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Epigenetic modifications as
therapeutic targets in
atherosclerosis: a focus on DNA
methylation and non-coding RNAs
Hashum Sum and Alison C. Brewer*
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Foundation Centre of Excellence, London, United Kingdom

Significant progress in the diagnosis and treatment of cardiovascular disease (CVD)
has been made in the past decade, yet it remains a leading cause of morbidity and
mortality globally, claiming an estimated 17.9 million deaths per year. Although
encompassing any condition that affects the circulatory system, including
thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis
(general hardening of the arteries), the most prevalent underlying hallmark of
CVD is atherosclerosis; the plaque-associated arterial thickening. Further,
distinct CVD conditions have overlapping dysregulated molecular and cellular
characteristics which underlie their development and progression, suggesting
some common aetiology. The identification of heritable genetic mutations
associated with the development of atherosclerotic vascular disease (AVD), in
particular resulting from Genome Wide Association Studies (GWAS) studies has
significantly improved the ability to identify individuals at risk. However, it is
increasingly recognised that environmentally-acquired, epigenetic changes are
key factors associated with atherosclerosis development. Increasing evidence
suggests that these epigenetic changes, most notably DNA methylation and the
misexpression of non-coding, microRNAs (miRNAs) are potentially both
predictive and causal in AVD development. This, together with their reversible
nature, makes them both useful biomarkers for disease and attractive
therapeutic targets potentially to reverse AVD progression. We consider here the
association of aberrant DNA methylation and dysregulated miRNA expression
with the aetiology and progression of atherosclerosis, and the potential
development of novel cell-based strategies to target these epigenetic changes
therapeutically.
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Background

Epigenetics is the study of mechanisms that regulate mitotically stable patterns of gene

expression and hence cellular phenotype without altering the genomic sequence of the cell.

The field has converged upon the locus-specific regulation of chromatin structure and

accessibility by DNA methylation, the covalent and non-covalent modification of histones

together with non-coding RNA-based mechanisms (1). Epigenetic changes are typically

reversible, enzymatically-regulated processes which are modulated by the intracellular

milieu. Consequently, they are critical drivers of cellular differentiation, development and

homeostasis (2) but can lead to disease states when influenced by pathological
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environmental factors (3). Understanding the mechanistic causes

and pathological consequences of aberrant epigenetic regulation

might therefore offer the possibility of novel curative therapeutic

treatments for human diseases. This is particularly true in the

case of atherosclerosis, where it remains the case that current

(predominantly lipid-lowering) treatments can only lessen, but

not reverse, disease progression (4).
DNA methylation and atherosclerosis

DNA methylation in mammals usually occurs at the 5th

position of cytosine (5mC) in the context of CpG dinucleotides

and is controlled by enzymatic systems which add or remove

methyl groups, termed writers and erasers. CpG dinucleotides are

distributed unevenly across the genome, and regions rich in CpG

dinucleotides are known as CpG islands. Characteristically, CpG

islands have a GC content >50% and are at least 200 bp in size.

They contain around 7% of total CpG dinucleotides present in

the human genome and are commonly found within promoter

regions such that 60% of human gene promoter sites contain

CpG islands (5). The DNA-methyl transferase (DNMT) family of

enzymes add methyl groups to (predominantly cytosine)

residues, while methyl groups can be removed passively via DNA

replication or actively via the sequential oxidation of the methyl

group, catalysed by the family of three Ten Eleven Translocase

enzymes (TET1/2/3), producing 5-hydroxymethyl-cytosine

(5hmC), 5-formyl-cytosine (5fC) and 5-carboxyl-cytosine (5caC).

5hmC is the most stable (and therefore most abundant) of these

oxidation derivatives, while both 5fC and 5caC can be actively

removed by base excision repair (BER) mechanisms to restore

unmodified cytosines (6). The covalent modification of DNA

affects both the structure of chromatin and the affinity for DNA-

binding trans-acting factors and hence is a critical regulator of

transcriptional gene expression (7). DNA methylation is usually

associated with transcriptional repression and serves as a major

cellular regulatory mechanism. It has numerous well-

characterised roles across the biological spectrum, from

embryonic development to cellular ageing and death and the

manifestation of numerous diseases (8). By contrast, the precise

functions of the individual TET-generated oxidised derivatives

remain to be fully elucidated. Nevertheless, with the generation

of TET mutants that uncouple these sequential oxidative steps,

distinct regulatory functions for 5hmC, 5fC and 5caC are now

becoming uncovered (9, 10).

