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Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory,
anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy
of the current treatments in preventing cardiac remodeling following cardiovascular
diseases, attention has been focused on improving cardiac function with potential
alternatives such as polyphenols. The following online databases were searched for
relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of
Science databases. The search strategy aimed to assess the effects of polyphenols
on heart failure and keywords were “heart failure” and “polyphenols” and “cardiac
hypertrophy” and “molecular mechanisms”. Our results indicated polyphenols are
repeatedly indicated to regulate various heart failure-related vital molecules and
signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing
mitochondrial dysfunction and free radical production, the underlying causes of
apoptosis, and also improving lipid profile and cellular metabolism. In the current
study, we aimed to review the most recent literature and investigations on the
underlying mechanism of actions of different polyphenols subclasses in cardiac
hypertrophy and heart failure to provide deep insight into novel mechanistic
treatments and direct future studies in this context. Moreover, due to polyphenols’
low bioavailability from conventional oral and intravenous administration routes, in
this study, we have also investigated the currently accessible nano-drug delivery
methods to optimize the treatment outcomes by providing sufficient drug delivery,
targeted therapy, and lessoff-target effects, asdesiredbyprecisionmedicine standards.
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1. Introduction

Natural compounds derived from plants, marine organisms,

and animals have attracted considerable attention due to their

benefits for the health of the human body. It has been shown

that natural products have bioactive properties and can improve

various chronic diseases at the molecular level (1). Polyphenols

contain one or more phenolic rings and are abundant in red

fruits, vegetables, nuts, cocoa, wine, grapes, and tea (2, 3). These

natural compounds have received wide attention recently

regarding the well-known therapeutic effects and potential

applications of polyphenols (4, 5). Many studies have highlighted

the benefits of polyphenols in the prevention of various diseases

such as cardiovascular diseases (CVDs), neurodegenerative

diseases, diabetes, and cancer, which are mainly due to their

ability to reduce reactive oxygen and nitrogen species, activate

antioxidant enzymes, attenuate oxidative stress and inflammatory

response (6–8).

CVDs describe a range of pathological conditions that affect

the structure and function of the heart and blood vessels, which

are responsible for the highest mortality worldwide, with an

estimated 17.9 million deaths annually (9). Most CVDs could

eventually lead to heart failure (HF), a clinical syndrome in

which the heart cannot pump enough blood to meet the body’s

metabolic needs (10). HF is a critical public health problem with

noticeable morbidity and mortality (11). In several conditions,

the onset of HF is accompanied by cardiac hypertrophy (CH),

defined as an adaptive reaction in response to chronic cardiac

stress, such as hypertension, myocardial infarction (MI), valvular

heart disease, as well as hereditary diseases that cause

enlargement of cardiomyocytes and thickening of cardiac muscle

fibers. At first, such growth maintains the function of the heart.

However, chronic and persistent stress conditions lead to dilation

of the ventricles, reduced contractile function, and eventual

progression to HF (10, 12). Although drug therapies have partly

successfully reduced HF mortality, most patients experience a

downhill phase; therefore, more therapeutic measures are

necessary (13).

Currently, pharmacological products derived from natural

compounds, possessing unique structural and functional

diversity, are regarded as promising adjutant approaches to

prevent and treat CVD and HF (14, 15). Polyphenols are one of

the natural compounds that can treat and prevent the

progression of HF and CVD due to their various therapeutic

properties, including anti-inflammatory, antioxidant,

antiapoptotic, antiatherogenic, and antihypertension effects.

Clinical and animal studies have reported that polyphenols

reduce reactive oxygen species (ROS) and malondialdehyde

(MDA) in the heart (16) and induce the expression of enzymes

involved in the detoxification system, such as superoxide

dismutase (SOD), catalase (CAT), and glutathione (GSH)

peroxidase (17). In addition, polyphenols are indicated to inhibit

the oxidation of low-density lipoproteins (LDL) and reduce the

cytotoxicity caused by oxidized LDL (ox-LDL) in endothelial

cells; therefore, polyphenols could prevent the onset and
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progression of atherosclerosis (18). On the other hand, studies

conducted on both ischemic and non-ischemic HF animal

models have demonstrated that resveratrol (RES), a principal

polyphenol compound, improved systolic/diastolic ventricular

function (19, 20), cardiac hemodynamic (21), and survival, as

well as reduced left ventricular remodeling (22); all of which

effects reduce the risk of HF.

