS within 1 year after
discharge and 100 IS participants with persistent arrhythmia symptoms or a history
of AF diagnosis in the last year (defined as patients who would develop IS within
1 year after AF, based on fundus pathological manifestations generally prior to
symptoms of the brain) were recruited. Fundus images at 548, 605, and 810 nm
wavelengths were collected. Three classical deep neural network (DNN) models
(Inception V3, ResNet50, SE50) were trained. Sociodemographic and selected
routine clinical data were obtained.
Results: The accuracy of all DNNs with the single-spectral or multi-spectral
combination images at the three wavelengths as input reached above 78%. The IS
detection performance of DNNs with 605 nm spectral images as input was relatively
more stable than with the other wavelengths. The multi-spectral combination models
acquired a higher area under the curve (AUC) scores than the single-spectral models.
Conclusions: The probability of IS secondary to AF could be predicted based onmulti-
spectrum fundus images using deep learning, and combinations of multi-spectrum
images improved the performance of DNNs. Acquiring different spectral fundus
images is advantageous for the early prevention of cardiovascular and
cerebrovascular diseases. The method in this study is a beneficial preliminary and
initiative exploration for diseases that are difficult to predict the onset time such as IS.

KEYWORDS

ischemic stroke, atrial fibrillation, deep learning, fundus image, multi-spectrum
Abbreviations

AF, atrial fibrillation; IS, ischemic stroke; BMI, body mass index; ANOVA, one-way analysis of variance; SD,
standard deviation; ROC, receiver operating characteristic; AUC, area under the curve scores; SCN,
suprachiasmatic nucleus; ipRGCs, intrinsically photosensitive retinal ganglion cells.
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1. Introduction

Cardiovascular diseases are the leading cause of mortality and

disability worldwide, accounting for 32% of all death, and a major

cause of rising healthcare costs (1). Of the cardiovascular diseases,

atrial fibrillation (AF) is the most general type of cardiac

arrhythmia. AF makes the rapid contractions of the heart weaker

than normal contractions, resulting in a slower flow of blood in

the atrium and further the formation of blood clots. When a clot

leaves the heart, travels to the brain, and blocks blood flow

through cerebral arteries, an ischemic stroke (IS) may occur (2).

IS accounts for about 80% of stroke cases worldwide, while

stroke have become a leading cause of morbidity and mortality

worldwide (3).

AF is a major and independent risk factor for IS, making it a

common and serious secondary disease of AF, and carries a

fivefold increased risk of stroke (4). AF-related stroke cases are

more severe than other types of stroke (5). Approximately 15%–

30% of patients with AF are asymptomatic, and symptoms such

as impaired functions may not be directly associated with the

onset or recurrences of arrhythmia (6). Although the cause of

approximately one-third of IS occurrences is unknown, silent

paroxysmal AF is the most presumed etiology, especially in

middle-aged healthy individuals, and it is predominantly the

cause of IS rather than the trigger (7). It is reported that 61% of

AF patients have IS within 1 year of their AF diagnoses, but only

13.6% received the most common warfarin therapy within 30

days of diagnosis (4). Therefore, the prevention of stroke

secondary to AF can significantly reduce the rate of disability

and mortality.

The general manifestations of the development of IS are blood

vessel ischemia and hypoxia (8), as well as decreased vessel density

and reduced oxygen metabolism in the retina (8–10). These eye-

related symptoms are due to the anatomic and developmental

characteristics of the eye, which is an extension of the central

nervous system (CNS) (11, 12). These shared anatomical and

physiological features make the eyes a good target for brain

research. Since the vasculatures of the eye and the heart are

exposed to the same intrinsic and environmental factors, various

features in the retina may reflect the systemic health of the

cardiovascular system as well as the associated risks (13, 14).

Markers of cardiovascular diseases are also manifested in the eye,

such as hypertensive retinopathy and cholesterol embolism (14).

As a common cardiovascular disease, AF decreases cardiac

output by 20%–30%. Blood supply is also reduced along the

CNS, causing ischemia and hypoxia of the entire CNS including

the retina (15, 16) and the reduced retinal blood flow (17).

Hence, the fundus involved to blood oxygen and blood flow is

an important window for studying AF and AF secondary IS.

Technological advancements have led to the non-invasive

visualization of blood vessels and imaging of the fundus (14).

