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Mechano-electric feedback is one of the most important subsystems operating in
the cardiovascular system, but the underlying molecular mechanism remains
rather unknown. Several proteins have been proposed to explain the molecular
mechanism of mechano-transduction. Transient receptor potential (TRP) and
Piezo channels appear to be the most important candidates to constitute the
molecular mechanism behind of the inward current in response to a mechanical
stimulus. However, the inhibitory/regulatory processes involving potassium
channels that operate on the cardiac system are less well known. TWIK-Related
potassium (TREK) channels have emerged as strong candidates due to their
capacity for the regulation of the flow of potassium in response to mechanical
stimuli. Current data strongly suggest that TREK channels play a role as
mechano-transducers in different components of the cardiovascular system, not
only at central (heart) but also at peripheral (vascular) level. In this context, this
review summarizes and highlights the main existing evidence connecting this
important subfamily of potassium channels with the cardiac mechano-
transduction process, discussing molecular and biophysical aspects of such a
connection.
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Introduction

While great strides have been made in understanding the molecular mechanisms of

touch (1–3), cardiovascular mechanotransduction remains a complex and enigmatic

process that is not yet fully understood. This review highlights the critical importance of

mechano-sensitivity in maintaining proper cardiovascular function, and the challenges

associated with elucidating its underlying mechanisms.

Multiple elements can sense the different mechanical forces affecting the cellular body,

for example, elements of the extracellular matrix such as integrins, elements of the

cytoskeleton, G-protein-coupled receptors or different ion channels (4). This review is

focused on TREK channels, a subfamily of the two-pore-domain potassium (K2P)

channels encoded by genes named KCNK, which are capable of detecting mechanical

stimuli altering their opening and closing kinetics. These mechano-sensitive ion channels

are membrane proteins that allow cells to respond and adapt to physical forces (5),

playing a crucial role in mechano-transduction processes (6, 7). Mechanical forces are

fundamental in cardiovascular biology, however, the mechanisms that support this

physiological process have yet to be elucidated. In this sense, the link between electrical

stimulation and mechanical contractions is widely established, and the mechanism by

which an electrical stimulus produces muscle contraction is widely accepted (8). On the

contrary, the process by which mechanical forces can influence the electrical properties
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(mechano-electric feedback) of the cardiovascular cells is still

poorly understood (9, 10). Mechano-electric feedback is one of

the most important subsystems that operate within the

cardiovascular system (11), it can be defined as the process by

which mechanical stimuli are converted into electrical signals

and plays a key role in the functioning of cardiovascular

homeostasis (2, 12, 13). In the heart, different mechano-sensitive

structures have been identified, with myocytes being the most

relevant (14), while at peripheral level, smooth muscle fibers

(present in veins and arteries) are the main elements.

Roughly speaking (without considering chloride channels) ion

channels can be separated into two categories. When activated,

certain channels, regardless of their selectivity, can either

depolarize or hyperpolarize the cell membrane. Applying this

idea to the mechanobiology context, these families are known as

depolarizing non-selective cationic channels and hyperpolarizing

potassium selective channels. In this context, TRP and Piezo

channels are part of the first category. They are a nonselective

Na+, Ca2+ (among others) conductors. TRP channels are usually

considered as dominant elements in mechano-sensitivity (15)

and they are part of the mechanosensitive non-selective cardiac

current family (16–19). However, they have been shown to be

insensitive to membrane stretch (20) and are not considered

primary mechanotransducers (21). Piezo channels are also

considered to be transducers of mechanical stimuli and are

widely expressed in the cardiovascular system (22). and they

could work like baroreceptors (23) even during cardiac

development (24). The second category is made up of TREK

channels (TREK-1, TREK-2 and TRAAK) and they are probably

the only mechanically-gated potassium channels playing an

important role in the process of mechanical transduction (25).

Given their widespread expression throughout the cardiovascular

system (26), these channels are emerging as potential

contributors to cardiac mechano-electrical feedback and

mechano-associated pathologies. Thus, we reviewed the evidence

supporting this possibility.
Mechano-regulation of TREK channels

MS ion channels can be activated by two different mechanisms.

The mechanism called tethering needs several cytoskeletal proteins

as scaffold proteins to activate the mechano-sensor, this is the case

of TRP channels (27). The other mechanism implies the activation

of the channels by the tension in the bilayer itself, without the need

for other cellular structures, in this group are TREK channels, see

(28) for controversial.

