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The role of fibrosis, inflammation,
and congestion biomarkers for
outcome prediction in candidates
to cardiac resynchronization
therapy: is “response” the right
answer?
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Background: Cardiac resynchronization therapy (CRT) is an established treatment
in selected patients suffering from heart failure with reduced ejection fraction
(HFrEF). It has been proposed that myocardial fibrosis and inflammation could
influence CRT “response” and outcome. Our study investigated the long-term
prognostic significance of cardiac biomarkers in HFrEF patients with an
indication for CRT.
Methods: Consecutive patients referred for CRT implantation were retrospectively
evaluated. The soluble suppression of tumorigenicity 2 (sST2), galectin-3 (Gal-3),
N-terminal portion of the B-type natriuretic peptide (NT-proBNP), and
estimated glomerular filtration rate (eGFR) were measured at baseline and after 1
year of follow-up. Multivariate analyses were performed to evaluate their
correlation with the primary composite outcome of cardiovascular mortality and
heart failure hospitalizations at a mean follow-up of 9 ± 2 years.
Results: Among the 86 patients enrolled, 44% experienced the primary outcome.
In this group, the mean baseline values of NT-proBNP, Gal-3, and sST2 were
significantly higher compared with the patients without cardiovascular events. At
the multivariate analyses, baseline Gal-3 [cut-off: 16.6 ng/ml, AUC: 0.91, p <
0.001, HR 8.33 (1.88–33.33), p= 0.005] and sST2 [cut-off: 35.6 ng/ml AUC: 0.91,
p < 0.001, HR 333 (250–1,000), p= 0.003] significantly correlated with the
composite outcome in the prediction models with high likelihood. Among the
parameters evaluated at 1-year follow-up, sST2, eGFR, and the variation from
baseline to 1-year of Gal-3 levels showed a strong association with the primary
outcome [HR 1.15 (1.08–1.22), p < 0.001; HR: 0.84 (0.74–0.91), p= 0.04; HR:
1.26 (1.10–1.43), p≤ 0.001, respectively]. Conversely, the echocardiographic
definition of CRT response did not correlate with any outcome.
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Conclusion: In HFrEF patients with CRT, sST2, Gal-3, and renal function were associated
with the combined endpoint of cardiovascular death and HF hospitalizations at long-
term follow-up, while the echocardiographic CRT response did not seem to influence
the outcome of the patients.
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1. Introduction

Despite the significant advances in medical treatment, the

prognosis in heart failure with reduced ejection fraction (HFrEF)

remains poor, and the use of markers for outcome prediction

remains scarce. Cardiac resynchronization therapy (CRT) proved to

reduce mortality and heart failure (HF) hospitalizations in patients

with left bundle branch block (LBBB) and left ventricular ejection

fraction (LVEF) ≤35%, still symptomatic on top of optimal medial

therapy (1). However, given that not all patients seem to equally

benefit from CRT, the concept of “response” has been developed:

various definitions, mainly based on clinical or echocardiographic

modifications following CRT implantation, have tried to identify the

subgroup of HF patients that gains the greatest advantage from

resynchronization therapy. The aim is to optimize the candidates’

selection and the cost/benefit ratio of a relatively expensive tool (2).

The degree of myocardial inflammation and fibrosis can impair the

efficiency of resynchronization by affecting left ventricle (LV)

adverse remodeling and outcome, becoming the main determinant

of the so-called “CRT response” (3). Clinical and imaging

assessments alone, performed before CRT implantation, are not able

to fully evaluate the state of cardiomyocytes and myocardial

extracellular matrix. Conversely, some biomarkers, such as the

soluble suppression of tumorigenicity 2 (sST2), galectin-3 (Gal-3),

and N-terminal portion of the B-type natriuretic peptide (NT-

proBNP), have been related with myocardial fibrosis, inflammation,

and congestion, which are affecting the prognosis in HF patients (4–

6). Chronic kidney disease and HF may amplify pathophysiologic

mechanisms that lead to a dangerous vicious cycle. It is still unclear

whether the dynamic change of renal function after CRT

implantation directly contributes to a poor outcome or whether

eGFR only marks the advances of cardiac and renal dysfunction (7).

