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Significance of RNA
N6-methyladenosine regulators
in the diagnosis and subtype
classification of coronary heart
disease using the Gene Expression
Omnibus database
Yu Jiang1†, Yaqiang Pan2†, Tao Long2†, Junqing Qi2, Jianchao Liu2

and Mengya Zhang3*
1Department of Cardiovascular Surgery, Yan’an Hospital affiliated to Kunming Medical University, Yunnan,
China, 2Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University,
Zhenjiang, China, 3Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University,
Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China

Background: Many investigations have revealed that alterations in m6A
modification levels may be linked to coronary heart disease (CHD). However,
the specific link between m6A alteration and CHD warrants further investigation.
Methods: Gene expression profiles from the Gene Expression Omnibus (GEO)
databases. We began by constructing a Random Forest model followed by a
Nomogram model, both aimed at enhancing our predictive capabilities on
specific m6A markers. We then shifted our focus to identify distinct
molecular subtypes based on the key m6A regulators and to discern
differentially expressed genes between the unique m6A clusters. Following
this molecular exploration, we embarked on an in-depth analysis of the
biological characteristics associated with each m6A cluster, revealing
profound differences between them. Finally, we delved into the identification
and correlation analysis of immune cell infiltration across these clusters,
emphasizing the potential interplay between m6A modification and the
immune system.
Results: In this research, 37 important m6Aregulators were identified by
comparing non-CHD and CHD patients from the GSE20680, GSE20681, and
GSE71226 datasets. To predict the risk of CHD, seven candidate m6A regulators
(CBLL1, HNRNPC, YTHDC2, YTHDF1, YTHDF2, YTHDF3, ZC3H13) were screened
using the logistic regression model. Based on the seven possible m6A
regulators, a nomogram model was constructed. An examination of decision
curves revealed that CHD patients could benefit from the nomogram model. On
the basis of the selected relevant m6A regulators, patients with CHD were
separated into two m6A clusters (cluster1 and cluster2) using the consensus
clustering approach. The Single Sample Gene Set Enrichment Analysis (ssGSEA)
and CIBERSORT methods were used to estimate the immunological
characteristics of two separate m6A Gene Clusters; the results indicated a close
association between seven candidate genes and immune cell composition. The
drug sensitivity of seven candidate regulators was predicted, and these seven
regulators appeared in numerous diseases as pharmacological targets while
displaying strong drug sensitivity.
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Conclusion: m6A regulators play crucial roles in the development of CHD. Our
research of m6A clusters may facilitate the development of novel molecular
therapies and inform future immunotherapeutic methods for CHD.
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Introduction

Coronary heart disease (CHD) is a leading cause of death and

disability worldwide, despite significant progress in the areas of

detection and treatment (1). It is imperative and essential to develop

more effective diagnostic and therapeutic procedures, which would

be helped by a deeper understanding of the underlying mechanisms

(2). RNA methylation, particularly N6-methyladenosine (m6A), is

the most widespread epigenetic modification of RNA nucleotides.

Current epigenetics research has yielded numerous noteworthy

advances. In eukaryotic species, m6A accounts for over 97.4% of

internal RNA modification and is extremely conservative.

Adenosine methyltransferases (the writers), m6A-binding proteins

(the readers), and m6A demethylating enzymes (the erasers) are the

three main components of m6A, which was first discovered in the

1970s (3, 4). Given the vital role m6A plays in many fundamental

biological processes, it has become a hot topic recently. m6A plays a

role in a wide range of diseases, including cancer, type 2 diabetes

mellitus, obesity, and more through its regulation of mRNA stability

and homeostasis. Dysregulation of m6A at the phenotypic level has

been linked to carcinogenesis (5). Obesity and other metabolic

disorders are linked to FTO protein, which is essential for the

regulation of genome-wide m6A modification in mRNA (6). Although

m6A regulators have been implicated in CHD, their precise roles

remain unknown.

We analyzed the roles of m6A regulators in the identification and

categorization of CHD subtypes using the GSE20680, GSE20681, and

GSE71226 datasets. Seven regulators of the m6A gene were selected to

assess CHD incidence. On their basis, a risk model and nomogram

were developed, from which CHD patients might derive significant

clinical benefit. Moreover, two different m6A clusters were identified.