Without a doubt, clearing the role of polyphenols will enhance

knowledge of HF and CH and provide novel opportunities to

extend more effective therapeutic approaches. Therefore, in this

study, we aimed to summarize the findings regarding the

potential positive effects of polyphenol compounds and signaling

pathways and target molecules affected by several of these unique

structures in HF and CH. We also highlighted the clinical roles

of polyphenols that may provide promising therapeutic strategies

in these pathological settings.
2. Pathophysiology of cardiac
hypertrophy and heart failure

HF occurs under different pathological circumstances,

including MI (23), valvular inadequacy (24), hypertension (25),

cardiomyopathy (26), diabetes (27), and autoimmune diseases

(28). Heart loss of function is primarily due to abnormal

remodeling after the defects in cardiomyocytes’ cellular

metabolisms (29–31). Following hemodynamic alterations,

compensatory mechanisms help maintain the heart’s function,

like the renin-angiotensin process, the sympathetic nervous

system, and other neurohormonal mechanisms (32). Elevating

the vasoconstrictors and neural hormones increases the cardiac

muscle mass and empowers contractility, resulting in cardiac

hypertrophy (33).

Physiological hypertrophy enhances heart performance by

adding sarcomere units in parallel, which leads to a higher

contractility; however, if the stress continues chronically,

especially in the left ventricle, it eventually leads to pathologic

hypertrophy and HF (12). Cardiac hypertrophy (CH) is the result

of cardiomyocytes’ metabolism and calcium handling alterations,

cardiac inflammation, cell death (e.g., apoptosis and autophagy),

extracellular matrix (ECM) deposition, fibrosis, and angiogenesis

(34). Sub-cellular changes in the heart, including oxidative stress,

the increased entrance of Ca2+ in cells, and stimulant of

proteases, combined with inflammation, lead to cardiac

remodeling, pathological hypertrophy, and eventually, HF (35).

The metabolic changes in pathological hypertrophy led to

using glucose instead of fatty acid oxidation to produce ATP as

the primary energy source (36). In hypertrophic conditions,

using less oxygen to produce ATP is more desirable (37). As the

energy demand exceeds the supply, myocardial ATP levels

decrease, and contractility becomes compromised, leading to HF

development (33). Maintaining balanced ATP levels and Ca2+

concentration is imperative for healthy cardiac contractility.

Intracellular levels of calcium increase in favor of improving

contractile function during hypertrophy.
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On the other hand, under metabolic alterations, sarco/

endoplasmic reticulum Ca2+-ATPase (SERCA2a), an organelle

that pumps calcium back into the sarcoplasmic reticulum, does

not work correctly, which leads to the sizeable intracellular

concentration of Ca2+ (38). Overload of Ca2+ enrolls pathways

such as proteolytic enzymes, which promote HF (33, 35). The

steady high amount of vasoactive hormones leads to the

dominance of oxyradicals against antioxidants, boost redox-

sensitive signals, and results in oxidative stress (39) and the

formation of inflammatory cytokines, such as TNF-α, IL-6, and

IL-1 (40). Besides, the inflammatory response activates

macrophages and T immune cells (CD3+, CD8+, CD4+), which

provoke abnormal heart remodeling and dysfunction of the left

ventricle (41).

Fibroblasts are associated with maintaining cardiac contraction

and signal pathways through forming the ECM. These cells develop

ECM by secretion of humoral mediators, produce collagen type I

and III, fibronectin, matrix metalloproteinases (MMPs), and

tissue inhibitor of matrix metalloproteinases (TIMPs) (42). In the

process of cardiac remodeling by inflammation, fibroblasts

change into myofibroblasts. Myofibroblasts’ constant activation

and proliferation lead to the abnormal deposition (interstitial/

replacement) and following accumulation of collagen in the heart

that cause defective electrical conduction and inability to

contractile function, which leads to cardiac dysfunction and HF

(34, 42, 43). Loss of cardiomyocytes is a consequence of former

apoptosis, fibrosis, and necrosis mechanisms (44, 45).
3. Polyphenols

Polyphenols are secondary metabolites in plants with more

than one phenolic group and are synthesized from pentose

phosphate, phenylpropanoid, and shikimate pathways (4). Based

on the number of rings and the elements that connect these

rings, phenolic compounds are divided into subclasses, including

flavonoids, phenolic acids, stilbenes, and lignans (46). Flavonoids

are the most common phenolic metabolites found abundantly in

vegetables and fruits (47). They have a typical basic structure

consisting of two aromatic rings, A and B, connected by an

oxygen-containing heterocyclic ring, the C ring. Based on their C

ring structure, flavonoid compounds can be divided into six

categories: flavanols, isoflavones, flavones, flavanones, and

anthocyanins, each of which has a different hydroxylation and

methylation pattern of A and B rings (48). Quercetin, myricetin,

hesperetin, naringenin, nobiletin, eriodicytol, and catechins are

the most common flavonoids in the human diet (49). Flavonoids

possess antioxidant activities owning to having several phenolic

hydroxyl groups that neutralize active hydrogen atoms and

prevent the auto-oxidation of lipids (50). In addition, many

flavonoids exhibit various medicinal effects other than

antioxidative effects. For instance, pinocembrin, quercetin, rutin,

and catechin have anti-inflammatory, anti-tumor, anti-apoptotic,

anti-microbial, anti-hyperlipidaemic, and anti-diabetic properties

that make them suitable therapeutic candidates in various

pathological conditions (51–55).
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Phenolic acids are another critical group of polyphenols,

constituting approximately one-third of the polyphenolic

compounds in the human diet. This group is found in all plant

materials, especially in fruits with an acidic taste (7).