However, there is a rich collection of capillaries in the fundus

(13), and microvasculature and macrovasculature are mutually

affected in an intertwined manner (18). Machine learning,

especially deep learning, can help capture the subtle differences

in image information to identify abnormalities. Deep learning
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has also been leveraged for a variety of classification and

prediction tasks (19). For example, deep learning combined with

retinal images has been studied in the diagnosis of cardiovascular

conditions (20) and stroke (21). Further, taking into

consideration, the retina responds differently to lights at different

wavelengths since it contains the protein photopsin in modified

conformations to enable activation by light at different

wavelengths (22). Therefore, in the present study, three

representative deep neural networks (DNNs), Inception V3 (23),

ResNet50 (24), and SE50 (25), based on fundus images at

different wavelengths, were used to predict the occurrence risk of

IS secondary to AF.
2. Materials and methods

2.1. Participants

This prospective study was conducted in Beijing, with a total of

150 AF and 100 IS recruited participants. The inclusion criteria of

AF participants were as follows: (1) Chinese Han population, (2)

aged 45–85 years old, (3) diagnosed with AF, (4) without a

history of IS or symptoms of dizziness and headache, and (5)

with no stroke at least for 1 year after the occurrence of AF

(information obtained from the subsequent follow-up). The

exclusion criteria were as follows: (1) neuropsychiatric disorders,

(2) ophthalmic diseases, especially fundus diseases, and other

diseases obviously affecting the eyes, and (3) any other serious

physical illnesses or injuries.

The inclusion criteria of IS participants included the following:

(1) Chinese Han population, (2) aged 45–85 years old, and (3)

diagnosed with IS with an unknown cause or with a history of

the diagnosis of AF/symptoms of persistent palpitations and

arrhythmia in the last year. The exclusion criteria included the

following: (1) neuropsychiatric disorders and other neurological

diseases; (2) ophthalmic diseases, especially fundus diseases, and

other diseases obviously affecting the eyes; and (3) other serious

physical illnesses or injuries.

Sociodemographic data, including age, years of education, and

current body mass index (BMI), were collected. Clinical data,

including a history of substance abuse and dependence, were

obtained according to medical records and self-reports and

confirmed by the next of kin and family members.

The present study was approved by the ethics committee of

Beijing Yanhua Hospital and Beijing Xuanwu Hospital of Capital

Medical University and performed in accordance with the

Declaration of Helsinki, with obtained written informed consent.
2.2. Laboratory tests and statistical analysis

The BMI, systolic and diastolic blood pressure, and selected

biochemical markers (high-density lipoprotein, low-density

lipoprotein, aspartate aminotransferase, alanine aminotransferase,

gamma-glutamyl transferase, triglyceride, total cholesterol,

glucose, and uric acid) of the participants were recorded. These
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data were from the case notes and routine laboratory tests of the

participants.

The normality of all variables was assessed using the

Kolmogorov–Smirnov test. The high-density lipoprotein, low-

density lipoprotein, aspartate transaminase, gamma-glutamyl

transferase, triglyceride, cholesterol, and glucose were not

normally distributed. Subsequently, the Mann–Whitney rank sum

test, one-way analysis of variance, and chi-square analysis were

used to compare differences of general demographic and clinical

data between groups (Table 1). All statistical analyses were

performed using the IBM SPSS Statistics software for Windows,

Version 20.0 (IBM Corp., Armonk, NY, USA) with a significance

level of 0.05 and a two-sided test.
2.3. Data set

The data set consisted of fundus images of the participants with

AF and with IS at 548, 605, and 810 nm wavelengths obtained by

the fundus multi-spectral imaging system (26, 27).

AF has a fivefold increased risk of stroke (4), and nearly 31%

of the patients diagnosed with AF had secondary IS (28).

However, approximately 30% of AF patients had no obvious

symptoms, and AF is often diagnosed after IS had occurred,

especially in middle-aged healthy people, so the patients with

IS of unknown etiology are usually considered to have IS

caused by asymptomatic paroxysmal AF (7). Consequently, the

patients with IS in this study were considered as patients with

IS secondary to AF. It has also been reported that some ocular

symptoms of neuropsychiatric diseases occur up to 5 years

before classical symptoms, and retinal pathological

manifestations may precede symptoms of the brain (29). For

instance, fundus vascular changes were reported several years
TABLE 1 The demographic and clinical characteristics of AF and IS patients.