Studies have shown that DNA methylation signatures are

highly dynamic and can be influenced by different types of

environmental stimuli that the individual had been exposed to,

such as those known to be risk factors for the development of

AVD (11, 12). In this regard it is noteworthy that the activities

of both the DNMTs and TETs are known to be subject to

modulation by risk factors associated with atherosclerosis,

including oxidative stress and hyperglycaemia associated with

diabetes (13, 14). Functional phenotypic changes may occur

because of methylation-driven alterations in gene expression

leading to improper regulation of homeostatic biochemical
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pathways. Many studies have investigated both changes in global

levels of methylation, and changes in methylation at specific

CpGs which link to vascular diseases including atherosclerosis.

At the global level, genome-wide hypomethylation appears to

associate with atherosclerosis, while hypermethylation of some

specific genes are observed as the disease progresses (15).

Chronic inflammation and the development of fatty plaques are

hallmarks of atherosclerosis. Perhaps accordingly, aberrant DNA

(hyper)methylation has commonly been observed, associated

with downregulation of key proteins that are essential in

regulating the inflammatory response or those that are involved

in the modulation of lipid pathways (Table 1). It should be

noted that most of these studies to date have been retrospective

and the methylation changes observed may therefore be a

consequence rather than a cause of the pathologies. Crucially

however, recent epigenome-wide association studies (EWASs)

designed to investigate the association between incident CVD

events associated with stable or unstable atherosclerotic plaques

(such as stable coronary heart disease and myocardial infarction)

have begun to identify characteristic methylation signatures

which may be predictive of future risk and therefore causal with

respect to cardiovascular outcomes (44). Reversing specific

aberrant methylation marks, potentially in combination with

other treatments, therefore represents a promising future clinical

therapeutic strategy.

In considering the aetiology, development and potential

treatment of AVD, it is crucial to identify and fully understand

the specific roles of different cell types. The development of

atherosclerosis involves the dysregulation of vascular cells

(endothelial, vascular smooth muscle and adventitial fibroblasts)

(45), together with haematopoietic cells of both the innate and

adaptive immune system (46). Most associations between

aberrant methylation and (either retrospective or incident)

cardiovascular events have been observed in total circulating

blood cells as this can be obtained in the most non-invasive way.

However, it is possible to isolate and purify both sub populations

of leukocytes and the small numbers of circulating endothelial

cells (ECs) (47) and minimally invasive cell biopsy techniques

are also being developed to isolate small numbers of

cardiovascular cells (48, 49). This, together with the use and

development of microfluidic techniques to enable “omic”

analyses, including DNA methylation maps of single-cells

selected from a tissue (50), will enable a better understanding of

the tissue-specific roles of methylation changes in the

development of AVD.
DNA methylation and clonal expansion of
somatic cell mutations in AVD.

Age is a potent and independent risk factor for atherosclerosis

(51), in part due to the age-related accumulation of somatic

mutations. Crucially, the clonal expansion of haematopoietic

stem cells harbouring mutations (which confer a selective

proliferative and/or survival to the cell) can result not only in

haematopoietic malignancy but also an increased risk for CVD
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TABLE 1 Vascular disease-related genes that are regulated by DNA methylation.

Gene Functional role of
gene

Cells/tissue Methylation
status

Disease Experimental
condition

Effect of mutation Reference

ABCA1 Modulator of HDL-C
concentrations

Peripheral blood Hyper Atherosclerosis-
induced coronary
artery disease

Familial
hypercholesterolemia

Increased risk from
coronary artery disease

(16–18)

KLF2 Endothelium-
dependent vascular
homeostasis

Endothelial cells Hyper Atherosclerosis-
induced coronary
heart disease

Hypercholesterolemia Impaired endothelial
function
Pro-inflammatory

(19, 20)

p66shc Cellular redox Endothelial cells Hypo Atherosclerosis/
cholesterol-induced
endothelial cell
dysfunction

Hypercholesterolemia Endothelial dysfunction
Upregulation of ICAM1
Subsequent infiltration of
monocytes
Pro-coagulant
Excess ROS production
and pro-inflammatory