Hydroxybenzoic acid and hydroxycinnamic acid derivatives are

the two major groups of phenolic acids. Hydroxycinnamic acids

are characterized by a saturated tail containing a carboxyl group

(C6H5CHCHCOOH) and include compounds such as ρ-

hydroxycinnamic, ρ-coumaric, caffeic, and ferulic acids. The

compounds derived from hydroxybenzoic acid only have

carboxyl groups (COOH), and the most common ones are

ρ-hydroxybenzoic, gallic, protocatechuic, and vanillic acids (53).

Like structural diversity, the biological potential of phenolic acids

has a broad spectrum, such as anti-inflammatory, antioxidative

stress, anti-hyperglycemic, neutralizing free radicals, and anti-

cancer effects (56).

Lignans are phenolic compounds consisting of two

phenylpropane units (57). Secoisolariciresinol, matairesinol and

lariciresinol are common lignans. These compounds are

abundant in flaxseed; however, grains, nuts, and vegetables also

contain small amounts of lignans (58). In the human body,

lignans are metabolized by intestinal microflora into enterodiol

and enterolactone, which have estrogen-like structures; therefore,

lignans are being investigated for possible use in ameliorating

cancer, especially breast cancer (59). In addition, many studies

have shown that consuming foods rich in lignan has favorable

effects in preventing and improving diseases such as

hypertension, type 2 diabetes, metabolic syndrome, and CVDs

(60–63). The last class of primary polyphenols is stilbenes, which

consist of two phenyl groups connected by a two-carbon

methylene bridge (64). One of the widely studied stilbene

polyphenols is RES, which is abundant in the skin of red grapes;

however, it is also present in lower concentrations in blueberries,

raspberries, mulberries, and peanuts (65). RES has many

biological properties, including antioxidant, anti-inflammatory,

cardioprotective, neuroprotective, and anti-tumoral activities (66).
4. Polyphenols: a valuable strategy in
the treatment of heart failure and
cardiac hypertrophy

Polyphenols have many potential effects that can modify the

involved processes in HF and cardiac CH via multiple

mechanisms. Figure 1 represents several familiar and vital

underlying mechanisms of polyphenols in preventing and

treating HF. Excessive cardiac oxidative stress caused by

upregulated nicotinamide adenine dinucleotide phosphate

(NADPH)-oxidases (Nox) and increased ROS production in

mitochondria are the main inducers of HF (67, 68). In addition,

in conditions of severe oxidative stress, the antioxidant system

is overwhelmed due to the inhibition of nuclear factor erythroid

2-related factor 2 (Nrf2) activity by nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB). Nrf2 and NF-κB are

crucial pathways modulating the adequate balance of the status

of cellular redox and react to inflammation and stress. The
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FIGURE 1

Impact of polyphenols on modulation of heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms.
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interplay between such signaling molecules controls via various

elaborate molecular interactions and mostly is determined by the

type of cells and tissues. These interactions act through

transcriptional and post-transcriptional machinery leading to the

adjustment of dynamic reactions to ever-altering environmental

signals (69). Pharmacological and genetic investigations have

confirmed the functional interplay between Nrf2 and NF-κB. The

lack of Nrf2 aggravates NF-κB activity resulting in augmented

cytokine production, whiles NF-κB regulates the transcription

and activity of Nrf2, owning both positive and negative impacts

on the expression of target genes. Both Nrf2 and NF-κB are

modulated by elements sensitive to redox. The deficiency of Nrf2

is correlated with incremented oxidative and nitrosative stress

resulting in augmentation of cytokine release since NF-κB is

easily activated in oxidative conditions (70). Cells mostly

counteract oxidative stress by activating antioxidant enzymes

(such as catalase, glutathione peroxidase, and superoxide

dismutase) and antioxidant compounds. The antioxidant

response element (ARE) is the DNA sequence accountable for

regulating the antioxidative and cytoprotective responses of the

cells, while Nrf2 is the main modulator of the xenobiotic-

activated receptor (XAR) responsible for triggering the ARE

pathway. In this regard, the Nrf2-ARE signaling is a key

cytoprotective system to protect cells against oxidative stress and

provides an acceptable redox balance in cells (69). NF-κB is a

redox-modulated transcription factor involved in the regulation
Frontiers in Cardiovascular Medicine 04
of cell growth, apoptosis, and inflammation. Oxidative stress

triggers the activation of IκB kinase (IKK) mediating the

phosphorylation of IκB which finally elevates NF-κB release. NF-

κB stimulates the transcription of proinflammatory agents such

as cytokines, cyclooxygenase-2, iNOS, and vascular adhesion

molecules. Nrf2 restricts the activation of NF-κB signaling via

neutralizing ROS by antioxidants, therefore inhibiting activation

of NF-κB via ROS mediation (71, 72). As a result, NF-κB is the

main molecular target to improve the antioxidant system (70). It

has been shown that some polyphenols prevent the degradation

of IκB, the major NF-κB inhibitor protein, by inhibiting the

phosphorylation or ubiquitination of IκB kinase, thus blocking

the entry of the NF-kB p65 subunit into the nucleus. In addition,

polyphenols interfere with the binding of NF-κB to DNA (73, 74).