The associations between the variations of the mentioned

biomarkers, renal function, CRT response, and cardiovascular

(CV) outcome have not been systematically evaluated in

contemporary cohorts. Thus, the aim of our study is to

investigate the potential relationship of cardiac biomarkers, CRT

response, and long-term outcome in a cohort of patients with

HFrEF undergoing CRT implantation.
2. Materials and methods

2.1. Study design and participants

We retrospectively evaluated consecutive patients undergoing

implantation of CRT pacing (CRT-P) or CRT and defibrillation
02
(CRT-D) in our institution “Azienda Ospedaliera-Universitaria

Careggi” from November 2010 to January 2012. According to

current guidelines, the patients were addressed for implantation

when affected by symptomatic HFrEF (New York Heart

Association class II to ambulatory class IV) despite optimal

medical therapy, LV systolic dysfunction with ejection fraction

≤35%, and QRS width ≥130 ms together with LBBB morphology

(8). The presence of a LBBB was defined in case of QRS≥
130 ms; QS or rS complex in V1 to V2; monophasic and

notched or slurred R waves in I, aVL, V5, or V6; and absent Q

waves in leads V5 and V6 (9). A three pacing-lead device was

implanted in each patient and was programmed to obtain the

highest percentage of biventricular stimulation (≥90% of total

beats). This study excluded patients with a QRS morphology

different from LBBB or already carriers of a right-sided pacing

system, either pacemaker or implantable defibrillator. The

implantation of transvenous CRT systems was performed

according to standard techniques, preferring the basal position of

the lateral veins for LV lead placement avoiding the apical

segment (10), and placing the right atrial and ventricular leads

preferably at the atrial appendage and at the apex (11). No

quadripolar LV leads were implanted since they were not

available at that time in our institution. The CRTs were

programmed by senior electrophysiology specialists according to

current guidelines and manufacturer specifications (12). Our

study is in accordance with the ethical guidelines of the 1975

Declaration of Helsinki and was approved by our local

institutional review board. Informed consents were obtained

from all the patients.
2.2. Laboratory assessment

Gal-3, sST2, NT-proBNP, creatinine, and estimated glomerular

filtration rate (eGFR calculated with the CKD-EPI formula) were

measured at baseline and at 12 months after CRT implantation.

The delta (Δ) was considered as the difference between the

biomarkers at baseline and 1-year follow-up.

All blood samples obtained from the patients were collected

with a sterile disposable syringe containing EDTA. They were

analyzed using the Alere Triage BNP Test. This test is an

immunoassay in a single-use plastic cartridge containing a

monoclonal antibody for BNP, labeled with a fluorescent dye and

BNP. Plasma BNP was measured with Triage BNP Test (Biosite

Inc., San Diego, CA, United States). The human galectin-3

ELISA is an enzyme-linked immunosorbent assay for the

quantitative detection of human galectin-3 (Platinum Elisa,
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eBioscience, San Diego, CA, United States). The assay was

performed measuring the protein in EDTA plasma. Aliquots of

serum samples were stored at temperature ranging from 2° to 8°,

and the human galectin-3 level were determined after 24 h. Each

sample was manually measured, and it has been assayed in

duplicate; a calibration curve was built making serial dilution,

starting from a value of 25,000 ng/ml to a value of 0.39 ng/ml.

The final reading was realized using a specific scanner (DV 990

BV 4/6, N.T. laboratory Rome, Italy). The Presage sST2 assay is

a quantitative sandwich monoclonal ELISA in a 96-well

microtiter plate format for the measurement of sST2 in serum,

EDTA plasma, or heparin plasma. The Presage sST2 assay

utilizes two mAbs against ST2. A mouse monoclonal antihuman

sST2 antibody is coated onto the surface of the microtiter plate

wells and acts as the capture antibody to bind sST2 molecules in

the solution. A second mouse monoclonal antihuman sST2

antibody is provided in the solution and functions as the tracer

antibody for detecting ST2 molecules that bounded to the

capture antibody (Critical Diagnostics, San Diego, CA, United

States).
2.3. Echocardiography

All patients underwent a cardiologic evaluation and

echocardiographic study at baseline, before CRT implantation,

and at 1-year follow-up. The responders were defined by the

reduction of LV end-systolic volume ≥15% at 1-year follow-up.