Variables AF group (n = 150) (Mean ± SD)
Age (years) 65.260 ± 9.825

Genderb 94/56

BMI 26.118 ± 3.968

Systole pressure 133.71 ± 23.556

Diastole pressure 82.20 ± 12.426

High-density lipoproteina (mM/L) 1.160 ± 0.466

Low-density lipoproteina (mM/L) 2.549 ± 0.908

Aspartate transaminasea (U/L) 29.015 ± 44.518

Alanine aminotransferase (U/L) 24.860 ± 20.564

Gamma-glutamyl transferasa (U/L) 28.120 ± 16.864

Triglyceridea (mM/L) 1.875 ± 1.686

Cholesterola (mM/L) 4.138 ± 1.215

Glucosea (mM/L) 6.642 ± 2.327

Uric acida (μmol/L) 340.893 ± 97.625

Hypertensionb 45/105

Hyperlipidemiab 60/90

Hyperglycemiab 84/66

All data were reported as mean± SD or percent using analysis of variance.
aMann–Whitney rank sum test.
bChi-square analysis.

*p < 0.05.
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before the onset of IS in chronic central diseases, while

microvasculature and macrovasculature are affected in an

intertwined manner (18). Therefore, it is assumed that the

patients with IS have had microscopic pathological

manifestations at least 1 year before stroke onset; however,

these pathological symptoms cannot be observed by the naked

eye, especially in the fundus blood vessels. Furthermore, 61%

of the patients with AF were diagnosed with IS within 1 year

(4). Therefore, in this study, the IS participants who reported

a history of AF or complained of palpitations and arrhythmia

were regarded as patients who would suffer from IS within 1

year after AF (defined as the IS group). Since it was difficult to

follow up with AF patients about whether they developed IS

due to the high dropout rate in outpatient follow-up, the little

possibility to predict the exact time of stroke onset in patients

with AF within 1 year, and the difficulty to contact patients

after their stroke had occurred; consequently, it is a beneficial

and advantageous preliminary exploration to regard the

fundus images of IS participants who reported a history of AF

or complained of palpitations and arrhythmia within the last

year as the fundus images of patients who would suffer from

IS within 1 year after AF. The AF participants in this study

were defined as AF group.
2.4. Data preprocessing

The original fundus images were pre-processed according to

the following process. First, each image was cropped along the

fundus imaging area and normalized to the size of 512 × 512.

Second, contrast limited adaptive histogram equalization

(CLAHE) was utilized to enhance the content of each spectral
IS group (n = 100) (Mean ± SD) F/Z/χ2 p
60.110 ± 9.150 14.832 0.000*

71/29 1.857 0.173

25.524 ± 3.173 1.573 0.211

133.39 ± 19.583 0.012 0.912

84.57 ± 13.233 2.072 0.151

1.374 ± 2.360 −1.789 0.074

2.656 ± 3.023 −1.745 0.081

26.264 ± 8.240 −1.876 0.061

31.132 ± 17.157 2.993 0.086

39.171 ± 22.779 −2.473 0.013*

1.269 ± 0.694 −2.007 0.045*

3.841 ± 1.223 −1.392 0.164

5.873 ± 1.831 −2.356 0.018*

317.623 ± 80.222 1.824 0.180

46/54 6.635 0.010

59/41 8.864 0.003

73/27 7.422 0.006
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FIGURE 1

The examples of image pre-processed at different wavelengths. (A) The original fundus images. (B) The pre-processed fundus images.
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fundus image. The illustrated examples of image pre-processed at

different wavelengths are shown in Figure 1.
2.5. Deep neural network

Three representative DNNs (Inception V3, ResNet50, SE50)

were used to validate the detection performance of IS based on

multi-spectral fundus images. Specifically, the single-spectral

fundus images and the multi-spectral combinations of images

at 548, 605, and 810 nm wavelengths were respectively taken

as input images to train the models. For multi-spectral

combinations, extra convolution kernels were used to extract

the desired features. The output value of each mode can be

interpreted as an approximate probability of IS occurrence,

which ranges from 0 to 1. The decision threshold that predicts

IS occurrence based on the model output value was set at 0.5.