(21–23)

eNOS Leads to the production
of nitric oxide

Vascular smooth
muscle cells

Hyper Atherosclerosis/
pulmonary
hypertension

Pharmacological
inhibition of HDAC
using TSA

Decreased expression of
eNOS is speculated to
lead to endothelial
dysfunction

(19, 24)

BAX,
AMXA5,
cIAP-1

Pro-apoptotic (BAX,
AMXA5)
Anti-apoptotic
(cIAP-1)

Endothelial cells Hypo = BAX,
AMXA5

Hyper = cIAP-1

Atherosclerosis Ox-LDL model Increased apoptosis in
advanced atherosclerosis

(25)

PDGF Cell proliferation and
migration

Aorta smooth muscle
cells/human
umbilical vein ECs
(HUVECs)

Hypo Atherosclerosis Hyperhomocysteinemia HHcy-induced vascular
dysfunction via PDGF
upregulation
SMC proliferation

(26–28)

ER-α Athero-protective e.g.,
combines with estrogen
to generate NO in ECs;
supress VSMC
proliferation

Vascular smooth
muscle cells

Hyper Atherosclerosis Hyperinsulinemia
Coronary atherectomy
samples

VSMC pro-proliferation (29–32)

ER-β Anti-cell proliferative Aortic endothelial
and smooth muscle
cells

Hyper Atherosclerosis Atherosclerotic patients Contributes to the
development of
atherosclerosis and
vascular ageing

(33)

IGF2 Regulates placental
development and fetal
growth

Vascular smooth
muscle cells

Hyper Atherosclerosis Homocysteine (Hcy)-
induced

Increased vascular
smooth muscle cell
proliferation

(34)

FOXP3 Maintenance of the
suppressive properties
of Tregs

Peripheral blood
Treg cells

Hyper Atherosclerosis Using shRNA to silence
DNMT3b in ApoE mice

Led to DNMT3b
accelerated
atherosclerosis
Down-regulation of
Tregs

(35–37)

KLF4 Anti-inflammatory
atheroprotective
transcription factor

Endothelial cells Hyper Atherosclerosis Disturbed flow Promotes proliferation
Promotes macrophage
M1 activation by
suppressing KLF4
expression

(38–40)

CETP Facilitates the exchange
of triglyceride to
cholesterol esters

Peripheral blood Hyper Atherosclerosis Familial
hypercholesterolaemia

Hypermethylation of
CETP is associated with
lower total cholesterol
and LDL-C levels

(41)

SMAD7 Tumorigenesis,
inflammation, and
fibrosis

Peripheral blood13/
primary cultured
human umbilical
vein smooth muscle
cells (HUVSMCs)14

Hyper Atherosclerosis Atherosclerotic patients Increase in SMAD7
methylation led to the
increase in Hcy levels, a
known atherosclerotic
marker

(42, 43)
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including atherosclerosis (52). Thus, atherosclerotic lesions

typically display clonal growth and are postulated to be able to

arise from neoplastic processes consequent upon critical somatic

mutations within expanded haematopoietic cell populations (53).

Strikingly, approximately 50% of all mutations which result in

the clonal expansion of haematopoietic cells are within genetic
Frontiers in Cardiovascular Medicine 03
loci of specific members of the DNA methylation-regulatory

genes; Dnmt3a and Tet2 (54). Further, whole-exome sequencing

of samples obtained from coronary heart disease patients

revealed that clonal hematopoietic mutations in these genes

conferred a significantly greater (approximately 2-fold) risk of

atherosclerosis-associated incident heart disease compared to
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patients without such mutations (55). These data suggest that loss

of function of these genes provides (potentially tumour-

promoting) selective advantage and clearly underline the

functional significance of DNA methylation in the development

of AVD. The causal effect of both DNMT3A and TET2 loss-of-

function within myeloid cells upon clonal expansion and the

development of atherosclerosis has also been demonstrated

unequivocally in atherosclerosis-prone mice (56–58). Thus, in

bone marrow transplantation studies, DNMT3A- and TET2-

deficient haematopoietic stem/progenitor cells (HSPCs) were

both shown to expand preferentially (and most notably into the

macrophage population) leading to a marked increase in

atherosclerotic plaque size (56, 58). Strikingly, despite exerting

opposing catalytic effects with respect to DNA methylation, the

lack of either DNMT3A or TET2 in these mice resulted in

similar downstream transcriptomic and pathogenic cellular

effects. This perhaps highlights the crucial importance of

correctly balanced methylation and demethylation and should be

taken into consideration in designing therapeutic strategies.