The echocardiographic evaluation was interpreted and

independently reviewed by three senior cardiologists according to

the instructions provided by the American Society of

Echocardiography (13). The LV volumes and LVEF were

calculated using the apical two- and four-chamber views by the

Simpson biplane formula. The pulsed-Doppler transmitral flow

velocity was used to obtain the early diastolic velocity (E wave),

late diastolic velocity (A wave), and their ratio (E/A), and the

deceleration time of E wave. The tissue Doppler imaging (TDI)

was used to collect the early diastolic myocardial velocity (e’) at

the septal and lateral level and the average E/e’ ratio. The M-

mode was then used to obtain the values of tricuspid annular

plane systolic excursion (TAPSE). The delta (Δ) was defined as

the difference between the echocardiographic data (LV volumes,

LVEF) at baseline and 1-year follow-up.
2.4. Outcome definition

The primary clinical outcome was assessed using a composite

clinical endpoint consisting of CV mortality and HF

hospitalization. CV decease includes death that result from an

acute myocardial infarction, sudden cardiac death, HF, stroke,

CV procedures, CV hemorrhage, and other CV causes. The

secondary outcomes were cardiovascular mortality, HF

hospitalizations, and the first episode of sustained rapid

ventricular tachyarrhythmias > 180 beats/min detected and

terminated or recorded by the CRT device. All such events are
Frontiers in Cardiovascular Medicine 03
routinely registered in our database at each outpatient visit and

following consultations in the emergency room of hospital wards.

The mean follow-up was 9 ± 2 years.
2.5. Statistical analysis

The continuous variables reported as mean ± standard

deviation (SD) or as median were compared between patients

with CV events and patients without CV events using the

Student’s t-test or non-parametric tests, as appropriate. The χ2 or

Fisher exact test was used to compare non-continuous variables

expressed as proportions. The categorical variables reported as

percentages were compared between groups using the chi-

squared test (or a Fisher exact test when any expected cell count

was <5). The predictive parameters of the outcomes were

determined by analyzing the receiver operating characteristic

(ROC) curves to obtain the best cut-off values. The survival

analyses and curves were performed using the Kaplan–Meier

method. A Cox regression modeling was performed to assess the

factors associated with the composite outcome, CV death or HF

hospitalization: multivariate analyses included covariates in a rate

of 1:10 with the events recorded. Given the relative low numbers

of events at follow-up, we built different prognostic models

including at least one clinical, one echocardiographic, and one

laboratory parameter. The ones with the highest log-likelihood

were then selected. P-values are two-sided and considered

significant when <0.05. All analyses were performed using IBM

SPSS Statistics for Macintosh, Version 26.0 (IBM Corp., Armonk,

NY, United States).
3. Results

3.1. Baseline characteristics, biomarkers,
and primary outcome

A total of 86 patients fulfilled the inclusion criteria and were

enrolled in the current study. The mean age was 70 ± 9 years,

mean QRS duration 165 ± 21 ms, and LVEF 26 ± 6%, and 43% of

them had ischemic cardiomyopathy (Table 1). The biomarker

levels according to HF etiology (non-ischemic vs. ischemic) are

shown in Supplementary Table S1. The patients with non-

ischemic etiology showed lower levels of sST2 and better renal

function both at baseline and during follow-up compared with

patients with ischemic etiology.

At a median follow-up of 9 ± 2 years, 38 patients (44%)

experienced any component of the primary outcome: considering

the single outcomes, 33 (38%) were hospitalized for HF and 20

(23%) died. Moreover, 15 (17%) experienced an episode of

ventricular arrhythmia. Table 2 shows the differences of the

baseline characteristics of the study groups in relation to the

composite primary outcome.

In the group with clinical events, the concentrations of all

the biomarkers analyzed were significantly higher, as shown by

the mean values of creatinine (1.44 ± 0.48 vs. 1.30 ± 0.43 mg/dl,
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TABLE 1 Baseline and follow-up clinical, biomarkers, and
echocardiographic characteristics of the population enrolled.