Sirtuins are a group of NAD+-dependent deacetylases located

in mitochondria, nucleus, and cytoplasm, with seven subgroups.

Among them, sirtuin1 (SIRT1) inhibits NF-κB-induced

inflammatory signaling (75). SIRT1, a redox-sensitive enzyme, is

abundantly expressed in embryo rat hearts, and suppressing its

expression leads to developmental disorders in the heart (76).

Sirt1 is upregulated by polyphenols, such as RES, which was also

found to induce the deacetylation of NF-κB in Sirt1 dependent

manner, suppressing NF-κB activity (77). On the other hand, a

study reported that gallic acid could attenuate oxidative stress by

directly reducing the expression of Noxs such as Nox1, Nox2,

and Nox4 in the cardiac tissue of hypertensive rat models (78).
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1174816
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Hedayati et al. 10.3389/fcvm.2023.1174816
In cardiomyocytes, mitochondria constitute approximately

one-third of the cell volume, reflecting the high energy

requirements of these cells (79). Mitochondrial dysfunction is

another cause of HF and is characterized by excessive leakage of

ROS that results from complexes I and III of the electron

transport chain (ETC). This process leads to membrane

depolarization and reduced ATP synthesis, followed by the

release of cytochrome c (Cyt c) from mitochondria, ultimately

triggering apoptosis (80). Anthocyanins, a subclass of flavonoids,

have a high antioxidant capacity. A study showed that they act as

Cyt c reductase and thus prevent the activation of caspases and

inhibit apoptosis (81). Further investigations revealed that

anthocyanins could act as electron acceptors in complex I of the

mitochondrial respiratory chain, leading to increased ATP

production after ischemia in rats (82).

Atherosclerosis is a chronic inflammatory condition

characterized by the deposition of extracellular lipids and,

eventually, the narrowing of the arteries (83). Atherosclerosis is

also a significant cause of CVDs, such as coronary artery disease,

the most common etiology of HF (84). Improving the lipid

profile can be beneficial by considering the role of lipids,

especially LDL, in the atherosclerotic process. The effectiveness of

polyphenols on the lipid profile has been widely investigated.

Many of these studies have shown that polyphenols could

improve lipid disorders by reducing plasma levels of triglycerides

and LDL-cholesterol and increasing high-density lipoprotein

(HDL)-cholesterol (85, 86). In addition, it has been reported that

RES increased the expression of LDL receptors on hepatocytes

in vitro, thus helping to reduce blood LDL cholesterol levels

further (87). On the other hand, it has been shown that

polyphenols reduced ox-LDL by inducing the expression of the

antioxidant system (88).

Red wine polyphenols improve hypertension, a leading cause of

cardiac hypertrophy, by increasing the activity of nitric oxide

synthase (NOS) and reducing end-organ damage such as

myocardial fibrosis (89). Moreover, several preclinical and clinical

studies have shown the antihypertensive properties of RES (90–

92). Cumulatively, polyphenols present a potentially effective

treatment for patients with HF and CH using a plant-based diet.
5. Polyphenols in HF: mechanistic
aspects and therapeutic strategy

5.1. Resveratrol

Resveratrol (3, 5, 4′-trihydroxystilbene) is a phytoalexin with a

polyphenol structure, and various plants naturally produce it as a

defense mechanism against stress, such as infection and UV

radiation. Grapes, peanuts, and peanut sprouts are considered

primary dietary sources of RES (93–95). Several studies have

reported that RES exerts multiple functions in the biological

processes, such as anti-inflammatory, antioxidant, anticancer,

neuroprotective, and cardioprotective (96, 97). The safety of RES

has been evaluated in healthy individuals and it has been

disclosed to regulate different indicators of various diseases. It
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has been reported in clinical trials that RES is safe up to 5 g/day

and known as a safe phytochemical (98) According to its

properties, RES has various beneficial effects on cardiovascular

disorders, such as improving cardiac remodeling, function,

fibrosis, and regulating cardiac metabolism and blood lipid (19,

99). A low incidence of CVDs in French people, despite their

high-risk diet, could be associated with long-term red wine

intake, which contains RES, and this is called the “French

paradox” (100) (Table 1).