It took 100 epochs to finish the entire training phase. The

training procedure utilized the Adam optimizer with a

learning rate of 0.001, a cross-entropy loss function, and a

minibatch size of 32.
2.6. Performance evaluation

The predictive performance of DNN models was assessed by

the receiver operating characteristic (ROC) curves and the area

under the curve (AUC) scores of the ROC. Furthermore, the

performance was quantitatively evaluated by the accuracy (Acc),

sensitivity (Sen), specificity (Spe), positive predictive value (PPV),

negative predictive value (NPV), and F1 score. The evaluation
Frontiers in Cardiovascular Medicine 04
metrics were defined as follows:

Acc ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Sen ¼ TP
TPþ FN

(2)

Spe ¼ TN
FPþ TN

(3)

PPV ¼ TP
TPþ FP

(5)

NPV ¼ TN
TNþ FN

(6)

F1 score ¼ 2TP
2TPþ FPþ FN

(7)

where TP, FP, TN, and FN represent “True Positive,” “False

Positive,” “True Negative,” and “False Negative,” respectively.

In addition, we performed global average pooling on the

convolutional feature maps before the final output layer

(softmax) and used those as features for a fully-connected layer

that produces the desired output. Subsequently, the attention

map was obtained by projecting back the weights of the output

layer onto the convolutional feature maps (30).
2.7. Hardware configuration

All DNNs were implemented in PyTorch and trained on an

Ubuntu 16.04.12 LST system of x86_64 architecture. The
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experimental hardware equipment of this system consisted of the

Intel Xeon 2.30 GHz CPU with 502 GB RAM and four NVIDIA

TITAN RTX GPUs.
3. Results

3.1. Demographic characteristics

Table 1 shows the demographic and clinical characteristics of

AF and IS patients, which showed consistent with the actual

characteristics of the two diseases. All the participants had no

history of substance abuse or dependence.
3.2. The performance of deep network
models for predicting the incidence of AF
secondary IS

The evaluation of the three DNN models for the prediction of

IS incidence in AF patients are demonstrated in Table 2. The ROC

curve is used to evaluate the performance of a binary diagnostic

classification method, and its AUC determines the inherent

ability of the model to discriminate between groups. Figure 2

shows the predictive performance using ROC curves of different

DNNs with different spectral fundus images as input. From the

AUC, the multi-spectral classification models had a better

prediction performance, especially when all the three wavelengths

were used for model training. The attention map could reflect

the importance of the image regions. Figure 3 illustrates the heat

map of attention, and the IS group had significantly more heat

map areas than the AF group.
4. Discussion

This study demonstrated that the probability of secondary IS in

AF patients could be predicted based on multi-spectrum fundus
TABLE 2 Performance of the DNNs trained with different input images at dif

DNNs Wavelengths of input
images (nm)

Acc Sen

Inception V3 548 0.863 0.809

605 0.858 0.753

810 0.845 0.787

548, 605 0.891 0.742

548, 605, 810 0.918 0.843

ResNet50 548 0.836 0.719

605 0.826 0.663

810 0.799 0.730

548, 605 0.845 0.685

548, 605, 810 0.904 0.843

SE50 548 0.785 0.663

605 0.854 0.798

810 0.840 0.742

548, 605 0.868 0.775

548, 605, 810 0.900 0.843
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images using deep learning. The accuracy of all DNNs using the

single-spectral images or multi-spectral combinations of 548, 605,

or 810 nm wavelengths as input reached above 78%, which is

better than the logistic regression method reported by Jung et al.

(31). The IS detection performance of DNNs using the 605 nm

spectral images as input was relatively more stable than using

other spectral images. The multi-spectral combination models

can acquire an AUC of 0.954, which is at least 0.41 higher than

the single-spectral models, suggesting that acquiring different

spectral fundus images is advantageous since they might show

different pathological microscopic features.

A large portion of the central nervous system is dedicated to

vision, and visual problems are prodromal symptoms of IS

events, but the treatment for stroke-related vision loss remains

limited (32). The non–image-forming or non-visual functions of

photoreceptive systems are primarily dependent on melanopsin

(33). Melanopsin is expressed by the intrinsically photosensitive

retinal ganglion cells (ipRGCs), which are a part of retinal

ganglion cells (33). The ipRGCs are the principal conduits for all

light input to the non–image-forming visual responses and also

receive input from the rod/cone photoreceptors (34), which

means that the role of the ipRGCs in non-vision involves the

whole photoreceptive system of the eye. The non–image-forming

or non-visual responses of the ipRGCs to light include the

alignment of the internal clock of the body to the environmental

day/night cycle, such as the sleep–wake cycle regulation and the

modulation of mood (34). Since the disturbance of sleep

circadian has been identified as an independent risk factor for IS

(35, 36), this suggests that IS probably related to light through

the ipRGCs.