The relationship between the two clusters and the immune cell

infiltration and possible medication selection was strong. In

conclusion, a deeper knowledge of m6A processes will enhance the

development of novel molecular therapies and guide future

immunotherapy tactics for CHD.
Materials and methods

Date acquisition

The analyzed data were downloaded from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

(7, 8). The GSE71226 dataset included 3 patients with CHD and

3 without; the GSE20680 dataset included 143 patients with

CHD and 52 without; and the GSE20681 dataset included 99
02
patients with CHD and 99 without. The data have been gathered

and analyzed. Then, using a difference analysis between CHD

and non-CHD patients, we were able to identify a total of 37

m6A regulators. These comprised twenty-three distinct

regulators: eleven writers (WTAP, VIRMA, METTL3, METTL14,

ZC3H13, RBM15B, CBLL1, RBM15, METTL16, ZCCHC4, and

PCIF1), two erasers (FTO and ALKBH5), and ten readers

(HNRNPA2B1, HNRNPC, RBMX, IGF2BP1, IGF2BP2, IGF2BP3,

YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2), with

some regulators such as METTL16 and PCIF1 possessing dual

functions.
Construction of the nomogram model

In this study, we utilized the “glm function” of the “glmnet”

package in the R statistical software to develop a univariate and

multivariate logistic regression-based training model for

predicting the occurrence of CHD. The threshold for significant

genes in univariate logistic regression was set at P-value <0.5. We

then included the candidate modulators in the risk prediction

model, and constructed a prediction formula based on

normalized gene expression values weighted by coefficients.

A nomogram was developed using the candidate regulators to

predict the prevalence rates of CHD. The calibration curve

measured the congruence between predictions and reality.

A decision curve analysis (DCA) was conducted to evaluate the

clinical value of the model’s predictions for individual patients.
Identification of molecular subtypes based
on the significant m6A regulators

Consensus clustering is used to validate the clustering rationale

based on resampling, as well as to determine the number of clusters.

We identified distinct m6A clusters according to the crucial m6A

regulators using the “ConsensusClusterPlus” package in R (9).
Identification of differentially expressed
genes between distinct m6A clusters

We used the “limma” package to identify differentially

expressed genes (DEGs) between m6A clusters (10). The absolute

value of log2FC needed to be greater than 1.5, and the P-value

needed to be less than 0.05 for the screening criterion to be

satisfied. Both a heat map and a volcano plot were produced.
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Analysis of biological characteristics
between distinct m6A clusters

Gene ontology (GO) includes biological processes (BP), molecular

functions (MF), and cellular components (CC), and is commonly used

in enrichment analysis to interpret gene lists (11). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) is a comprehensive

pathway-oriented knowledge base, containing 15 related databases

covering 3,982 organisms (12). We performed GO and KEGG

analysis using the “clusterProfiler” package (13) in R software to

better understand the potential mechanism of the DEGs involved in

CHD. We set an FDR < 0.05 as the screening criterion. To determine

which biological processes varied significantly between the clusters,

we conducted a Gene Set Enrichment Analysis (GSEA). GSEA is

often used to evaluate the statistically significant distinction between

two biological states (14). To conduct GSEA, we used the gene sets

c2.cp.kegg.v7.4.symbols.gmt and c5.go.v7.2.symbols.gmt from the

Molecular Signature Database (MSigDB). P-values less than 0.05

were considered statistically significant.
Construction of protein-protein interaction
networks (PPI)

We used the Search Tool for the Retrieval of Interacting Genes

(STRING) database (15), a resource for known and predicted PPI, to

construct a PPI network for DEGs. In our study, DEGs with a total

score greater than 400 were selected to construct PPI networks, which

were visualized using Cytoscape (v3.7.2) (16). Molecular Complex

Detection (MCODE) (17) detects densely connected regions in large

PPI networks that may represent molecular complexes, the sub-

networks with highest score were excavated as critical sub-networks.

ClueGO (18) was used to annotate the sub-networks of genes.
Identification and correlation analysis of
immune cell infiltration between distinct
m6A clusters

We used a variant of GSEA called single-sample GSEA (ssGSEA)

to quantify the abundance of each of 28 different types of immune

cells in CHD tissue samples (19). CIBERSORT is an algorithm

developed for microarray data that leverages a reference matrix

generated from purified cell populations. We utilized the

CIBERSORT algorithm in R software to estimate the abundance of

22 immune cell types. Boxplots were used to illustrate the immune

cell composition across different m6A clusters. The Wilcoxon test

was applied to compare the proportions of immune cells, and results

with a P–value <0.05 were considered significant.
Drug sensitivity analysis and disease
enrichment analysis

To explore potential therapeutic strategies, the sensitivity of

candidate m6A regulators to drugs was predicted. The drug-gene
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interaction database (DGIdb) was used to identify drugs that target

the identified m6A regulators. Additionally, disease enrichment

analysis of the candidate m6A regulators was performed using the

DisGeNET database to understand the potential implications of these

regulators in other diseases.

In conclusion, the comprehensive analysis ofm6A regulators in our

study provides insights into the molecular mechanisms of CHD and

may contribute to the development of novel therapeutic strategies.

The constructed nomogram and identified molecular subtypes may

serve as valuable tools for personalized treatment of CHD.
Sample collection and QRT-PCR analysis

Our samples were obtained from Affiliated People’s Hospital of

Jiangsu University. These samples were collected after strict

adherence to ethical guidelines and approval by the hospital ethics

committee. All participants signed an informed consent form after

being informed of the purpose and procedure of the study. We

collected 4 normal and CHD blood samples according to a

predetermined standard protocol. First, we asked participants to

have their blood collected in the morning on an empty stomach.

