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Introduction

Thanks to the efforts and support of the authors and editorial team, our Research topic

entitled “Insights in Cardiovascular Therapeutics: 2022” in the Frontiers in Cardiovascular

Medicine, Cardiovascular Pharmacology and Drug Discovery Section has achieved great

success and attracted more than 13,500 views in the past 12 months. Within this topic,

we highlight nine original research papers published related to cardiovascular tissue injury

and remodeling, cardiovascular innate immunity, trained immunity, and recent advances

in cardiovascular therapies. These highlights may serve as the foundation for new

developments in cardiovascular pharmacology and drug discovery areas. Looking ahead to

2023, we will continue our work to provide an outstanding platform for cardiologists,

translational cardiovascular scientists, and cardiovascular pharmacological scientists to

share new findings in clinical cardiology, cardiovascular pharmacology and drug

discovery, and translational cardiovascular therapeutics.
Trained immunity is a novel mechanism underlying
the pathogenesis of cardiovascular diseases

Cardiovascular diseases (CVDs) represent a leading cause of death worldwide. However,

the specific mechanisms and potential treatment options for CVDs have yet to be fully

addressed. Noteworthy, chronic non-resolving low-grade inflammation is known to be a

major feature in the pathogenesis of CVDs (1). Increasing evidence indicates that the

innate immune system contributes to CVD development (2–4). Recently, it has been
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discovered that innate immune cells can produce a long-lasting

proinflammatory phenotype after certain stimulations by either

exogenous pathogen-associated molecular patterns (PAMPs)/

damage-associated molecular patterns (DAMPs) or endogenous

metabolic stress-derived stimuli (2, 5). This persistent hyper-

activation of the innate immune system is referred to trained

immunity (also termed as innate immune memory) (4, 6–14).

Trained immunity is a functional status of enhanced

innate immune/proinflammatory responses via metabolic

reprogramming in generating methyl, acetyl, and other chemical

moieties (15), which induces long-term epigenetic

reprogramming around the promoters of inflammatory genes

(8, 16). These epigenetic changes are associated with immune

protection against infections or exacerbated inflammations (11)

after re-stimulation (14). In contrast to the adaptive immune

system, trained immunity lacks antigen-specific recognition (17–

19), but leads to a cross-reaction and protects against different

pathogens other than the one to which it was initially exposed

(3). Nevertheless, as with adaptive immunity (20), innate

immune cells may develop immunological memory after

encountering a specific insult to adjust their response to

subsequent stimulations (14). Innate immune cells that have been

“trained” respond more effectively to the possibility of re-

stimulation by the same or different insults. One of the other

differences between adaptive immune memory and innate

immune memory is that special subsets of adaptive immune cells

carry out memory functions (21), whereas innate immune

memory is the functional status of all innate immune cells

experienced metabolic reprogramming (4). Trained immunity

serves as a new mechanism underlying chronic metabolic

cardiovascular diseases. In addition, trained immunity can be a

qualification criteria for environmental, metabolic, and infectious

stimuli to become significant cardiovascular disease risk factors

such as hyperlipidemia (22–27), hyperglycemia (28–30),

hyperhomocysteinemia (31, 32), cigarette smoke (12, 33, 34),

hypertension, infections (11, 35), metabolic syndrome, and

obesity (23, 36, 37), which are different from insignificant

endogenous metabolites and compounds in the foods in inducing

trained immunity and enhancing inflammation (8, 33).
Cardiovascular structural cell types,
such as endothelial cells and vascular
smooth muscle cells, serve as innate
immune cells

As mentioned above, trained immunity is inseparable from

innate immune cells. Classically, phagocytes (macrophages and

neutrophils), mast cells, dendritic cells, basophils, eosinophils,

natural killer (NK) cells, and innate lymphoid cells are identified

as innate immune cells (38). Despite their various types,

innate immune cells share a common feature: they are all

monocytic and antigen-presenting white blood cells. This type of

innate immune cell functionalized the role of cell migration

and engulfment in cellular interaction during the immune
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process or inflammation. With the intensive study of the

immune system, scientists discovered that innate immune cells

are not limited to white blood cells. However, stressful

circumstances could transform somatic cells into innate immune

cells. Endothelial cells (ECs), the innermost layer of the vessel

wall, play a critical role in maintaining cardiovascular

homeostasis in health or contributing to the pathological

mechanisms in multiple CVDs (39–41). In 2013 (Journal of

Hematology and Oncology (42, 43), we proposed a new concept:

that endothelial cells (ECs) actively participate in innate and

adaptive immune responses and carry out all the innate immune

functions, the same as prototypical innate immune cell

macrophages (44, 45). Therefore, we classified ECs as novel

immune cells. The same qualities expressed in traditional

innate immune cells are also present in ECs, such as danger

associated molecular patterns (DAMPs)/pathogen-associated

molecular patterns (PAMPs)-sensing; secretions of cytokines,

chemokines, and secretomes (35); phagocytic function; antigen

presentation; pro/anti-inflammatory; immunosuppression;