It is now well-recognised from studies in mice that vascular

smooth muscle cells (VSMCs) within the atherosclerotic plaque

arise from the clonal expansion of a few select cells within the

medial arterial wall and although not conclusively proven, much

evidence suggests that this is also the case in the human

pathology (53). This raises the question as to whether similar

mechanisms might underlie the clonal expansion of VSMCs in

atherosclerosis to those which drive the expansion of (age-

related) somatic cell mutations in haematopoietic cells. VSMCs

in atherosclerosis exhibit considerable plasticity and can adopt

phenotypes resembling foam cells, macrophages, mesenchymal

stem cells and osteochondrogenic cells (59). Evidence suggests

that DNA methylation is a mediator of phenotypic switching in

VSMCs (60) and that the catalytic (5-hmC-generating) activity of

TET2, in particular, plays an active role in this (61). Whether

clonally-expanded VSMCs in atherosclerotic plaques commonly

harbour somatic mutations in Tet2 or Dnmt3a is not currently

known, but is a clear possibility.

The involvement of aberrant DNA methylation in ECs,

associated with atherosclerotic development has also been

demonstrated. DNMT-dependent changes in EC DNA

methylation, associated with disturbed flow and endothelial

inflammation, have been shown in vitro and in animal models in

vivo (38, 62) and a role for EC-expressed TET2 in atherosclerosis

progression has been demonstrated in mice (57). Although

technically challenging to demonstrate, recent studies involving

single-cell sequencing have also identified clonal expansion of

ECs, associated with cardiovascular pathologies (63–66). Further,

segmental endothelial dysfunction (ED) (particularly associated

with disturbed flow at the branch point of arteries) is a

significant contributor to arterial remodelling resulting in

atherosclerosis (67) although it remains to be determined

whether this is due to a clonally-expanded EC population. The

possibility that circulating endothelial progenitor cells (EPCs,

derived from the haematopoietic stem cell population) might be

recruited, incorporated and expanded into atherosclerotic lesions

has been widely investigated (68). The origin and functional
Frontiers in Cardiovascular Medicine 04
significance of these cells remains highly controversial (69).

Nevertheless, in a comparative mutational profiling study,

common somatic mutations in tet2 were identified in some

subjects between a mature population of these circulating

endothelial (CD105/146+ve/CD45−ve) cells and CD34+ve HSPCs,

strongly suggesting the existence of a common precursor cell

(70). This raises the possibility that critical somatic mutations,

observed within expanded haematopoietic cell populations, may

also impact upon EC function in the development of the

atherosclerotic plaque. Again, it would clearly be of interest to

determine whether mutations in DNA methylation modifying

enzymes (TETs or DNMTs) associate with any clonal expansion

of ECs in the context of atherosclerosis.
Cell-based approaches to target aberrant
DNA methylation

Given the clear association of DNA methylation changes and

AVD, therapeutic strategies involving natural and synthetic

pharmacological inhibitors of epigenetic modifications have, and

continue to be, intensely investigated (71, 72). Further, the use of

methyl-containing nutrients, notably folic acid and methionine,

particularly in the prevention of CVD (including atherosclerosis),

is of clear clinical benefit (73). However, more targeted strategies

are required to reverse specific methylation changes shown to be

causal in the disease.

Genetically-programmed cell-based strategies to both generate

disease models and treat atherosclerosis are increasingly being

investigated and developed. Gene editing, in particular using the

clustered regularly interspaced palindromic repeat (CRISPR)-

associated protein (CRISPR/Cas9) system is now widely

implemented towards the goal of correcting specific mutations to

treat a wide range of diseases (74). Many experimental studies

have demonstrated the proof of principle that the correction of a

single gene defect can alleviate the severity of atherosclerosis in

animal models [reviewed in (75)]. With regard to DNA

methylation, mutations in Tet2 and Dnmt3a, associated with

haematopoietic cell clonal expansion and CVD might therefore

be considered therapeutic targets for correctional gene editing.