Next, we performed the blood collection under strictly sterile

conditions using anticoagulation-free tubes and placed the samples

in the refrigerator immediately after the blood collection.

Total RNA was extracted from 4 normal and 4 CHD blood

samples using TRIzol Reagent (Life Technologies-Invitrogen,

Carlsbad, CA, USA), in accordance with the manufacturer’s

guidelines. The concentration and purity of the RNA solution were

assessed using a NanoDrop 2000FC-3100 nucleic acid protein

quantifier (Thermo Fisher Scientific, Waltham, MA, USA). The

RNA was then reverse-transcribed to cDNA using the SureScript-

First-strand-cDNA-synthesis-kit (Genecopoeia, Guangzhou, China)

before proceeding with quantitative real-time PCR (qRT-PCR). The

qRT-PCR experiment consisted of 3 µl of reverse transcription

product, 5 µl of 5BlazeTaq qPCR Mix (Genecopoeia, Guangzhou,

China), and 1 µl each of forward and reverse primers. Following an

initial denaturation at 95°C for 1 min, 40 cycles of incubation were

conducted at 95°C for 20 s, 55°C for 20 s, and 72°C for 30 s. The

sequence information for all primers produced by Servicebio

(Wuhan, China) is provided in Table 1. The GAPDH gene was

used as an internal reference, and the 2−ΔΔCt method was employed

to calculate the relative expression of the seven diagnostic genes.

The experiment was repeated three times. Comparisons of the

seven diagnostic m6A regulators between normal and CHD

samples were made using paired t-tests and GraphPad Prism V6

(GraphPad Software, La Jolla, CA, USA). The primer sequences for

4 m6A-related genes were shown in Table 1.
Statistical analysis

All statistical analyses were performed using R 4.1.1. Student’s t-

tests were used for continuous variables with a normal distribution,

Wilcoxon rank-sum tests for those with a non-normal distribution,

and chi-square or Fisher’s Exact tests (where appropriate) for
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TABLE 1 The primer sequences for 4 m6A-related genes and GAPDH.

Gene Forward Reverse
GAPDH 5′-AGCCACATCGCTCAGACAC-3′ 5′-GCCCAATACGACCAAATCC-3′

YTHDF2 5′-AGCCCCACTTCCTACCAGATG-3′ 5′-TGAGAACTGTTATTTCCCCATGC-3′

YTHDF3 5′-TCAGAGTAACAGCTATCCACCA-3′ 5′-GGTTGTCAGATATGGCATAGGCT-3′

HNRNPC 5′-GATCTTCAGCTACATTTTCGGC-3′ 5′-TGGAGCGAGGATCTGTCTTG-3′

ZC3H13 5′-TCTGATAGCACATCCCGAAGA-3′ 5′-CAGCCAGTTACGGCACTGT-3′
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categorical variables. Pearson correlation analysis was utilized to

assess the correlation between genes. P-values were two-tailed,

with P-value <0.05 indicating statistical significance.
Results

Landscape of the m6A-related regulators in
coronary heart disease

We removed batch effects of selected GEO data sets and an

integrated data set containing 245 CHD and 154 non-CHD

patients was acquired (Figure 2). Using the “limma” package in R,

we compared the expression levels of 37 m6A regulators in CHD

and non-CHD samples. Of these, 29 were deemed to be

significant m6A regulators (ALKBH3, FTO, HNRNPA2B1,
FIGURE 1

Flow chart.
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IGF2BP1, IGF2BP2, IGF2BP3, CPFS6, EIF3A, LRPPRC, ALKBH5,

CBLL1, FMR1, HNRNPC) and were selected and displayed with a

heat map and box plot. We discovered that patients with CHD

had increased expression of the m6A regulators NXF1, ALKBH,

HNRNPC, FMR1, HNRNPA2B1, WTAP, YTHDC1, and

YTHDF3, whereas individuals without CHD had lower expression

of the other important m6A regulators (Figures 3A,B). The

“RCircos” software tool allowed for the visualization of

chromosomal sites such as 29 m6A regulators (20).
Correlation between writers and erasers in
CHD

Correlation analysis was performed to explore at the

connection between writer and eraser genes to see if writer
frontiersin.org
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FIGURE 3

Landscape of the m6A-related regulators in CHD. (A) Expression heat map of the 29 m6A regulators in CHD and non-CHD patients. (B) Differential
expression histogram of the 29 m6A regulators identified between CHD and non-CHD patients. (C) Chromosomal positions of the 29 m6A
regulators.

FIGURE 2

Batch effect removal using the “limma” package in R. (A) Datasets before batch effect removal. (B) Datasets after batch effect removal.