The molecular mechanism underlying the sensitivity of TREKs

to membrane deformation induced by mechanical forces has been

extensively investigated, stating that cellular integrity is not

essential for mechanical channel activation (7, 29), indeed TREK

channels are regulated by a mechanism called “selective filter”

(30, 31) (see Figure 1). This consists in a change of

conformation in the narrow zone of the pore that regulates the

flow of ions, similar to the C-type blockade studied in voltage-

dependent potassium channels such as inward rectifier potassium
Frontiers in Cardiovascular Medicine 02
(Kir) channels (34, 35). It has been shown that with the pore

closed, the helical protein structures would not interfere with the

passage of ions (36), contrary to what occurs in most potassium

channels (37–39). Although this selective filter mechanism is

widely accepted (36, 40, 41), there are still many open questions

(42) and other gating mechanisms could be present and activated

depending on the stimulus (43, 44).

Two states, called “Up” and “Down”, have been described for

TREK channels and although in both states the pore is open, it

has been suggested that only the Up state can be considered

conductive and that in the Down one the conductivity is residual

(36, 45). It has been shown that TREK channels can sense

mechanical forces directly through the bilayer and it has been

demonstrated that TREK channels have located the mechano-

gate in the selectivity filter (46, 47). Thus when the membrane is

stretched there is a conformational change in the channel’s

selective filter that favors the entry into the Up state, more

conductive when compared with the Down state,

notwithstanding this theory has generated some controversy (48).

As mentioned above, two mechanisms enable channels to

perceive mechanical forces: direct (Piezo and TREK channels)

and indirect (TRP channels). In addition to experimental

conditions, while the mechanism underlying the

mechanosensitivity of TRP channels is well-established (17, 21,

27), it is apparent that membrane deformation can also bring

about mechanical changes in different cytoskeleton proteins,

which can contribute to the feedback of tension in the bilayer.

Therefore, these mechanisms may not be entirely separate and

could potentially complement each other under physiological

conditions. For instance, some studies have demonstrated that

Piezos are solely responsive to shear stress (frictional force) (49,

50), but not to stretch. Furthermore, Piezos can interact with

other MS ion channels like TRP channels (51, 52) which may

conceal their behaviour under certain experimental conditions,

leading to further variability.
Role of TREK channels in the
cardiovascular system

As we have recently reviewed, TREK-1 is the most expressed

TREK channel in heart, both in neuronal and non-neuronal

tissue, including the sinoatrial node, cardiomyocytes and purkinje

fibers (26). Several studies have shown how TREK-1 is

extensively expressed in heart using molecular techniques,

including qRT-PCR and WB (53, 54). Confocal imaging also

showed TREK-1 arranged in longitudinal stripes at the surface of

the cardiomyocytes in rats (55). Consistently, whole-cell patch-

clamp electrophysiological recordings have shown clearly the

presence of a potassium current conducted by TREK channels in

cardiac cells in both murine and human (56–58). In summary,

the presence of TREK-1 in the heart tissue of various mammals

including rodents and humans has been widely demonstrated

(Table 1). However, the other two members of the TREK

subfamily (TREK-2 and TRAAK) have been poorly localized (32,

64–68).
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FIGURE 1

(A) view of the TREK structure in conventional configuration. Red dotted lines indicate the selective filter. (B) Topological model proposed for K2P
channels, each subunit has two pore forming domain (P loops) and four transmembrane domains (denoted M1-M4). (C) Representative response to a
mechanical stimuli of TREK showing that it has minimal desensitization in the inside-out configuration. Adapted from (32, 33).
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From a functional point of view, TREK-1 plays a critical role in

countering the depolarizing effect of mechano-activated cationic

currents, contributing to stimulation-activated central (heart)

feedback mechanics in the cardiovascular system (69). TREK-1

channels also have a potential role in regulating the normal

activity of sinoatrial node-hosted pacemakers by preventing the

occurrence of ventricular extrasystoles (55, 70). Inhibition of

TREK-1 channels via PKA during sympathetic stimulation may

decrease transmural dispersion of repolarization and prevent the

occurrence of arrhythmias (58), indicating that TREK-1 may

have an essential function in the cardiac conduction system (71).

In cardiomyocytes, the refractory period is critical in preventing
TABLE 1 Non-systematic but representative summary of the presence of
TREK channels in the cardiovascular system.