Total patients, N = 86

Baseline
Age (years) 70 ± 9

Sex female 27 (31)

NYHA functional class
II 25 (28)

III 56 (66)

IV 5 (6)

Ischemic etiology 37 (43)

Diabetes 26 (30)

Smoke 36 (42)

Dyslipidemia 43 (50)

Hypertension 53 (62)

COPD 13 (15)

AF 21 (24)

QRS duration 165 ± 21

Left ventricular pacing site
Lateral 59 (68)

Posterolateral 16 (19)

Anterolateral 11 (13)

Biomarkers
Creatinine (mg/dl) 1.40 ± 0.75

eGFR (ml/min/1.73 m2) 55.6 ± 20.0

NT-proBNP (pg/ml) 2,510 ± 4,445

Gal-3 (ng/ml) 27.2 ± 12.4

sST2 (ng/ml) 30.7 ± 11.0

Echocardiographic data
LVEDV (ml) 210 ± 67

LVESV (ml) 154 ± 54

LVEF (%) 26 ± 6

LVDD (mm) 67 ± 9

LVDS (mm) 54 ± 10

E/A 1.3 ± 0.7

E/e’ 16 ± 6

LA area (cm2) 24 ± 6

TAPSE (mm) 18.2 ± 4.0

Treatment
B-blockers 80 (93)

ACEi/ARB 75 (87)

MRA 71 (83)

Loop diuretics 82 (95)

Follow-up
QRS duration 114 ± 20

Biomarkers
Creatinine (mg/dl) 1.38 ± 0.55

eGFR (ml/min/1.73 m2) 55.5 ± 21.0

NT-proBNP (pg/ml) 2,194 ± 3,856

Gal-3 (ng/ml) 24.2 ± 11.5

sST2 (ng/ml) 26.7 ± 12.2

Echocardiographic data
LVEDV (ml) 181 ± 77

ΔLVEDV (ml) −33 ± 34

LVESV (ml) 118 ± 50

ΔLVESV (ml) −36 ± 41

LVEF (%) 37 ± 11

ΔLVEF (%) 11 ± 11

LVDD (mm) 64 ± 11

(Continued)

TABLE 2 Baseline and follow-up clinical, biomarkers, and
echocardiographic characteristics of the patients with CV mortality and
HF hospitalization vs. patients without CV events.

Patients with
CV mortality, HF
hospitalization

N = 38

Patients
without
events
N = 48

p-
value

Baseline
Age (years) 71 ± 8 69 ± 9 0.5

Sex female 10 (26) 17 (35) 0.01

BSA (mq) 1.7 ± 0.14 1.6 ± 0.10 0.09

Ischemic etiology 20 (52) 17 (35) <0.001

Diabetes 16 (42) 10 (21) <0.001

Biomarkers
Creatinine (mg/dl) 1.44 ± 0.48 1.30 ± 0.43 0.007

eGFR (ml/min/1.73 m2) 51.5 ± 19 56.7 ± 19 <0.001

NT-proBNP (pg/ml) 2,820 ± 4,778 1,036 ± 928 <0.001

Gal-3 (ng/ml) 34.4 ± 8.2 19.4 ± 8.3 <0.001

sST2 (ng/ml) 37.9 ± 11 23.5 ± 6.9 <0.001

Echocardiographic data
LVEDV (ml) 238 ± 75 194 ± 58 <0.001

LVESV (ml) 175 ± 60 141 ± 51 <0.001

LVEDV/BSA (ml/mq) 134 ± 31 125 ± 41 <0.001

LVESV/BSA (ml/mq) 127 ± 39 110 ± 33 <0.001

LVEF (%) 26 ± 6 28 ± 5 0.01

LVDD (mm) 71 ± 9 64 ± 8 <0.001

LVDS (mm) 58 ± 9 52 ± 8 <0.001

E wave (cm/s) 86 ± 28 68 ± 23 <0.001

E/A 1.45 ± 0.9 1.04 ± 0.6 <0.001

E/e’ 18.8 ± 5 13.4 ± 5 <0.001

LA area (cm2) 24 ± 6 23 ± 4 0.01

TAPSE (mm) 16.7 ± 4.1 19.3 ± 3.9 <0.001

Treatment
B-blockers 35 (92) 45 (93) 0.6

ACEi/ARB 32 (84) 43 (89) 0.9

(Continued)

TABLE 1 Continued

Total patients, N = 86
LVDS (mm) 51 ± 12

E/e’ 14.8 ± 6.4

LA area (cm2) 25 ± 6

TAPSE (mm) 18.4 ± 4.0

Treatment
B-blockers 82 (95)

ACEi/ARB 56 (65)

Sacubitril/valsartan 22 (25)

MRA 73 (85)

Loop diuretics 77 (90)

AF, atrial fibrillation; CV, cardiovascular; HF, heart failure; VA, ventricular

arrhythmias; BSA, body surface area; COPD, chronic obstructive pulmonary

disease; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-

systolic volume; LVEF, left ventricular ejection fraction; LVDD, left ventricular

diastolic diameter; LVDS, left ventricular systolic diameter; LA, left atrium; TAPSE,

tricuspid annular plane systolic excursion; ACEi, angiotensin-converting-enzyme

inhibitors; ARB, angiotensin receptor blockers; MRA, mineralcorticoid receptor

antagonist; eGFR, estimated glomerular filtration rate; NT-proBNP, N-terminal

portion of the B-type natriuretic peptide; Gal-3, galectin-3; sST2, soluble

suppression of tumorigenicity 2.