Jiang et al. 10.3389/fcvm.2023.1185873
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FIGURE 4

Correlation between writers and erasers in CHD patients. 8 writer genes and 3 eraser genes were analyzed. Horizontal axis represents the expressions of
erasers, vertical axis represents the expressions of writers. (A) ALKBH5, (B) FTO, (C) ALKBH3.

Jiang et al. 10.3389/fcvm.2023.1185873
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FIGURE 5

Construction of risk prediction models. (A) The RF model of m6A related genes in CHD patients. (B) The RF model of 7 m6A related genes with greater
impact in CHD patients. (C) ROC curve the CHD predictive model.
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gene expression in CHD was linked to eraser gene expression.

We found a significant positive correlation between ALKBH5

expression levels and those of RBM15B, METTL3, and WTAP

in patients with CHD (Figure 4A). In patients with CHD, a

significant positive correlation was observed between the

expression of FTO and that of RBM15B and METTL3

(Figure 4B), and the expression of ALKBH3 also

demonstrated a positive connection with METTL3 and

ZCCHC4 (Figure 4C), and there were significant relationships

between the ALKBH3 and RBM15B, METTL3, RBM15 and

ZCCHC4. This might suggest the existence of a systemic

methylation regulation pattern. It could indicate that during

the development of CHD, certain important biological

processes or signaling pathways might be regulated through

methylation.

Furthermore, the discovery of positive correlation could

potentially reveal some hidden disease biomarkers or therapeutic

targets. If these positively correlated methylated genes are

functionally linked, there might be one or several key genes or

pathways leading these epigenetic changes, which could provide

opportunities for the development of novel treatment methods.
Construction of risk prediction models

In our detailed investigation of genes associated with CHD, we

first applied univariate logistic regression to sift out the most
Frontiers in Cardiovascular Medicine 07
significant genes (P-value <0.5). Through this procedure, we

calculated predictive scores for all patients by multiplying the

gene expression values by their respective coefficients

(Figure 5A). To further refine our gene selection, we adopted a

multivariate logistic regression by using 14 candidate genes.

Recognized for its exceptional performance in handling complex

datasets and feature selection, the application of multivariate

logistic regression ultimately led us to single out seven genes.

These genes demonstrated impressive performance in our

predictive model (Figure 5B). To evaluate the predictive

capability of our model, we employed a receiver operating

characteristic (ROC) curve and computed the area under the

curve (AUC). The high AUC value in our model clearly attests

to its effectiveness in identifying CHD cases (Figure 5C). These

results strongly suggest that these seven genes may play pivotal

roles in the onset and progression of CHD. We hope to delve

deeper into understanding the mechanisms of these genes in

CHD and explore their potential as diagnostic markers or

therapeutic targets.
PPI networks of m6A regulators

To further ascertain the potential functions of the 37 m6A

methylation regulators, we established PPI networks and visualized

these networks using Cytoscape (Figure 6A). This resulted in the

identification of 300 interactions involving 37 genes. Importantly,
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FIGURE 6

PPI networks of m6A regulators. (A) Protein-protein interaction networks of m6A regulators, green nodes refered to the genes included in the 37
regulators. (B) Sub-networks of m6A regulators, size of node indicated the MCODE score. (C) Functional similarity analysis of m6A regulators in PPI
sub-networks. (D) Functional enrichment analysis of m6A regulators m6A regulators in PPI sub-networks.
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we discovered that HNRNPA2B1 and YTHDF3were closely linked to

27 other m6A regulators, while HNRNPC, KIAA1429, METTL3,

YTHDF1, and YTHDF2 were intimately associated with 26 m6A

regulators, emphasizing their potential significance in the m6A

regulation network. We further extracted sub-networks using the

MCODE algorithm, which incorporated 21 genes (Figure 6B).

Among these, KIAA1429, HNRNPA2B1, METTL3, RBM15, and

YTHDF3 emerged as the top five scoring genes, underlining their

central roles within the network. Interestingly, we observed a

substantial degree of functional similarity among the 21 genes m6A

regulators (Figure 6C), suggesting the existence of coordinated and

interconnected regulatory mechanisms. To comprehend the

functional implications of these sub-networks, we performed a

ClueGO functional enrichment analysis. This analysis revealed that

the genes within the sub-networks were significantly enriched in

functions related to N6-methyladenosine-containing RNA binding,

the RNA N6-methyladenosine methyltransferase complex,

regulation of mRNA metabolic process, mRNA export from the

nucleus, and dosage compensation by inactivation of the X

chromosome (Figure 6D).

These findings provide invaluable insights into the complex

network of interactions and regulatory roles of key m6A

regulators in CHD. This sets a solid foundation for further
Frontiers in Cardiovascular Medicine 08
investigations into the functional impacts of these regulators and

their potential as therapeutic targets for CHD.
Construction of the nomogram model

Building on the findings from our gene selection and predictive

modeling, we took one step further to construct a nomogram model,

with the goal to estimate the incidence of CHD based on the

identified m6A regulators. To this end, we utilized the “rms”

package in R to develop the nomogram model, incorporating the

expression profiles of the five identified m6A regulators as key

variables (Figures 7A,B). The validity and accuracy of our

nomogram were evaluated through calibration curves. These curves

showed that the predictions made by our nomogram were

remarkably accurate, demonstrating a close correspondence between

the predicted and actual observed incidence of CHD (Figure 7C).