5.1.1. Resveratrol regulates cardiac metabolism
The dysregulated metabolic state contributes significantly to

the progression of HF, leading to metabolism disorders. AMP-

activated protein kinase (AMPK) is an energy regulator that

controls cells’ metabolic function and balances ATP generation

and consumption. AMPK is activated by an increased cellular

AMP-to-ATP ratio, shifting cell metabolism towards the ATP-

generation pathway to restore cellular ATP levels (145, 146).

Previous studies have shown that AMPK activation can

decelerate HF progression (147). Some in vitro and in vivo

studies have shown that Sirt1 exerts antioxidative effects by

activating the AMPK pathway. GU et al. found that RES (2.5 mg/

kg/day, 16 weeks) benefits HF mice’s survival rate by

upregulating AMPK through Sirt1 activation (104). Low-dose

treatment with RES was demonstrated to alleviate cardiac

remodeling in MI-induced HF rats. Matsumura et al. showed

that RES (0.2 g/kg/day, two weeks) restored levels of fatty acid

oxidation and enhanced cardiac energy metabolism in Male

Sprague-Dawley (SD) rats. Inhibition of the activity of

cytochrome P450 1B1 (CYP1B1), resulting in decreased

expression of its metabolites, especially mid-chain

Hydroxyeicosatetraenoic acid (HETE) metabolites, has been

suggested as a possible pathway of cardioprotective effects of RES

(22). HETEs is a cardiotoxic metabolite of arachidonic acid (AA)

catalyzed by CYP1B1, which induces cardiac fibrosis, systolic

dysfunction, and vasoconstriction (148, 149). Additionally, RES

suppressed the development and progression of cardiac

remodeling and dysfunction in pressure-overload (PO)-induced

hypertrophy. RES treatment (2.5 mg/kg/day, 28 days) alleviated

lipid peroxidation (LPO) in Male Sprague-Dawley rats, indicating

that improving effects of RES on CH is associated with its direct

antioxidant effect on the heart (108).

In a study by Rimbaud et al., RES treatment (18 mg/kg/day,

8 weeks) in hypertensive Dahl salt-sensitive rat models was

associated with preventing cardiac hypertrophy, remodeling, and

dysfunction. RES Improved the cholesterol profile and prevented

reduction in Mfn1 and OPA1 expression (necessary for

mitochondrial fusion), cardiomyocyte oxidative capacity, and

citrate synthase. In addition, RES protects the heart tissue against

impaired fatty acid oxidation (FAO), which is dysregulated in

HF. In contrast to untreated hypertensive models, RES-treated

rats showed no decreased expression of PPARα (a gene that

regulates FAO), CPT-1b (a gene involved in fatty acid transport),

and utilization of carbohydrates (PDK4) (21). Similarly, the

results of Sung et al. determined that RES (320 mg/kg/day,

2 weeks) could exert its effects on myocardial metabolism in
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C57Bl/6 mice by enhancing antioxidant defense enzymes, shifting

heart metabolism from FAO towards glucose oxidation by

activating AMPK, and increasing insulin sensitivity. Besides,

collagen density, transcription of genes participating in cardiac

fibrosis, and expression of MMP2 were reduced after treatment

with RES, suppressing cardiac fibrosis and improving diastolic

dysfunction (19). Moreover, the benefits of RES on the

improvement of diastolic function and cardiac energy have been

shown in mice metabolism with transverse aortic constriction

(TAC)-induced HF. Treatment with RES decreased the

expression of gene-related CH, such as anf, bnp, β-mhc, and ska,

to the near-normal level, suggesting its positive effects on cardiac

remodeling and HF on the transcriptional level (19).

5.1.2. Resveratrol attenuates cell death, oxidative
stress, and inflammation

Inflammatory processes mediated by cytokines promote the

development and progression of HF (150). Previous studies

revealed that CX3CL1, also known as fractalkine (FKN), is a

transmembrane cytokine primarily expressed in endothelial and

epithelial cells, and its expression is induced by stress. FKN is

one of the most overexpressed cytokines in HF (151). RES has

been shown to regulate the expression of FKN and suppress

FKN-mediated inflammatory response (152). In this regard,

Xuan et al. revealed that FKN is associated with MI- or PO-

induced cardiac remodeling and HF. Based on their results,

injecting RES (20 mg/kg/day, 42 days) into mice’s hearts with

Transverse aortic constriction (TAC) was correlated with acute

phase amelioration in MI-induced HF and improved survival

rate. Expression of atrial natriuretic peptide (ANP), intercellular

adhesion molecule 1 (ICAM-1), and MMP-9, which participate

in cardiac fibrosis, was increased in HF mice, and RES treatment

reversed these changes. Further investigation showed that RES

(20 mg/kg/day, 42 days) suppresses FKN and FKN-mediated

inflammation to improve HF in mice models (103, 153). Aligned

with previous studies, transfecting FKN into cardiomyocytes,

fibroblasts, and endothelial cells, led to increased expression of

ANP, ICAM-1, MMP-9, TGF-β, procollagens I and III in cells

in vitro while treating with RES reversed all these results.