All values are expressed as absolute number (n) and (%) for categorical variables or

mean ± standard deviation for continuous variables.
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TABLE 2 Continued

Patients with
CV mortality, HF
hospitalization

N = 38

Patients
without
events
N = 48

p-
value

MRA 31 (82) 40 (83) 0.6

Loop diuretics 36 (94) 46 (95) 0.4

Follow-up

Biomarkers
Creatinine (mg/dl) 1.64 ± 0.71 1.17 ± 0.39 <0.001

eGFR (ml/min/1,73 m2) 48.5 ± 24 62.7 ± 21 <0.001

NT-proBNP (pg/ml) 2,858 ± 4,741 963 ± 1,158 <0.001

Gal-3 (ng/ml) 35.3 ± 12.1 18.2 ± 8.1 <0.001

sST2 (ng/ml) 33.4 ± 12 20 ± 9.9 <0.001

Echocardiographic data
LVEDV (ml) 205 ± 77 158 ± 75 <0.001

ΔLVEDV (ml) −24 ± 14 −42 ± 53 <0.001

LVESV (ml) 140 ± 55 95 ± 45 <0.001

ΔLVESV (ml) −25 ± 45 −46 ± 36 <0.001

LVEF (%) 32 ± 10 41 ± 10 <0.001

ΔLVEF (%) 6 ± 11 14 ± 10 <0.001

LVDD (mm) 68 ± 10 62 ± 10 <0.001

LVDS (mm) 56 ± 11 49 ± 11 <0.001

E/e’ 17.3 ± 6 12.3 ± 6 <0.001

LA area (cm2) 26 ± 6 23 ± 6 <0.001

TAPSE (mm) 16.8 ± 3.7 20.7 ± 3.4 <0.001

CV, cardiovascular; HF, heart failure; VA, ventricular arrhythmias; BSA, body surface

area; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-

systolic volume; LVEF, left ventricular ejection fraction; LVDD, left ventricular

diastolic diameter; LVDS, left ventricular systolic diameter; LA, left atrium; TAPSE,

tricuspid annular plane systolic excursion; ACEi, angiotensin-converting-enzyme

inhibitors; ARB, angiotensin receptor blockers; MRA, mineralcorticoid receptor

antagonist; eGFR, estimated glomerular filtration rate; NT-proBNP, N-terminal

portion of the B-type natriuretic peptide; Gal-3, galectin-3; sST2, soluble

suppression of tumorigenicity 2.

All values are expressed as absolute number (n) and (%) for categorical variables or

mean ± standard deviation for continuous variables.

TABLE 3 Prediction models with multivariable risk analyses for CV death
and HF hospitalization (primary outcome).

Model 1
Parameter p-value HR CI min CI max log-likelihood = 88.75

Baseline Gal-3a 0.005 8.33 1.88 33.33

E/e’ 0.001 1.22 1.09 1.37

ΔLVESV 0.095

Sex 0.068

Model 2
Parameter p-value HR CI min CI max log-likelihood = 51.33

Baseline sST2b 0.003 333 250 1,000

E/e’ 0.001 0.72 0.59 0.88

ΔLVESV 0.130

Sex 0.276

Model 3
Parameter p-value HR CI min CI max log-likelihood = 93.02

eGFR FU 0.040 0.84 0.74 0.91

E/e’ 0.001 1.20 1.08 1.33

ΔLVESV 0.497

Sex 0.088

Model 4
Parameter p-value HR CI min CI max log-likelihood = 78.88

ΔGal-3 0.001 1.25 1.09 1.43

E/e’ 0.006 1.18 1.05 1.33

ΔLVESV 0.595

Sex 0.226

eGFR, estimated glomerular filtration rate; LVESV, left ventricular end-systolic

volume; LVEF, left ventricular ejection fraction; Gal-3, galectin-3; sST2, soluble

suppression of tumorigenicity 2; FU, follow-up.
aGal-3≥ 16.6 pg/ml.
bsST2≥ 35.6 ng/ml.