The light was transmitted to the ipRGCs, and they depolarize

and project to the suprachiasmatic nucleus (SCN), which further

radiates widely to other regions and coordinates the internal

circadian synchronization. Disruptions to these biological

rhythms can cause abnormal physical changes and diseases

including cardiovascular and cerebrovascular diseases (37). For

instance, disrupted circadian rhythms are linked to a higher risk

of stroke. The disruption of circadian rhythms prior to ischemic
ferent wavelengths.

Spe PPV NPV F1 score AUC

0.900 0.847 0.873 0.828 0.913

0.931 0.882 0.846 0.812 0.910

0.885 0.824 0.858 0.805 0.904

0.992 0.985 0.849 0.846 0.945

0.969 0.949 0.900 0.893 0.954

0.915 0.853 0.826 0.780 0.883

0.938 0.881 0.803 0.756 0.887

0.846 0.765 0.821 0.747 0.863

0.954 0.910 0.816 0.782 0.892

0.946 0.915 0.898 0.877 0.940

0.869 0.776 0.790 0.715 0.878

0.900 0.845 0.867 0.821 0.900

0.908 0.846 0.839 0.790 0.875

0.931 0.885 0.858 0.826 0.920

0.938 0.904 0.897 0.872 0.953
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FIGURE 2

The ROC curves of DNNs using different spectral fundus images as
input. (A) The ROC curves of Inception V3 with single or multi-
spectral fundus images. (B) The ROC curves of ResNet50 with single
or multi-spectral fundus images. (C) The ROC curves of SE50 with
single or multi-spectral fundus images.
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events could lead to a prothrombotic state resulting in a heightened

predisposition for enhanced stroke damage and poor outcome (38).

A recent study reported that chronic circadian disruption increased

infarct volume in mice with middle cerebral artery occlusion (39).

In human studies, a rotating shift work disrupts circadian rhythms,

which is associated with an increased risk of stroke in women with

shift work (40). Also, insomnia exacerbates stroke outcomes,

including visual impairment (41). Interestingly, it was found that

post-stroke patients experienced improved cognitive function and

sleep after the 24h naturalistic lighting rehabilitation units (42),

certainly pointing to the non-visual effect of light. Post-stroke

depression may be related to complex circuitries involving the
Frontiers in Cardiovascular Medicine 06
cortical and subcortical regions (43), and sunlight therapy was

reported to improve the mental health of post-stroke patients

(42), which was consequently speculated to be related to the

ipRGCs signals acting on other brain regions through SCN brain

regions.

In the current study, several DNN models to predict the

occurrence risk of secondary IS in AF patients based on multi-

spectral fundus images all had a good performance, which might

attribute to the pathological microscopic changes in the fundus

caused by IS itself and its relationship with the circadian rhythm

and mood (for example, by the ipRGCs), which are not

recognized by the human eye. It is also reasonable to speculate

that these long-term, latent, or hidden symptoms in stroke

patients may be reflected in the microscopic changes of fundus

morphology and then in different spectra. Meanwhile, studies on

the relationship between AF, circadian rhythms, and mood are

still in their infancy (44). AF is naturally linked to the eye

through the vascular system. Some cardiovascular diseases have

been found to be related to specific features of the retinal

structure and microvessels, suggesting that microvessels and

macrovessels are mutually affected in an interwoven manner in

heart diseases (18). Consequently, it can be speculated that AF

and IS may be presented with different pathological microscopic

changes in the fundus.