Moreover, we conducted a DCA to evaluate the clinical utility of our

nomogram. Remarkably, the decision curve revealed that the use of

our nomogram in clinical decision-making could be beneficial for

CHD patients, as the green line in the DCA curve (representing the

nomogram) stayed consistently above the grey and black lines

(representing the treat-all-patients and treat-none scenarios,
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FIGURE 7

Construction of nomogram models. (A,B) Construction of the nomogram model based on the 7 candidate RNA N6-methyladenosine regulators. (C)
Predictive ability of the nomogram model as revealed by the calibration curve. (D) Decisions based on the nomogram model may benefit CHD patients.

Jiang et al. 10.3389/fcvm.2023.1185873
respectively) across the entire range of threshold probabilities from 0 to

1 (Figure 7D).

In conclusion, our nomogram model, underpinned by five key

m6A regulators, offers a promising and effective tool for predicting

the incidence of CHD. This finding has the potential to inform

clinical decision-making, aiding in the early detection and

intervention of CHD. However, further studies are needed to

confirm these findings and explore the precise roles of these

m6A regulators in the pathogenesis of CHD.
Two distinct m6A clusters identified by
significant m6A regulators

Based on the 7 significant genetic results collected by our regression

model model, we implemented a consensus clustering approach to

identify distinct m6A clusters based on the 7 key m6A regulators.

This process was conducted using the “ConsensusClusterPlus”

package in R software, and it led to the identification of two discrete

m6A clusters (Figure 8A). Through our consensus clustering

analysis, we found that cluster1 comprised 157 individuals, while

cluster2 was larger and included 242 individuals. To illustrate the

distinct m6A regulator expression patterns across the two clusters, we

created both a heat map and a histogram. This graphical

representation provided a clear visual distinction between the two

clusters in terms of m6A regulator expression levels (Figure 8B).

Further analysis using principal component analysis (PCA) revealed
Frontiers in Cardiovascular Medicine 09
that the 10 crucial m6A regulators were able to effectively separate

these two m6A clusters, demonstrating the significant differences in

their m6A regulation profiles (Figure 8C). We observed a noticeable

difference in the expression of various m6A regulators between the

two clusters. Specifically, ALKBH3, RBM15B, RBMX, SETD2,

ALKBH5, CPSF6, EIF3A, FMR1, FTO, HNRNPA2B1, HNRNPC,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, LRPPRC, METTL14,

PRRC2A, RBM15, SRSF10, SRSF3, TRMT112, VIRMA, WTAP,

XRN1, METTL16, METTL3, NUDT21, NXF1, YTHDF3, and

ZC3H13 all demonstrated lower expression levels in cluster1

compared to cluster2. Conversely, CBLL1, IGF2BP2, IGF2BP3,

IGF2BP1, and PCIF1 showed higher expression in cluster1 than in

cluster2 (Figure 8D).

These findings highlight the existence of distinct m6A

methylation patterns among individuals with CHD, suggesting

that differences in the expression of key m6A regulators could be

linked to variations in disease progression or response to

treatment. Further research is necessary to validate these findings

and explore their potential implications for the management and

treatment of CHD.
Differential analysis of Two distinct m6A
gene clusters

To further explore the potential functional differences

between the two clusters defined by the m6A regulators, we
frontiersin.org
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FIGURE 8

Consensus clustering of significant RNA N6-methyladenosine (m6A) regulators in CHD patients. (A) Consensus matrix of the 7 significant m6A regulators
for k = 2. (B) Expression heat map of the 7 significant m6A regulators in cluster1 and cluster2. (C) Principal component analysis for the expression profiles
of the 7 significant m6A regulators that shows a remarkable difference in transcriptomes between the two patterns. (D) Differential expression histogram
of the 7 significant m6A regulators in cluster1 and cluster2.
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selected 277 significant m6A-related DEGs (Figure 9A). A

heatmap demonstrated that these DEGs effectively explained the

differentiation of expression between the two clusters

(Figure 9B). For functional annotation of the biological

differences between the clusters, GO analysis was performed on

these DEGs (Figure 9C) (Supplementary file 1). This analysis

indicated that the candidate genes were associated with various

biological processes such as neuropeptide signaling pathway,

chemical synaptic transmission, phospholipase C-activating G-

protein coupled receptor signaling pathway, sodium ion

transmembrane transport, and negative regulation of blood

pressure (Figure 9D). They were also involved in cellular

components such as integral components of plasma membrane,

proteinaceous extracellular matrix, keratin filament, plasma

membrane, and extracellular space (Figure 9E). In terms of

molecular functions, these genes showed significant enrichment

in functions like G-protein coupled receptor activity, sequence-

specific DNA binding, inorganic phosphate transmembrane

transporter activity, transcriptional activator activity, and RNA

polymerase II core promoter proximal region sequence-specific

binding (Figure 9F). KEGG pathway analysis revealed that the

DEGs were significantly enriched in pathways like Neuroactive
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ligand-receptor interaction, cAMP signaling pathway, Nicotine

addiction, and Calcium signaling pathway (Figure 9G). We

further visualized the details of DEGs involved in the

Neuroactive ligand-receptor interaction pathway (Figure 9H)