Beltrami et al. 10.3389/fcvm.2023.1180960
p < 0.001), NT-proBNP (2,820 ± 4,778 vs. 1,036 ± 928 pg/ml,

p < 0.001), Gal-3 (34.4 ± 8.2 vs. 19.4 ± 8.3 mg/ml p < 0.001), and

sST2 (37.9 ± 11 vs. 23.5 ± 6.9 ng/ml, p < 0.001).

Considering the relative low numbers of events at follow-up,

several multivariate analyses including at least one clinical,

one echocardiographic, and one laboratory parameter were

considered. Table 3 includes some of the multivariate analyses

among those showing the highest log-likelihood. Baseline Gal-3

and sST2 cut-off values with the highest AUC at the ROC

curve analysis were identified (Gal-3 cut-off: 16.6 ng/ml, AUC:

0.91, p < 0.001; sST2 cut-off: 35.6 ng/ml AUC: 0.91, p < 0.001)

and maintained a strong correlation with the outcome at the

multivariate analyses [HR 8.33 (1.88–33.33), p = 0.005 and HR

333 (250–1,000), p = 0.003, respectively]. In these “prediction

models”, E/e’ was also statistically significant; conversely, no

clinical variable maintained its correlation with the outcome,

including ischemic etiology, as shown in Supplementary

Table S2.

The Kaplan–Meier curve built with the same cut-off values of

sST2 is shown in Figure 1. The survival curves were then created

using the combination of the cut-off values of sST2 and Gal-3
Frontiers in Cardiovascular Medicine 05
found in our analysis. As displayed in Figure 2, the patients with

both high baseline sST2 and Gal-3 had the lowest survival

probability.

NT-proBNP was not significantly related with the composite

outcome when considered singularly in various prediction

models, but the parameter obtained by its combination with

sST2 (both considered as categorical variables) proved to be

significant [HR 7.69 (3.13–20), p < 0.001, log-likelihood = 56.16]

and showed a high prediction performance (AUC 0.85).

The laboratory values obtained at 12 months confirmed the

same trend presented at baseline, with higher levels of all cardiac

biomarkers in the patients with CV events. At the multivariate

analyses, sST2 [HR 1.15 (1.08–1.22), p < 0.001] and the ΔGal-3

[HR 1.26 (1.10–1.43), p≤ 0.001] maintained their prognostic

value at follow-up (Table 3). Interestingly, the baseline eGFR

values did not significantly correlate with the composite

outcome, as opposed to the values obtained at 1-year follow-up

[HR: 0.84 (0.74–0.91), p = 0.04].
3.2. Predictive role of biomarkers and
secondary outcomes

Concerning the secondary endpoints, baseline Gal-3 and

sST2 maintained their significant association with both HF
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FIGURE 1

Kaplan–Meier estimates of the cumulative probability of CV death and HF hospitalization by ST2 cut-off. CV, cardiovascular; HF, heart failure; ST2,
suppression of tumorigenicity 2.

Beltrami et al. 10.3389/fcvm.2023.1180960
hospitalizations and CV mortality alone at the multivariate

analyses, as shown in Supplementary Table S3, S4. The best

predictor of CV mortality was Gal-3 with a cut-off value of

33.6 pg/ml (AUC 0.91 p < 0.001), and the relative Kaplan–Meier

curve is shown in Figure 3.

As for the composite outcome, even if NT-proBNP alone was

not significant, the parameter obtained by its combination with

baseline sST2 (AUC 0.88, p < 0.001) showed good outcome

prediction at the multivariate analysis [HR for HF

hospitalizations 3.23 (1.89–4.35), p < 0.001, log-likelihood = 58.26;

HR for CV mortality 3.33 (1.39–5.88), p = 0.010, log-likelihood =

59.37].

When biomarkers were evaluated at 1 year, the prediction

model built with ΔGal-3 was predictive for the single

components of secondary outcomes [HR for HF hospitalizations

1.19 (1.07–1.33), p = 0.001; HR for CV mortality 1.14

(1.04–1.26), p = 0.005]. The eGFR at follow-up maintained

its prognostic role for cardiovascular mortality [HR 0.84

(0.80–0–90), p = 0.002].