migration; plasticity; and heterogeneity (43). Forming the trained

phenotype requires metabolic reprogramming, including

transitioning from oxidative phosphorylation (OXPHOS) to

enhanced glycolysis (13). Oxidized low-density lipoprotein (ox-

LDL) (46), a well-established risk factor for CVD, plays a key

role in the induction of trained immunity. Evidence reports

that ox-LDL mediates immunologic memory in ECs by

switching OXPHOS to glycolysis, via significantly increases the

enrichment of histone 3 lysine 27 trimethylation/histone 3

lysine 27 acetylation (H3K27m3/H3K27ac) and H3K14ac (8) at

the enhancers or promoters of proinflammatory cytokines, such

as interleukin (IL) 6 and IL8, through mammalian target of

rapamycin- hypoxia-inducible factor 1 alpha (mTOR-HIF1α)

signaling in ECs (47). In addition to ox-LDL, reactive

oxygen species (ROS) (48) are the upstream activator of the

leucine-rich repeats (LRR) containing domain, nucleotide

oligomerization domain (NOD), and pyrin domain-containing

protein 3 (NLRP3) caspase 1 inflammasome, which has a

positive correlation with trained immunity activation.

Taken together, trained immunity in ECs is functional for

inflammation effectiveness and transition to chronic

inflammation (4).

In addition, vascular pathologies reshape vascular smooth

muscle cells (VSMCs) into six different phenotypes, including

contractile, mesenchymal, fibroblast, macrophage (innate immune

cell prototype) (49), foam cell-like, osteochondrogenic-like,

myofibroblast-like (50), osteogenic, and adipocyte in response to

stimulations of DAMPs/PAMPs (51). We also reported that

chronic kidney disease -uremic toxins (52) activate the VSMC

phenotypic switch (53) and the proinflammatory caspase-1-

inflammasome pathway (innate immune sensors) (5) to promote

neointima hyperplasia in the carotid artery (54). Others have also

reported that ox-LDL induces trained innate immunity in human

coronary VSMCs (55). Taken together, we propose a new

concept: that VSMCs in pathologies are an innate immune cell

type.
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TABLE 1 Nine highly viewed research papers, published in our special topic entitled “Insights in Cardiovascular Therapeutics: 2022”, are summarized.

Disease model Therapeutic study Experimental Outcomes Reference
Coronary artery disease after
percutaneous coronary
intervention (PCI)

Long term beta-blocker maintenance with stable
CAD after PCI with DES stent

No Clinic improvement outcomes (Lee et al.)

Diabetic mice (Leprdb) Treated alternate day fasting for 12 weeks Improve endothelial function and reduce fasting blood glucose
level

(Cui et al.)

Murine hind limb gangrene
model

E-selectin/AAV2/2 gene therapy Reduced gangrene severity (Ribieras et al.)

IL12p40-/- mouse model LPS-induced cardiac dysfunction IL12p40 deletion aggravated LPS-induced cardiac injury (Liu et al)

Patients undergoing non-cardiac
surgery (MINS)

Midazolam administration Midazolam may not pose a significant risk for MINS (Prin et al.)

Chronic kidney disease patients The contribution of CKD-associated factors to the
chronic remodeling of veins

Age and diabetes are the most important risk factors for chronic
development of venous intimal hyperplasia and fibrosis
independent of CKD status

(Labissiere et al.)

Patients with DES Compared long DES vs. spot DES for FP lesion
longer than 150mm

Long DES were more effective than spot DES for treating long
FP lesion

(Park et al.)

Diabetic mice db/db mice Agonistic analog of growth hormone-releasing
hormone, GHRH-A MR409 injection

GHRH-A MR409 can effectively attenuate vascular calcification
and protect against EC dysfunction

(Ren et al.)

Patients with Cocoon patent
foramen ovale occluder

To assess the preliminary efficacy and safety profile
of PFO closure with Cocoon device in an Italian
multi-center registry

Percutaneous closure of PFO with Cocoon Occluder provided
satisfactory procedural and mid-term clinical follow-up results
in a real world registry.

(Testa et al.)

Xu et al. 10.3389/fcvm.2023.1184030
Nine research papers related to
therapeutic studies in cardiovascular
diseases, inflammation, and trained
immunity have been published

Academic research plays a vital role in identifying new

therapeutic targets, including understanding target biology and

the connections between novel therapeutic targets and disease

states. CVDs, as diseases with high mortality and morbidity, have

long been the subject of research by scientists or medical experts

seeking potential therapies. A comprehensive analysis of trained

immunity in relation to CVD might offer novel perspectives on

the pathophysiology of the disease and new treatment options.

Cui et al. reported that alternate-day fasting (ADF) reduced

fasting blood glucose levels and improved endothelium (EC)

function in diabetic mice, indicating the therapeutic potential of

blocking novel trained immunity-related metabolic pathways,

including glycolysis. Ribieras et al. proved that cell adhesion

molecule secretion from ECs is critical for inflammation and

neovascularization in areas of wound healing and ischemia.

Liu et al. demonstrated that interleukin-12 (IL12)p40, the

common subunit of IL12 and IL23, was associated with the

classic trained immunity stimuli: LPS-induced cardiac injury;

Ren et al. showed that the agonistic analog of growth hormone-

releasing hormone (GHRH-A) MR409, can effectively attenuate

vascular calcification and trained immunity mediator ROS

expression and improve EC function and diabetics. Table 1

summarizes nine significant studies on our research topic.
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