(Supplementary file 2). Using GSEA, we analyzed all the genes

across the two clusters. Our results suggested that in cluster1,

biological processes like keratinization, G-protein coupled

receptor activity, hormone activity, neurotransmitter receptor

activity, extracellular ligand-gated ion channel activity, and

others were activated, whereas processes like spliceosomal

complex formation, peptidyl lysine methylation, RNA

localization establishment, RNA splicing, and others were

suppressed (Figures 10A,B). In contrast, in cluster2, biological

processes like neuroactive ligand receptor interaction, olfactory

transduction, maturity onset diabetes of the young, linoleic acid

metabolism, steroid hormone biosynthesis, and others were

activated, while processes like spliceosome formation, protein

export, proteasome activity, lysosome activity, RNA degradation,

and others were inhibited (Figures 10C,D) (Supplementary

files 3, 4).

These results provide essential insights into the intricate

roles played by the two clusters of m6A methylation
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FIGURE 9

Go and KEGG analysis of two distinct m6A regulator clusters. (A) 277 up-regulated genes were selected (red nodes). (B) Expression heat map of 277 DEGs
in cluster1 and cluster2. (C) GO enrichment analysis of 277 up-regulated genes. (D) Presentation of top 10 biological process. (E) Presentation of top 10
cellular component. (F) Presentation of top 10 molecular function. (G) Presentation of KEGG pathway analysis. (H) Details of significant enrichment in
hsa04080: Neuroactive ligand-receptor interaction.
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regulators, which appear to be intricately associated with

CHD’s biological processes and pathways. Each cluster

exhibited a unique functional profile, indicative of differing
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pathophysiological mechanisms in CHD, and this disparity

might underlie variations in disease progression and patient

outcomes.
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FIGURE 10

Gene set enrichment analysis (GSEA) of two distinct m6A regulator clusters. (A,B) GSEA-GO analysis of two distinct m6A regulator clusters. (C,D) GSEA-
KEGG analysis of two distinct m6A regulator clusters.

Jiang et al. 10.3389/fcvm.2023.1185873
Immune characteristic of Two distinct m6A
gene clusters

In an attempt to further characterize the two clusters and

elucidate the potential mechanisms driving their unique

functional profiles, we turned our attention to the immune

microenvironment. We employed two powerful computational

tools -ssGSEA and CIBERSORT—to estimate the level of

immune cell infiltration in the overall sample and in both clusters.

The results of the ssGSEA were shown Figure 11A. We further

explored the correlation between immune cells and seven

important genes in the overall sample and found that all of

them, except ZC3H13 and CBLL1, showed significant positive

correlation with most of the immune cells (Figure 11B).

Additional, to further explore the correlation of seven important

genes with the outcome of immune infiltration by different

clusters. Our correlation analysis revealed several interesting

interactions among immune cell types. In cluster1, we noted a
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negative correlation between activated CD8 T cells and Type

17 T helper cells, suggesting that the activation of these two cell

types might be mutually exclusive within this cluster.

Additionally, neutrophils and plasmacytoid dendritic cells

exhibited positive correlations with Myeloid-derived suppressor

cells (MDSCs), hinting at a potential cooperative relationship in

driving CHD pathology (Figure 11C). Contrastingly, in cluster2,

activated CD8 T cells and plasmacytoid dendritic cells negatively

correlated with Type 17 T helper cells. Neutrophils, plasmacytoid

dendritic cells, and activated CD4 T cells all showed positive

correlations with activated CD8 T cells, suggesting a different

immunological interplay within this cluster (Figure 11D).

Importantly, Figure 11E showed a significant reduction of

immune cell content in cluster1 when compared to cluster2. This

finding suggests a potential immunosuppressive environment in

cluster1, which might be conducive to CHD progression.