Finally, no single predictor for the outcome of ventricular

arrhythmias was significant at the multivariate analysis.
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3.3. LV dimensions, CRT response, and
outcomes

The difference between the left ventricular end-systolic volume

(LVESV) at baseline and follow-up (ΔLVESV) did not correlate

with primary and secondary outcome in all prognostic models

when including biomarkers at the multivariate analyses, as shown

in Table 3 and Supplementary Tables S2–S4. Accordingly, the

echocardiographic definition of CRT response did not relate with

the single components of the composite outcome in various

prediction models and, among the total of 52 (62%) patients who

showed LV reverse remodeling and were considered responders

to CRT, no difference in terms of events rate was recorded.
4. Discussion

4.1. Biomarkers and outcome

In this paper concerning HFrEF patients undergoing CRT

implantation, a significant correlation between biomarkers of
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FIGURE 2

Kaplan–Meier estimates of the cumulative probability of CV death and HF hospitalization by Gal-3 and ST2 levels. CV, cardiovascular; HF, heart failure;
ST2, suppression of tumorigenicity 2; Gal-3, galectin-3.
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myocardial inflammation, congestion, and fibrosis, together with

renal function and the composite long-term outcome of HF

hospitalization and CV mortality was found. Gal-3 and sST2

showed the highest power in the prediction models for CV death

and HF hospitalization, also when analyzed as single endpoints.

This finding supports the theory that inflammation and fibrosis

can contribute to the course of the disease even when HF

reaches advanced stages, indicating an ongoing myocardial

damage and portending poor prognosis (14).

Although NT-proBNP, sST2, Gal-3, and eGFR, when

considered individually, have already been demonstrated to have

a prognostic role in HF (15–17), to the best of our knowledge, a

combination of these parameters and its variations during the

course of the disease were not tested in the candidates to CRT

implantation in the long-term follow-up.

The sST2 was included in the Biomarker CRT score, developed

in a sub-analysis of the SMART-AV trial, due to its additive

predictive value of CRT response when considered against a

composite of clinical variables (18). Its concentrations have been

shown to predict sudden cardiac death in patients with HFrEF

and provided complementary information to NT-proBNP (19).

Moreover, serial measurements of sST2 provided incremental

information to baseline levels, reflecting changes in myocardial

remodeling over time and an increased risk of CV death (20).

Similarly, Gal-3 is a soluble beta-galactoside-binding lectin that

has been related to inflammation and fibroblast activation; its effect

on myocardial fibrosis, CV stiffness, and immune response

modulation seems to determine pathological myocardial
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remodeling (21). High Gal-3 values have been related with CRT

response at 6 months and with CV outcome at 48 months. Serial

measurements have shown a prognostic role in acute HF,

independently from BNP values (22). In a sub-analysis of CARE-

HF, Gal-3 was an independent predictor of death from any cause

or an unplanned hospitalization for a major CV event, even if it

did not predict the response to CRT if considered as a separated

outcome (23). Interestingly, in our population, the patients who

met the primary outcome also showed higher Gal-3 levels at 1-

year follow-up, and the ΔGal-3 was a prognostic marker at the

prediction model, in line with the previous findings by Van Vark

et al. (24).

When it comes to HF, heart and kidney functions are strictly

intertwined. A renal dysfunction is very common in HFrEF, and

it is acknowledged as a powerful predictor of survival (25). From

a pathophysiological point of view, several mechanisms explain

renal involvement in cardiac diseases, mainly attributable to renal

congestion due to elevated venous pressure, decreased cardiac

output, and activation of neurohormonal system (26). It has been

described that the slight improvement in cardiac output after

CRT may be associated with a concurrent improvement in renal

function (27, 28). In our analysis, we confirm that the patients

with adverse CV outcome show a significant decline of eGFR at

follow-up compared with the patients without CV events.