An increasingly popular strategy for delivering edited genes for

targeting cardiovascular dysfunction in vivo, in is by using some

form of stem cell, such as mesenchymal stem cells (for example,

haematopoietic stem cells), embryonic stem cells or induced

pluripotent stem cells (iPSCs) as a vector, all of which have

associated advantages and drawbacks [reviewed in (76)]. iPSCs

derived from the patient offer advantages in terms of availability

and reduced immuno-reactivity but have previously proved

difficult to engineer for CRISPR/Cas9 action. However, a recent

study has shown that this could be overcome following lentiviral

transduction in an iPSC-derived macrophage model with almost

100% efficiency (77). There is also an increasing use of the large

variety of mesenchymal stem cells that can be derived from the

umbilical cord (UC-MSCs). These also have advantages of low

immunogenicity, easy collection and isolation together with high

paracrine potential (78).
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A clear problem with any cell-based gene delivery system for

addressing cardiovascular abnormalities, is that the site of

dysfunction often involves multiple cell types and restoration of

normal function may require site-specific changes in tissue

architecture. In the case of the corrections of Tet2 and Dnmt3a

mutations within haematopoietic cells this may not present as an

issue. However, as suggested above, mutations within these genes

will also possibly be found to associate with EC and/or VSMC

pathology. In this context, it is promising that ECs derived from

EPCs in vitro can occupy the perivascular space when introduced

into immuno-suppressed mice and anastomose with the host

vasculature (79). Further, bone marrow-derived stem cells can

also traverse the vessel walls of atherosclerotic plaques and

form the smooth muscle cells that are enriched there in this

condition (80).

In addition to genetic editing, the CRISPR/Cas9 system has

been developed to edit epigenetic (DNA and histone) marks. By

fusing “dead” Cas9 to the catalytic domains of epigenetic writers

and erasers, epigenetic changes can be introduced at specific

sites, guided by CRISPR guide-RNAs (gRNAs) (81). Both site-

specific DNA methylation and demethylation, by fusing to

DNMT and TET catalytic activity respectively, has been achieved

in mammalian cells (82, 83). Moreover, the CRISPR/Cas9

technology has been adapted to target multiple sites

simultaneously, with the use of a polycistronic-tRNA-gRNA (84).

Going forward, as (tissue-specific) methylation signatures that are

shown to be predictive and causal in atherosclerosis become

identified, these would represent potential targets of epigenetic

editing in appropriate stem cell-based therapies.
MicroRNAs and AVD

Approximately 99% of the human genome does not encode

proteins (85). Although once considered to be “junk DNA”,

much of it is now understood to be highly transcribed into

different sub-categories of long and short non-coding RNAs

(ncRNAs) with regulatory and structural functions (86).

MicroRNAs (miRNAs) are a class of short (18–26 nucleotides)

ncRNAs which act as post-transcriptional regulators of gene

expression (87). More than 1,500 miRNAs, comprising about

1%–5% of the human genome have so far been annotated (88,

89) which are estimated to regulate more than 60% of the

mRNA transcriptome (90). They act by binding to a homologous

sequence (typically within the 3′ untranslated region) of their

target gene(s) and destabilising the mRNA and/or repressing

translation [see (91, 92) for detailed reviews of their synthesis

and mechanisms of silencing]. They therefore affect protein levels

and hence cellular phenotype without modifying the primary

DNA sequence and are thus considered as epigenetic modulators.

A single miRNA may suppress the expression of multiple

functionally-related genes in critical cellular signalling pathways

(93). Consequently, miRNAs have emerged as important

regulators of physiological processes in development and cellular

homeostasis (94). Further, their dysregulation is increasingly

shown to be associated with pathological states, most notably
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cancers, in many cases causally (95). Accordingly, many miRNAs

are now known to play critical roles in normal cardiovascular

physiology and to be key players in the development of CVD,

including atherosclerosis (96, 97). A table of key miRNAs

associated with functions relevant to atherosclerosis development

and/or known to be misexpressed in atherosclerosis is shown

(Table 2).