Protein Tissue Method Reference
TREK-1 h/r/mMyocites PCR; RT-PCR; Wb; IHC (46, 59, 60)

TREK-1 h/r/mSA Node Wb; PCR (57, 59)

TREK-1 rVentricle PCR; Wb (46, 61)

TREK-1 rEndothelial cells RT-PCR (62)

TREK-2 rHeart; rVentricular RT-PCR (53)

TREK-2 myocytes RT-PCR (63)

TRAAK rEndothelial cells RT-PCR (62)

r: Rat; m: Mouse; h: Human; IHC: Immunohistochemistry; Wb: Western Blot; PCR:

Polymerase Chain Reaction: RT-PCR: Reverse Transcriptase–Polymerase Chain

Reaction.
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premature excitation and arrhythmias. The duration or

amplitude of the action potential depends on a delicate balance

between inward-potassium and outward currents during the

action potential plateau. TREK-1, as well as BKCa (large

conductance K+ channel, both voltage and calcium-gated) or

KATP (ATP-sensitive potassium) channels, are the main

candidates encoding the cardiac stretch-activated potassium

current (72). However, in contrast to TREK-1, in the human

heart, BKCa and KATP channels are poorly expressed, making

TREK-1 the primary candidate for encoding cardiac stretch-

activated potassium currents in different species, with a single

channel conductance of approximately 100 pS (9, 32, 58). These

results suggest a clear role for TREK-1 in the repolarization

phase of the cardiac action potential (Figure 2).

Finally, the variable distribution of TREK-1 in both endothelial

and smooth muscle cells across different regions of the heart could

facilitate precise regulation of the depolarization wave that initiates

cardiac contraction (74). For example, TREK-1 is less present in

myocytes of the epicardium of adult rats than in endocardial

cells (12).

At the same time, TREK channels play an important role in

cardiovascular diseases (47), so that its experimental withdrawal

is expected to be pro-arrhythmic (75). TREK-1 has been

associated with reduced right atrial channel expression in Atrial

fibrillation (AF) models (46). AF is the most common cardiac

arrhythmia and results from shortening of atrial effective
frontiersin.org
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FIGURE 2

(A) representative diagram of a heart showing blood flow (red line) and the different regions of interest: right atrium (RA); superior vena cava (SVC) and
inferior vena cava (IVC); right ventricle (RV); pulmonary artery (PA); left atrium (LA); left ventricle (LV) and aorta (Ao). The TREK channels have been
schematically represented as 1: sinoatrial node, 2: conduction system (Purkije fibres) and 3: muscle cells. (B) Shape of a typical action potential (top)
and the conductances that generate it (bottom). Indicating the area where TREK channels are most likely to be involved (green shaded area). (C)
Effect of TREK channel removal on intrathecal calcium [Ca2+]i activity in mouse cardiomyocytes. Adapted from (56, 73).
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refractory periods and from a localized deceleration of intra-atrial

conduction (76–78). In this context, we recently have shown that

verapamil (a class IV antiarrhythmic drug used in pathological

conditions such as chronic angina pectoris, cardiac arrhythmias

or hypertension) reduces the TREK-1 activity (79). TREK-1

channels may have a role in other pathophysiological situations,

during ischemia, when purinergic agonists such as ATP cause the

release of arachidonic acid (AA) (80), which lowers intracellular

pH, the change of pH/AA can be detected by TREK-1 (63) and

could contribute to electrophysiological disturbances in the

cardiac mechano-electric feedback (81). TREK-1, plays a

protective role against ischaemia-induced neuronal damage and

has been shown to play a critical role in cardiac injury and

during remodelling after myocardial infarction. Moreover, in

TREK-1 KO animals, TREK-1 increases infarct size induced in

experimental models, leading to greater systolic dysfunction than

its wild-type counterpart, so that activation of TREK-1 may be

an effective strategy to provide cardioprotection against

ischaemia-induced damage. In addition, a study on the role of

TREK-1 in the control of cardiac excitability found that TREK-1
Frontiers in Cardiovascular Medicine 04
is essential for normal sinoatrial node cell excitability and serves

as a potential target for selectively regulating sinoatrial node cell

function (56, 57).

Also at peripheral level, the expression pattern of TREK

channels in the vascular system has been widely demonstrated.