Moreover, eGFR is able to predict the absolute risk for adverse

cardiac events. Maaten et al. demonstrated that the patients with

chronic kidney disease undergoing CRT implantation, while

experiencing a reverse remodeling in a lesser extent than those
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FIGURE 3

Kaplan–Meier estimates of the cumulative probability of cardiovascular death by Gal-3 cut-off. Gal-3, galectin-3.
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patients without renal dysfunction, also derive benefit on outcome

at a lesser degree of remodeling. This could be related to the

underlying pathogenesis of the renal dysfunction, such as

nephrosclerosis, which is unlikely to respond to hemodynamic

improvement (29).
4.2. Response to CRT and outcome

At follow-up, ΔLVESV and the reduction of more than 15% of

LVESV did not show a significant relation with the outcome in our

population. This finding seems to contrast with the large actual

attention for the so-called CRT “response,” but lines up with a

recent ESC position statement, which questions this arbitrary

definition (30). Historically, the interest in literature for the

research of variables to identify the patients who are less likely to

benefit from CRT has always been alive. Also, a uniform way to

define the desirable echocardiographic “response” to CRT is

lacking, and echo improvement has been shown to be variable

among different etiologies of HF. In fact, it has been argued that

a binary definition of response underestimates the true benefits
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of CRT and that similar attention has not been posed to select

patients for drug therapy. We challenge the idea that the

selection of CRT candidates should be limited in base of the

underlying etiology: while it is true that the patients with an

ischemic etiology manifest less reverse remodeling, it should also

be noticed that they have an equal relative risk reduction after

CRT for HF admission and death as the non-ischemic group.

Moreover, such a simple and cautious approach has resulted in a

well-known undertreatment of dyssynchrony, preventing the

patients to take advantage of a device that demonstrated to

reduce morbidity and mortality (31). A lack of improvement in

LVEF or in the symptoms of the patients (also considering the

limitations of this evaluation) is not considered a good reason to

withdraw one of the “drugs pillars” and accordingly should not

be interpreted as a failure of CRT. The term “disease

modification” (that may even imply a mere stabilization) should

therefore replace the term “response” (32). Accordingly, our

results corroborate the role of the laboratory values in CRT

recipients, beyond the technical parameters used to define the

efficacy of resynchronization. Importantly, the levels of these

biomarkers, namely, sST2 and Gal-3, together with renal
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function, maintained their prognostic power also at 1-year follow-

up. This should encourage clinicians to serially assess those values,

especially when considering that many other parameters do not

hold the same significance in advanced HF stages.

In our cohort, the risk stratification models incorporating one

biomarker and E/e’ identified the patients at risk for CV outcome,

confirming that the patients with higher left ventricular filling

pressure (LVFP) at baseline before the device implantation show

a worse prognosis. E/e’ is the most robust echocardiographic

surrogate of an elevated LVFP, and several validation studies

have confirmed the prediction of normal and abnormal LVFP

when E/e’ ratio was <8 or >15 (33, 34). Elevated values of E/e’

ratio related to HF progression and worse prognosis as a

consequence of an increased myocardial stiffness (35). Our data

reproduce the findings of the REVERSE trial, where E/e’ ratio

was associated with the endpoints of mortality and a new or

recurrent HF in CRT recipients (36).

In summary, our results suggest that the laboratory parameters

related to fibrosis production and extracellular matrix deposition,

together with the concordant increase in echocardiographic

surrogates of wall rigidity and chamber stiffness, are linked to an

unfavorable outcome in CRT patients.

Our study comes with several limitations. All data were

collected retrospectively from our single center, allowing the

achievement of a small sample size with low cardiovascular

events. However, we included an accurately screened population

undergoing CRT implantation, following the indication of the

latest guidelines. Gal-3 often increases in renal failure and

chronic inflammatory diseases. Moreover, the so-called

“response” to CRT depends on many different parameters: a role

of underlying etiology, percentage of biventricular pacing, loss of

LV capture, and compliance to medical therapy cannot be ruled

out. In addition, notwithstanding that efforts should be made to

optimize the efficacy of CRT capture after implantation, this does

not affect the main finding of our study concerning the

correlation between the biomarkers and the outcomes in these

patients.

A total of four patients experienced the primary endpoint in

the first year after the implantation, hence the correlation

between echocardiographic and laboratory parameters at 1-year

follow-up, and the outcome do not apply for them.

In conclusion, our study showed how, in a population of

HFrEF patients implanted with CRT, a combined evaluation of

biomarkers of cardiac inflammation, fibrosis, and renal function

correlated with the combined outcome of CV death and HF

hospitalization, as opposite to the echocardiographic definition of
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CRT response. The current findings cannot be extended to all

HF patients with different etiologies and need to be confirmed in

larger multi-center studies. However, despite the potential

confounders, our results encourage clinicians to serially assess the

levels of cardiac biomarkers to add significant prognostic

implication.
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