Perhaps unexpectedly, miRNAs have been found to be

relatively stable and can readily be detected in body fluids

including blood, urine and saliva. This is now believed to be

predominantly due to their encapsulation within microvesicles

and particularly exosomes (146). These are small (30–150 nm in

size) membrane vesicles which originate from intracellular

compartments and are secreted by most cells (147). They carry

bioactive (tissue-specific) cargo from their host cell, including

proteins, lipids and nucleic acids (notably miRNAs) and are

involved in intercellular communication and thus a wide range of

physiological processes (148). The biological components of

exosomes can therefore influence both physiological and

pathophysiological processes. Further, it has been shown that the

molecular constituents of the exosomes (including the miRNAs

they carry) are themselves modulated by disease states (and

responses to treatments) (149). Accordingly, there is now

considerable investigation into the clinical use of levels of specific

miRNAs as biomarkers for disease onset and progression. In the

case of atherosclerosis, an increasing number of circulating

miRNAs have been identified whose levels have been shown to

associate with a thickening of the arterial wall in the very early

stages of the of the disease and it is hoped that these will prove

diagnostically useful in future [reviewed in (150)].
Therapeutic approaches to target
dysregulated non-coding RNAs in
atherosclerosis

The numerous causal associations between dysregulated

miRNAs and the onset and progression of AVD (tabled above)

has driven the use of miRNA-based therapeutic approaches to

either supress or restore their misexpression (151). Thus, miRNA

mimics and anti-miRNAs (antagomirs) have been used to

counteract the functional pathological consequences of reduced

or upregulated miRNA expression respectively. However, there

are considerable challenges associated with their use.

Unmodified, naked nucleic acid oligonucleotides are subject to

degradation by serum nucleases and are immunoreactive.

Considerable progress has been achieved in the development of

chemical modifications to stabilise therapeutic oligonucleotides

including the use of 2′-O-methyl (2′-OMe), phosphorothioate,

2′-O-methyoxyethyl (2′-MOE), 2′-fluoro (2′-F) and N,N–

diethyl–4-(4–nitronaphthalen–1–ylazo)- phenylamine (ZEN)

modifications and locked nucleic acid (LNA) technologies. These

are all aimed at increasing the stability and reducing the immune

recognition of oligonucleotides while maintaining their binding

affinity and specificity and functional efficacy [reviewed in (151)].
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TABLE 2 Selected miRNAs dysregulated in atherosclerosis and/or involved in pathways relevant to atherosclerosis development.

miRNA Cell/Tissue type Target mRNA Function and/or association with disease Reference
miR-1 Blood Expression associates with subclinical atherosclerosis. Induces VSMC

differentiation
(98)

VSMCS Klf4 and Pim1 (99, 100)

miR-10a VSMCs HDAC4 Negative regulator of SMC differentiation (101)

Serum GATA6 Represses inflammatory signalling (102)

miR-10b ECs LTBP1 Deficiency caused resistance to atherosclerosis (103)

miR-19a ECs Cyclin D1 Mediates the suppressive effect of laminar flow on cell cycle progression (104)

VSMCs RHOB Promotes VSMC proliferation (105)

B Cells IL-10 Suppression of IL-10-mediated immunomodulation (106)

miR-19b ECs SOCS3 Activates perivascular adipose tissue (107)

ECs PGC-1α Overexpression results in endothelial injury in atherosclerosis (108)

Macrophages ABCA1 Promotes cholesterol accumulation and atherosclerosis (109)

Macrophage-derived exosomes JAZF1 Promotes atherosclerosis (110)

miR-21 Monocyte/macrophages TNFa Promotes anti-inflammatory signalling (111)

VSMCs Regulation of cell proliferation. (112)

miR-22 Macrophages IRF5 Inhibition promoted atherosclerotic plaques (113)

miR-26a VSMCs SMAD-1 Inhibition accelerated SMC differentiation (114)

ECs TRPC3 Inhibits atherosclerosis (115)

miR-27 Hepatic Cells LPL Regulates plasma and macrophage lipid levels and atherosclerosis (116)

miR-29a Plasma Collagens I and III and
Quaker

Regulates lipid uptake. Elevated plasma levels associated with increased carotid
intima-media thickness in atherosclerosis

(117)

VSMCs Fbx7/CDC4 Regulates cell proliferation (118)

miR-29b VSMCs Regulation of cell proliferation. Inhibition reduces in-stent restenosis (119, 120)