In addition, the data from this study demonstrated that IS

detection performance of DNNs using 605 nm spectral images

as input was relatively more stable than using other spectral

images, which might be associated with the characteristics of

melanopsin or ipRGCs itself. Previously, longer-wavelength

photons (∼590–620 nm, including 605 nm, as used in this

study) were reported to increase the conductivity of light by

triggering chromophore regeneration and increasing the overall

intrinsic photosensitivity of the ipRGCs, while shorter-

wavelength lights (∼480 nm) favors phototransduction but

decreases the overall subsequent intrinsic photosensitivity of the

ipRGCs. At intermediate wavelengths near 515 nm (close to

548 nm in this study), the two processes are in equilibrium,

which might be embodied by the comfort of green light to the

human eye. The orange light (589 nm, close to 605 nm of our

study) was consequently demonstrated to activate greater brain

activity in several regions of the frontal lobes, which are

alertness and cognition, providing strong evidence in favor of a

cognitive role for melanopsin (33). The occurrence of stroke-

related cognitive impairment has been extensively investigated

(45). Neuroanatomical lesions caused by IS on strategic areas

such as the hippocampus and white matter might contribute to

the pathogenesis of stroke-related cognitive impairment (46).

While the 548 nm—and 605 nm—spectral images are often

used to calculate blood oxygen saturation, including the fundus

multi-spectral imaging system used in this study (26, 27). AF is

associated with an increased risk of IS and with post-stroke

dementia, which might make its related cognitive impairment

common. Although AF without a stroke may also increase the

risk for cognitive dysfunction, this is mostly linked to multi-

infarct dementia (47). The 810 nm spectral light was mostly

used in the low-level laser therapy of transcranial laser therapy
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FIGURE 3

An example picture showing the attention heat map of ResNet50. The highlighted area is the attention distribution used by DNN for prediction. (A) The
original 548 nm fundus image and its attention heat map of AF group (left) and IS group (right). (B) The original 605 nm fundus image and its attention heat
map of AF group (left) and IS group (right). (C) The original 810 nm fundus image and its attention heat map of AF group (left) and IS group (right).
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as a suitable alternative treatment for stroke (48), and the low-

level laser therapy could alter intracellular signaling and change

redox states (48, 49). Therefore, in this study, subtle changes in

the fundus images at different wavelengths that might not be

observed by the human eye or not be presented by

mathematical equation could be distinguished by machine

learning. This also provides an explanation for the

distinguishing of IS from AF by deep learning based on the

multi-spectral fundus images. Furthermore, the current data

revealed that the multi-spectral classification models had a

greater AUC than the single-spectral classification models.

Particularly, the best IS prediction performance was obtained

when all the three wavelengths were used for model training.

The encouraging outcome from the study suggests that

biological imaging features of different wavelengths are

advantageous to be integrated for IS prediction based on the

excellent feature extraction capability of DNNs.

These conclusions can also be reflected in the heat map of

attention shown in Figure 3, where the tracks of the attention

area all follow the direction of blood vessels, and the IS group

had significantly more heat map areas than the AF group.

Although the model will inevitably allocate its attention to noisy

or high-frequency areas (such as edges) due to the limitations of
Frontiers in Cardiovascular Medicine 07
data volume and the impact of image noise, our model still

exhibits different attention distributions in the IS and AF groups,

supporting our conclusion. In Figures 3A,B, the trace of the heat

map region is more obviously distributed along the blood vessels,

which is consistent with the light characteristics of 548 and

605 nm spectral images and their use in the calculation of blood

oxygen saturation (50). Figure 3C shows a divergent trend,

which is consistent with the view that stroke may be a chronic

inflammation of the global brain (51) and is similar to the

reason why 810 nm light can be used to treat stroke with

transcranial laser. Nevertheless, that has to be verified by more

samples.

There are some limitations to this study. First, there was a

difference between the age of participants in the AF and IS

group, and the age of the AF group was older than that of the IS

group, which might be seen as a confounder when interpreting

the results. Second, a larger number of participants might further

support the results of this study. Finally, although there are no

validation sets in this study, as a prospective and exploratory

study, it is considered to provide a new vision and thought for

the research of chronic cardiovascular diseases such as AF. We

will also continue to collect samples to further verify our

conclusions.
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5. Conclusion

The probability of secondary IS occurring in AF patients could

be predicted based on multi-spectrum fundus images using deep

learning, and combinations of multi-spectrum images improved

the prediction performance of DNNs. Acquiring different

spectral fundus images is advantageous since they might show

different pathological microscopic features. Considering the

convenience and non-invasiveness of measuring the eye, this will

provide a new clue for the early prevention of cardiovascular and

cerebrovascular diseases. More importantly, the method in this

study is a beneficial preliminary and initiative exploration for

diseases that are difficult to predict the onset time, such as IS.
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