When we examined the correlation between the 7 candidate

genes and immune cell content, we found a close association.
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FIGURE 11

Immune characteristic analysis by single sample GSEA of two distinct m6A gene clusters. (A) Immune cell contents of two clusters, horizontal axis
represents identities of patients. (B) Correlation between 7 m6A regulators and immune cells. (C) Correlation between 7 m6A regulators and immune
cells in Cluster1. (D) Correlation between 7 m6A regulators and immune cells in Cluster2. (E) Histogram of immune cell contents in two clusters.
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This implies that these genes might exert their influence on CHD

development partly through modulating immune cell activity and

infiltration. We further corroborated these findings using the

CIBERSORT algorithm. Figure 12A shows the results of

CIBERSORT in the overall sample. Importantly, our analysis
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affirmed a close relationship between the seven candidate

regulators and immune cell content in the overall sample and the

results obtained by ssGSEA were similar (Figure 12B). To

further explore the correlation of seven important genes with the

outcome of immune infiltration by different clusters, we found
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FIGURE 12

Immune characteristic analysis by CIBERSORT of two distinct m6A gene clusters. (A) Immune cell contents of two clusters, horizontal axis represents
identities of patients. (B) Correlation between 7 m6A regulators and immune cells. (C) Correlation between 7 m6A regulators and immune cells in
Cluster1. (D) Correlation between 7 m6A regulators and immune cells in Cluster2. (E) Histogram of immune cell contents in two clusters.
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Plasma cells were found to negatively correlate with M0

macrophages (Figures 12C,D), suggesting distinct roles for these

cell types in shaping the immune landscape in the clusters.

Similar to ssGSEA, a marked reduction in immune cell content

was detected in cluster1 relative to cluster2 (Figure 12E).
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These results offer more compelling evidence that m6A

methylation regulators may influence CHD progression through their

impact on immune cell dynamics and the immune

microenvironment. In summary, our results underscore the critical

role of immune infiltration in CHD’s pathogenesis and its potential
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interaction with m6A methylation regulators. This provides a new

perspective for understanding the disease mechanism and identifying

novel therapeutic targets.
Diagnostic efficiency and drug prediction of
7 candidate regulators

We subsequently assessed the discriminative ability of the 7

candidate m6A regulators to distinguish between the two clusters.

The ROC curves demonstrated that each of the candidate regulators

indeed significantly differentiated cluster1 from cluster2

(Figures 13A–G). This implies that these regulators not only

contribute to the unique characteristics of each cluster but also may

serve as potential biomarkers for the classification of CHD patients

into different risk or pathological categories. Furthermore, we

explored the potential therapeutic implications of these 7 candidate

regulators by predicting their drug sensitivity. Our findings revealed

that these regulators are implicated in various diseases as drug

targets. This suggests their potential for wide therapeutic

applicability. More importantly, they exhibited high sensitivity to

several drugs (Figures 14A,B). The drug significantly positively

associated with HNRNPC was 17-AAG, the drug significantly

positively associated with CBLL1 was dacarbazine, the drug

significantly positively associated with YTHDC2, ZC3H13 was

GMX-1778, and the drug significantly positively associated with

YTHDF1 was tosedostat. However, these drugs were not found to be

associated with CHD, and further exploration is needed.

Taken together, our results provide evidence for the

involvement of m6A regulators in the pathogenesis of CHD

and suggest potential therapeutic strategies targeting these

regulators. By doing so, it is hoped that new avenues may be

paved for the development of precision medicine for CHD,

tailored to the individual patient’s genetic makeup and disease

subtype.
FIGURE 13

The ability of 7 candidate regulators to distinguish two clusters. The ROC cur
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Expression validation of 7 diagnostic m6A
regulators

We collected 4 normal and 4 CHD blood samples from

Affiliated People’s Hospital of Jiangsu University and elucidated

the expression changes of selected diagnostic mRNAs in CHD by

qRT-PCR. Four m6A regulators were significantly differentially

expressed between CHD and normal samples. The expression

levels of YTHDF2, YTHDF3, ZC3H13 and HNRNPC were

remarkably up-regulated in CHD samples compared with normal

samples (Figures 15A–D).
Discussion

Despite improvements in prevention, diagnosis, and early

management, CHD remains a leading cause of death and disability

worldwide (1). Evidence suggests that m6A regulators play a critical

role in a myriad of cellular and organismal processes (21). However,

the role of m6A regulators in CHD is still unclear. Our study aimed

to understand better how m6A regulators contribute to CHD.

Initially, we compared the expression levels in individuals

without CHD to those with CHD, identifying 37 potential m6A

regulators. Among these, seven—CBLL1, HNRNPC, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, and ZC3H13—were selected as

potential predictors of CHD prevalence using logistic regression

analysis. We analyzed the correlation between writers and

erasers in CHD patients. Due to the scarcity of m6A regulators

in the public database, we were unable to independently verify

our model. We used these seven potential m6A regulators to

create a nomogram model, and the DCA curve showed that

nomogram-based decisions correlated with better outcomes for

CHD patients.

CBLL1, also known as E3 ubiquitin-protein ligase Hakai,

possesses a RING-finger domain involved in the ubiquitination,
ves showed that two clusters can be stably distinguished by 7 regulators.
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FIGURE 14

Drug sensitivity analysis of 7 regulators. (A) Regulator gene expression levels and drug sensitivity were measured by Genomics of GDSC. (B) Regulator
gene expression levels and drug sensitivity were measured by CTRP.
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endocytosis, and degradation of herin and plays a significant role in

TNF or cytokine reactions in periodontitis (21), is a significant

regulator in TNF or cytokine reactions in periodontitis (22).