Elevated plasma levels associate with increased intima-media thickness (117)

miR-33a/b Liver, fibroblast, and
macrophage cell lines

ABCA1 Regulates cholesterol homeostasis (121–123)

miR-122 Liver Decreases plasma cholesterol (124)

ECs NPAS3 Regulates endothelial-to-mesenchymal transition and atherosclerosis (125)

miR-126 ECs Dlk1 V-CAM1 Enhances angiogenesis and endothelial repair (126, 127)

miR-130 ECs PPARγ Promotes inflammation and atherosclerosis (128)

miR-132 and
miR-133

Blood Expression associates with subclinical atherosclerosis (98)

miR-145 VSMCs KLF4 Regulate VSMC differentiation. Downregulation contributes to atherosclerosis (129)

miR-146a VSMCs KLF4 Promotes VSMC proliferation and neointima hyperplasia in vitro (130)

EPCs Plk2 Increased expression associates with senescence and apoptosis (131)

miR-148a Hepatocytes LDLR and ABCA1 Regulates circulating lipoprotein (132)

ECs KLF5 Regulates inflammation and EC injury in atherosclerosis (133)

miR-155 VSMC-derived exosomes ZO-1 Regulates EC proliferation and permeability (134)

miR-186-5p Serum exosomes LOX-1 Regulates lipid uptake by macrophages and atherosclerosis (135)

miR-216a ECs SMAD3 Induces endothelial cell senescence and inflammation (136)

miR-217 ECs SIRT1 Increased expression associated with cellular senescence (137)

ECs TLR4 Regulates endothelial-to-mesenchymal transition (138)

miR-221 and
miR-222

VSMCs P27 and p57 Necessary for vascular smooth muscle cell proliferation and neointimal
hyperplasia

(139)

ECs PGC-1α Overexpression results in endothelial injury in atherosclerosis (108)

miR-302a Macrophages ABCA1 Modulator of cholesterol homeostasis and atherosclerosis (140)

miR-320b Macrophages ABCG1 and EEPD1 Regulator of cholesterol efflux (141)

miR-365 Monocytes and serum IL-6 Participates in coronary atherosclerosis (142)

miR-483-5p Serum High serum levels associate with asymptomatic carotid artery stenosis (143)

miR-451a Serum Expression significantly decreased in patients with atherosclerosis (144)

miR-503-5p Macrophages SMAD1, 2 &7 Elevated in atherosclerosis patients (145)
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Other major challenges in delivering small RNA therapeutics

include the specificity with which these molecules can identify

and associate with their target cell(s) and the efficiency with

which they can cross cellular membranes (152). In this regard

there is increasing interest in the use of exosomes as vehicles for

their delivery, which have inherent cell-type specificity and are

naturally taken up by the target cell by endocytosis (153).
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Typically, such vesicles are isolated and purified from cultured

cells in vitro before injecting them either into the circulation or

directly into the target site (153). As required, the cells

generating the exosomes in culture can be engineered to

overexpress the desired small RNAs, for example by transfection

or transduction, to become encapsulated into the secreted

exosomes.
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Communication between different cell types, mediated by