Exposing neonatal rat cardiomyocytes to RES led to increased

autophagosomes and overexpression of LC3-II and Atg5 proteins

(participate in autophagy) while treating these cells with FKN

reversed the effects of RES, indicating contrary effects of FKN on

HF. This study suggests that RES collectively improves HF

conditions and complications by antagonizing the effects of

FKT (103).

Moreover, RES treatment (10 mg/kg/day, 4 weeks) in the

murine model of heart failure decreased ROS levels and

increased CAT, SOD, and GSH, indicating the role of RES in

reducing oxidative stress. Moreover, the expression of collagen-I

and -III and TGF-β (cardiac fibrosis factors) decreased after RES

treatment, and the expression of phosphorylated eNOS (a marker

for cardiac stiffness) was increased after treatment with RES,

indicating that RES reduces cardiac fibrosis and stiffness (101).

Silent information regulator 1 (SIRT1) is a class III histone

deacetylase that protects the cardiovascular system against
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oxidative stress by boosting antioxidant defense and inhibiting

apoptosis, inflammation, and autophagy (154–156). RES is an

activator of SIRT1, which exerts cardioprotective effects by

enhancing its expression. It has been indicated that RES reduces

CH and cardiac fibrosis by activating SIRT1, leading to

suppression of the TGF-β1/p-Smad3 signaling pathway (157).

The TGF-β/Smad3 signaling pathway is an essential regulator of

fibrosis in various organs, including the heart (158, 159). This

study suggested inhibition of the TGF-β/Smad3 signaling

pathway as the RES mechanism in suppressing cardiac fibrosis

(101). Sirt1 is a primary regulator of cell metabolism, and recent

studies revealed its role in oxidative stress and fibrosis (160, 161).

Previous studies have shown that increased activity of Sirt1

reduces cardiac fibrosis by negatively targeting Smad3 and

decreasing its acetylation and transcription (160, 162, 163). In

this way, RES was identified to ameliorate cardiac fibrosis by

suppressing the TGF-β/Smad3 pathway by reducing Smad3

acetylation, which was mediated by promoting the activity of

Sirt1 (101).

Autophagy and apoptosis are two crucial CH processes

(164, 165). Various signaling pathways regulate these processes,

and PI3K/AKT/mTOR pathway is one of them. Guan et al.

investigated the preventive effects of RES treatment (30 mg/kg/

day, 5 weeks) in male SD rats on autophagy and apoptosis in

chronic intermittent hypoxia (CIH)-induced CH (110), which is

mediated by decreasing Bax/Bcl-2 ratio, CIH-induced apoptosis,

and oxidative stress, as well as increasing autophagy in rat

models. Mechanistically, RES exerts its effects by suppressing

PI3K/AKT/mTOR signaling pathway (110). Furthermore, PI3K/

AKT/mTOR signaling pathway is suppressed by PTEN, while

immunoproteasomes degrade PTEN. In this regard, RES (25 and

50 mg/kg/day, 2 weeks) was shown to partly protect cells from

oxidative stress by inhibiting immunoproteasomes from

degrading PTEN and eventually improving PO-induced CH in

Male wild-type (WT) C57BL/6 mice (109). Immunoproteasomes

are proteins involved in regulating immune responses, cellular

metabolism, growth, and survival and consist of three immune

subunits: β1i (LMP2/PSMB9), β2i (MECL-1/PSMΒ10), and β5i

(LMP7/PSMB8). These subunits are associated with cardiac

disorders (166, 167). A study by Chen et al. demonstrated that

RES inhibited PTEN degradation by reducing the expression of

immune subunits, which led to the activation of AMPK and

inhibition of ATK/mTOR. In this study, RES treatment

significantly alleviated cardiac hypertrophy and dysfunction.

Treating Ang II-induced cardiomyocytes in-vitro with RES also

decreased proteasome caspase-like, trypsin-like, and

chymotrypsin-like activities, increased expression of PTEN, and

decreased expression of cardiomyocyte size (109).

Oxidative stress inhibits LKB1 activity, leading to AMPK

suppression (168). AMPK improves vascular function by

activating endothelial NO synthase (eNOS) and producing nitric

oxide (NO) (169, 170). In this light, RES was found to activate

AMPK by enhancing the expression of LKB1, leading to increase

NO production and improved vascular function. Indeed,

Dolinsky et al. showed that RES (320 mg/kg/day, 5 weeks)

prevents hypertension-induced hypertrophy by promoting the
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LKB1/AMPK/eNOS pathway and suppressing the p70S6k

pathway in SHRs and C57BL/6 mice (90). Consistent with this

study, Thandapilly et al. reported that RES (2.5 mg/kg/day, 10

weeks) improves CH and myocardial contractibility by exerting

direct antioxidant effects on the heart in spontaneously

hypertensive rats (SHRs) models (113). Inflammation, oxidative

stress, and coronary artery endothelial dysfunction are essential

in developing cardiac fibrosis (171). In a study by Zhang et al.,

treating HF mice with RES (10 mg/kg/day, 4 weeks) significantly

reduced the cardiomyocytes’ size and the heart weight-to-body

weight (HW/BW) ratio, indicating that RES decreased CH.