For example, TREK-1, TREK-2 and TRAAK have been detected

in various vascular structures such as the pulmonary and femoral

artery and the cerebral arteries in both murids and humans,

suggesting a putative role for these channels in the vascular

system, particularly for TREK-1 (81). Through WB and RT-PCR,

TREK mRNA was detected in rat mesenteric and pulmonary

arteries (62) and TREK-1 has been suggested to influence

mechanically induced endothelial signalling by modulating nitric

oxide production (69). In heterologous systems it has been

shown that the presence of treprostinil (a tricyclic benzidine

analogue of PGI2 used for treatment of pulmonary arterial

hypertension) was able to inhibit TREK-1 and TREK-2,

supporting the idea that TREK-1 could contribute to the cardiac

mechano-electric feedback with a hyperpolarizing current in

response to mechanical forces in the vascular system.
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Concluding remarks and perspectives

Two types of currents activated by mechanical stimulation

operate in the heart, on the one hand a depolarizing non-

selective cationic current and on the other hand a

hyperpolarizing outward current mainly transported by

potassium. Despite originating some controversy (20), the family

of depolarizing non-selective cationic current is mainly composed

of TRP and Piezo channels (19, 20), and responds with a wide

depolarizing current that occurs mainly in the sarcolemma.

Stretch-activated potassium currents are primarily driven by

TREK channels, which play an important role in cardiac

mechano-electrical feedback, both at the cellular level (e.g.,

presence in principal cells such as pacemakers and

cardiomyocytes) and at the system level through their

involvement in the regulation of heartbeat force and rate (6, 19,

82). Overall, there is now some evidence for the ability of TREK

channels to control the electrical activity of the heart through

central mechano-electrical feedback (19).. It has been proposed

that the main function of TREK-1 is to counteract the

depolarising effect induced by currents activated by mechanical

stimuli, thus contributing to central mechano-electric feedback in

the cardiovascular system (55, 69) and controlling, at least in

part, the early repolarisation phase and action potential transfer

through the ventricular conduction system. Finally, as mentioned

above, it appears that TREK channels, especially TREK-1, may

play a role in nodal pacemaker activity.

The strong presence of TREK-1 could also indicate a possible

role in the mechanical control of the electrical activity of the

vascular periphery. However, other players must be considered in

the mechano-electric feedback process. Recent work has

investigated the role of Piezo 1 channels in the development of

cardiac hypertrophy, showing how activation of calcium/calpain

signalling through the Piezo 1 pathway contributes to the

development of cardiac hypertrophy in murine models.

Furthermore, Piezo 1 is a cardiac mechano-sensor that is

activated in response to cardiac overload in adult animals, which

in turn initiates the myocardial hypertrophic response. On the

other hand, it has also been shown that Piezo 1 activation in

response to mechanical stimuli triggers chemical signals that

contribute to the physiological response of the heart to

mechanical stress (83–85). These findings undoubtedly support

the relevant role that Piezo channels may play in both mechano-

electric feedback and cardiac pathophysiology.

In summary, TREK channels are involved in the regulation of

mechanical forces both centrally and peripherally in the

cardiovascular system. It should be noted that there may be

other currents at play that could contribute to or even counteract

TREK activity. More important, recent data have shown that

antiarrhythmic drugs can interact with mechanically-gated TREK

channels. There is enough evidence supporting the hypothesis

that potassium outward currents driven by TREK channels play

an important role not only in the normal functioning of the

cardiovascular system, where its mechanical sensitivity plays a

central aspect, but also in some relevant pathologies such as AF
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and other cardiac conditions. The expression of TREK-1

channels in the ventricle exhibits regional heterogeneity, similar

to that observed in mechano-electrical feedback under

physiological conditions. Consequently, this regional variability in

TREK-1 channel expression has the potential to modulate

mechano-electrical feedback, resulting in altered repolarization of

the action potential and consequent arrhythmogenic effects (86).

Although in this review we have focused on the possible role of

TREK channels in cardiac mechano-electric feedback as well as

their possible role in the phytopathology of the heart, there is no

doubt that other MS ion channels such as Piezo channels must

be taken into account in the explanation of the molecular

mechanism underlying cardiac mechano-electric feedback.

Presently, a significant limitation exists in the investigation of

the possible role of TREK channels in the mechano-electric

feedback process due to the lack of identified specific TREK

channel blockers. Nonetheless, a considerable body of evidence

supports the proposition that these channels are unequivocally

responsible for potassium current in response to mechanical

stimuli, and given their abundant expression in the

cardiovascular system, it is highly probable that they are

fundamental in the feedback process. Furthermore, as previously

remarked, there is clear evidence indicating that TREK channels

have a relevant role in cardiac pathophysiology. However, despite

the extensive evidence of TREK channel presence in various

regions of the cardiovascular system, including sympathetic

innervation, it is presently unknown if these channels are also

present in the intracardiac ganglion, which is responsible for

parasympathetic control of cardiac activity. Moreover, as the

pharmacology of TREK channel usage progresses, it is

conceivable that more appropriate experimental designs can be

employed to elucidate the relationship between TREK channels

and mechano-electric feedback more clearly.
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