exosomes, has increasingly been demonstrated to be important in

both the prevention and the progression of atherosclerosis,

dependent upon the physiological state of the donor cell

[reviewed in (154)]. Exosomes generated from a variety of

differentiated cell types have been used to deliver (usually

detrimental) miRNAs in experimental studies of atherosclerosis,

evidencing proof of principle. These are typically cells that are

associated with the formation of atherosclerotic plaques and

include macrophages, ECs and VSMCs among others (154). The

functions targeted by the miRNAs in these studies usually

represent different components of the atherosclerotic process

such as inflammation, lesion formation or cholesterol

biosynthesis. For example, purified exosomes, secreted by human

aortic smooth muscle cells, which had been engineered to

overexpress miR-155, were shown to transfer their miR cargo to

endothelial cells within the aorta and promote plaque formation

in atherosclerotic-prone (ApoE-/-) mice after injection into the

tail vein (135). Endothelial-derived exosome cargos have been

shown to modulate both VSMC plasticity and monocyte/

macrophage phenotype. Accordingly, miR-92a secreted from ECs

into exosomes was shown to regulate the contractile-to-synthetic

phenotypic switch of VSMCs, contributing to arterial stiffness

(155) and to enhance the proinflammatory responses and low-

density lipoprotein uptake of cocultured macrophages (156). The

ability of exosomes derived from macrophages to affect the

VSMC phenotype in vivo has also been demonstrated. Thus

exosomes isolated from nicotine-treated macrophages induced

VSMC proliferation and migration via the miR-21-3p-dependent

targeting of PTEN in vitro, while in vivo they promoted the

generation of atherosclerotic lesions in mice (157). Going

forward, and based on these studies, the use of genetically

engineered exosomes to deliver miRNAs known to be beneficial

in the treatment of atherosclerosis is therefore very promising. It

should be noted that cell-free methodologies can also be used to

load vesicles with miRNAs after their isolation. Thus, miRNAs

can be introduced into exosomes that have been isolated directly

from biological fluids, by a number of chemical and physical

methods including transfection and electroporation. miRNAs

were shown to be introduced successfully into exosomes isolated

from a number of different sources, and furthermore these

exosomes retained their abilities to deliver the miRNAs to the

target cell (158).
Therapeutic approaches using stem
cell-derived exosomes

Stem cell transplantation also represents a promising

strategy to repair and regenerate diseased tissue in CVD,

including atherosclerosis and has been shown to be effective in

animal models (159). However, this approach has limitations

due to the compromised survival and differentiation, together

with potential immunoreactivity of (allogenic) stem cells (160).

The use of stem cell-derived exosomes represents an acellular

therapeutic strategy (which avoids the issues often seen with
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stem cell transplantation) and atherosclerosis is now being

widely investigated using stem cell-derived exosomes carrying

miRNAs (161). Further, much evidence now suggests that

many of the beneficial effects of stem cell administration can,

in fact, be attributed to the secretion of paracrine factors by

the transplanted cells, including exosomal miRNAs (162).

Thus, exosomes derived from progenitor cells, such as

mesenchymal stem cells (MSCs), endothelial progenitor cells

(EPCs), bone marrow derived macrophages (BMDM) and

platelets have been shown to express endogenous miRNAs that

ameliorate and inhibit atherosclerosis progression [reviewed in

(154)]. For instance, MSC-derived exosomes containing miR-

21a-5p were shown to attenuate atherosclerosis in the ApoE-/-

mouse model, via promoting M2 macrophage polarization and

infiltration (163). In another recent study, miR-100-5p in

human umbilical cord mesenchymal stem cell-derived

exosomes was shown to reduce plaque formation in

atherosclerosis-prone mice via alleviation of eosinophil

inflammatory responses (164). The treatment of diabetic-

associated atherosclerotic mice with EPC-derived exosomes

was also demonstrated to be beneficial in reducing the disease,

although in this study the therapeutic activity was not

assigned to a specific miRNA (165).
Conclusions and future prospects

The development of vascular disorders including

atherosclerosis has increasingly often been demonstrated to be

driven by environmentally-acquired, aberrant changes in DNA

methylation. In some cases these may be due to (clonal

expansion of) somatic mutations within the epigenetic modifying

enzymes, Tet2 and Dnmt3a. Genetic editing, to reverse mutations

known to be causal in the development of atherosclerosis

represents a promising stem cell-based therapeutic strategy in the

elusive struggle to reverse the progression of atherosclerosis. Tet2

and Dnmt3a may therefore be potential therapeutic targets for

gene editing in this context. Alternatively, epigenetic editing,

involving the CRISPR/Cas9-dependent guiding of epigenetic

modifiers to target the aberrant methylation marks themselves

represents another potential therapeutic strategy.

The misexpression of specific miRNA(s), when shown to be

causal in atherosclerosis development, also represents a

promising therapeutic target to treat the disease. Genetically-

programmed cell-based therapies involving the generation of

exosomes loaded with specific small RNA cargo are therefore

also being developed. Further, the clinical use of (naturally-

occurring) exosomes expressing therapeutically-beneficial

miRNAs, isolated from stem cell populations offers great promise.

Both the above approaches have significant inherent challenges

to overcome and will rely on a fuller understanding of the

methylation/miRNA changes involved, their causal relationship

with the disease, and the involvement of specific cell-types in

atherosclerosis pathology. This will be necessary both to inform

the epigenetic changes to target and the choice of stem cell

to engineer.
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