Functionally, RES suppressed cardiac inflammatory response by

downregulating IL-1β, IL-6, and TNF-α and reducing

inflammatory cell infiltration in cardiac tissue (101). Based on

IL-10 production by macrophages involved in inducing

myocardial fibrosis (172), the role of RES on cardiac macrophage

activity was investigated. They found that the expression of M1

markers increased in the HF group. However, treatment with

RES shifted macrophage polarization to the M2 phenotype,

which has tissue repair effects (101). Atorvastatin is a lipid-

lowering drug with anti-inflammatory, antioxidant, and

antiproliferative properties (173, 174). Besides lowering

cholesterol levels, atorvastatin has many beneficial effects on the

cardiovascular system (175). Chakraborty et al. demonstrated that

combination therapy with RES and atorvastatin (10 + 10 mg/kg/

day, 25 days) in Wister Albino rats exerts more potent

cardioprotective effects, compared with alone RES (20 mg/kg/day,

25 days) treatment, in terms of improved CH as well as

decreased cardiac inflammation and oxidative stress (107).

5.1.3. Resveratrol inhibits cardiomyocyte
hypertrophy

CH is the pathological growth of the heart due to pressure or

volume overload, loss of contractibility, chemical toxicity, and

congenital disorders (176). CH is a beneficial adaptive response

that removes the effect of extrinsic or intrinsic stress to preserve

cardiac function. However, excessive CH is deleterious and leads

to adverse complications such as HF (177). Cellularly, various

transcription factors and signaling pathways, such as calcineurin-

NFAT, PI3K/Akt/GSK-3, MAPK, and Gp130/STAT3 signaling

pathways, participate in CH pathogenesis (178, 179). RES

suppresses CH by regulating diverse signaling pathways in

cardiomyocytes. Calcineurin is a calcium/calmodulin-activated

serine-threonine phosphatase that plays a vital role in the

development and progression of CH by regulating the nuclear

factor of activated T cells (NFAT) phosphorylation. NFAT is a

transcriptional factor that activates GATA4, which induces cell

hypertrophy (180). The benefits of calcineurin inhibitors have

been shown in terms of preventing CH (181). The study by

Chan et al. showed that RES (0–100 µM, 24 h) inhibited NFAT

transcriptional activity more efficiently than calcineurin

inhibitors in neonatal rat cardiac myocyte cells, indicating an

additional mechanism involved in the inhibitory effect of RES.

Further examination revealed that RES inhibited CH processes by

activating AMP-AMPK through upregulating liver kinase B1

(LKB1), the activating kinase of AMPK, leading to inhibition of
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p70S6K, eEF2, and NFAT signaling pathways (105). Also, AMPK

could inhibit CH through NFAT, NF-κB, and MAPK signal

pathways (182).

RES could exert beneficial effects by regulating micro RNAs

(miRNAs), a central subgroup of non-coding RNAs, as an

alternative molecular mechanism. Fan et al. showed that RES

(150 mg/kg, 4 weeks) improves cardiac function and ameliorates

CH by inhibiting the expression of miR-155 through

upregulating BRCA1 in mice models of cardiac hypertrophy.

They showed that miR-155 induces cardiomyocyte hypertrophy

and disrupts cardiac function (111). BRCA-1 is an essential gene

for heart development and exerts cardioprotective effects in adult

hearts (183). Angiotensin II is one of the renin-angiotensin

system hormones with a vital role in the progression and

development of several CVDs, such as hypertension, CH, and HF

(184). Mashhadi et al. showed that expression of AT1a (Ang

receptor) was increased in the hypertrophic rat heart, indicating

that the Ang receptor plays a vital role in the development of

PO-induced cell hypertrophy. It has been demonstrated that RES

(1 mg/kg/day, 35 days) decreased the expression of AT1a mRNA

in the hypertension group of Male Wistar rats, indicating that

RES prevents PO-induced CH by decreasing the expression of

AT1a (112). Moreover, it was observed that treatment of RES

(10–50 mg/kg/day, 4 weeks) in the partially nephrectomized rat

models was effective in nephrectomy-induced hypertension and

the subsequent CH by reducing NO, AngII, and ET-1

concentrations, which are hypertrophic cell agents (91).