HNRNPC, an m6A reader protein, binds m6A-modified RNA

via an “m6A-switch” mechanism, in which the instability of an

RNA hairpin facilitated by m6A unveils a single-stranded

HNRNPC binding motif (23). HNRNPC may be associated with

the malignant development of glioblastoma multiforme and be

predictive of a favorable prognosis (24). Moreover, HNRNPC

may influence to tumorigenesis by altering expression of genes

that modulate cell proliferation and metastasis (25). YTHDC2

can promote the translation of target mRNAs (21), and it may

serve as an activator in colon cancer metastasis and could be a

diagnostic marker for individuals with colon cancer (26).

YTHDF1, YTHDF2, and YTHDF3 proteins, found

predominantly in the cytoplasm (27) bind to m6A via their C-

terminal YTH domains (28). YTHDF1 and YTHDF3 can

enhance the translation of a small set of m6A mRNAs. YTHDF1

augments translation efficiency by interacting with members of

the eIF3 complex (29) and plays a critical oncogenic role (27,

30). YTHDF2, on the other hand, induces mRNA degradation by

binding to the m6A modification site (31) and is significantly

increased in pancreatic cancer tissues, with levels much higher in

patients with advanced disease (32). ZC3h13 is a zinc-finger

protein (33). A study has shown that ZC3h13 is essential for

m6A methylation, and depletion of ZC3h13 predominantly

affects m6A methylation at the 3′ UTR of mRNA (34). ZC3h13
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may play a crucial role in breast cancer (35). Several studies

have shown that the seven potential m6A regulators are involved

in the incidence and progression of cancers, affecting

proliferation, invasion, radiation resistance, and prognosis (35–

37). However, no published studies have explored the connection

between these seven potential m6A variants and CHD. We

believe our study could provide insight for future experimental

research.

Our risk prediction model has demonstrated good

performance in predicting the occurrence of CHD. However,

further experimental validation is needed to support our

findings before the model can be widely used for clinical

applications. The CHD nomogram allows for a more intuitive

individual risk assessment, providing a numerical probability

that can help clinicians decide the timing of potential

preventative interventions (38, 39).

While genomes and epigenomes of CHD have been available

for over a decade, many of the genes have yet to be characterized

in terms of their functions. By identifying clusters of genes with

highly similar expression profiles, we can infer the function of

uncharacterized genes from their neighboring genes (40).

Previous research has shown that the arrangement of genes in

genome clusters can significantly affect biological processes

(41). The two identified m6A gene clusters suggest that certain

biological processes might be influenced in CHD. To explore

this further, we employed GO, KEGG, and GSEA analysis. Our

findings suggest that G-protein coupled receptor activity and
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FIGURE 15

Expression levels of 4 m6A genes between CHD and normal tissues. (A)
YTHDF2 was significantly highly expressed in CHD tissues. (B) YTHDF3
was significantly highly expressed in CHD tissues. (C) HNRNPC was
significantly highly expressed in CHD tissues. (D) ZC3H13 was
significantly highly expressed in CHD tissues. Results of quantitative
real-time PCR for the 4 m6A genes. The expression of hub genes was
standardized relative to the expression of GAPDH. The significance of
differences was determined using the student’s t-test; *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001.
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neuroactive ligand-receptor interaction may play vital roles

in CHD.

It is now believed that the pathophysiology of CHD is strongly

connected to different subsets of the T cell population (42, 43).

Distinct influences on atherosclerosis have been observed

from different subgroups of CD4+ T cells. While Th1 cells are

thought to contribute to the development of atherosclerosis, the

role of Th2 cells remains controversial (42). Tregs are considered

beneficial in CHD due to their production of transforming

growth factor and IL10; adoptive transfer of Tregs has been

demonstrated to minimize atherosclerosis, while depletion of Tregs

increases atherosclerosis (42, 44). Atherosclerotic changes are

partly caused by the activation of cells such as neutrophils,

monocytes, macrophages, and dendritic cells (45). Therefore,

targeting the immune cells involved in atherogenesis represents a

promising new approach for atherosclerosis treatment and

prevention (46). In our study, two clusters exhibited different

immunological characteristics, suggesting that precise

immunotherapy and targeted therapy could be tailored based on

these characteristics.

Finally, we assessed the drug sensitivity of the seven candidate

regulators. Accurate predictions can save time and resources in
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drug discovery and development (47), and a thorough

understanding of drug mechanisms of action can shed light on

how drugs work (48).
Conclusion

In conclusion, we identified seven candidate m6A regulators

and developed a nomogram to predict the occurrence of CHD.

Using the seven important m6A regulators, we discovered two

m6A clusters and suggested innovative treatments for coronary

disease based on these clusters.
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