5.1.4. Resveratrol can improve exercise capacity
in Hf mice

Exercise intolerance is an essential feature of chronic HF, and

identifying its underlying mechanism may help improve the

quality of life of patients with HF (185). Recent studies have

shown that impaired skeletal muscle function, structure, and

metabolism play an important role in exercise intolerance in HF

patients (186). In this way, some studies have shown that RES

can improve rodents’ skeletal muscle biogenesis, isometric force,

and metabolism (187, 188). Sung et al. in 2015 showed that RES

(320 mg/kg/day, 2 weeks) improved the exercise capacity of HF

C57Bl/6N mice by increasing the flow-mediated vasodilatation

and vascular function (19). A further study investigated the

treatment effect of 450 mg/kg/day RES for two weeks on

improving exercise intolerance of C57Bl/6N mice with pressure

overload-induced HF. A significant improvement in HF mice’s

respiratory exchange ratio (RER) was observed. Decreased RER

in HF mice indicates more use of fatty acids than glucose in

metabolism, producing more ROS and increasing oxidative stress.

Treatment with RES elevated RER level, indicating that substrate

utilization in the metabolic cycle shifted towards glucose; also,

the total metabolic rate was increased after RES treatment (102).

Mechanistically, RES treatment increased phosphorylation and

expression of IRS-1, Akt, and AMPKα, which were reduced in

HF and enhanced insulin sensitivity of skeletal muscles. This

study also indicated that RES improved metabolism and insulin

resistance in HF mice by altering the gut microbial community,

which is associated with systemic metabolic rate and insulin
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sensitivity. Sung et al. showed that RES enhanced the cecum

bacterial profile, increasing glucose homeostasis and carbohydrate

metabolism (102).
5.2. Curcumin

Curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)

hepta-1,6-diene-3,5-dione] is a natural polyphenol substance

extracted from turmeric that plays substantial roles in cellular

function by regulating various signaling pathway. Curcumin

benefits various pathologic conditions and has anti-inflammatory

and antioxidant effects (189). Various clinical and pre-clinical

investigations have revealed Curcumin is a safe natural

polyphenol compound without any severe adverse effects in a

dose of 12 g/day for human subjects (190). Moreover, EFSA

stated acceptable daily intake of curcumin is about 3 mg/kg in

healthy individuals (191). According to these features, curcumin

can be used as a therapeutic element in various diseases (192).

Several studies have reported the positive role of curcumin in

attenuating CVDs, such as atherosclerosis, MI, and HF (193,

194). Tang et al. studied the effects of curcumin (100 mg/kg/day,

8 weeks) on the cardiac function and structure of rabbits with

chronic heart failure. The results demonstrated the ameliorating

of curcumin’s role in cardiac remodeling and HF’s diastolic

dysfunction. Also, curcumin significantly reduced collagen

deposition in heart tissue (114) (Table 1).

5.2.1 Curcumin inhibits p300 histone
acetyltransferase activity

The p300, a histone acetyltransferase (HAT) enzyme, regulates

the expression of multiple genes by chromatin remodeling. P300

can also coactivate other transcriptional factors, such as GATA4

(195, 196), a member of the zinc-finger transcription factor

family with high expression in cardiomyocytes and plays a

critical role in cardiomyocyte differentiation (197). GATA4

regulates the transcription of ANP, α- and β-myosin heavy chain

(α-MHC and β-MHC), which play a role in cardiac remodeling

(198). Therefore, it seems that overexpression of p300 induces

cardiac remodeling by increasing the activation of GATA4 (199).

Several studies have reported curcumin as a natural p300-specific

HAT inhibitor that can improve cardiac remodeling in HF.

Morimoto et al. in vitro and in vivo studies exhibited the

promising effect of curcumin (50 mg/kg/day, 7 weeks) as a p300

inhibitor on preventing cardiac remodeling in both MI-induced

HF and hypertensive rats with HF (116). Mechanistically,

curcumin reduced GATA4 and p300 binding but did not change

their expression. Indeed, curcumin reverses cardiac remodeling

and hypertrophy by inhibiting p300 histone acetyltransferase

activity and decreasing the acetylated form of GATA4 and p300/

GATA4 complex (116).

5.2.2. Curcumin exerts cardioprotective effects by
regulating DDK-3

Dickkopf-related protein 3 (DKK-3), a member of dickkopf

glycoprotein, regulates cell proliferation. Also, DKK-3 could
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modulate the immune system by acting as a cytokine-like protein

(200, 201). DDK-3 is involved in cardiac remodeling and

vascular smooth muscle differentiation, and several studies

demonstrated the cardioprotective effects of DDK-3 (202). Zhang

et al. showed that suppressing the expression of DDK-3 increases

cardiac dysfunction and remodeling while augmenting the

expression of DDK-3 improves cardiac function in an animal

model of HFrEF (203). Moreover, DDK-3 improves chronic HF

conditions by suppressing c-Jun N-terminal kinase (JNK)

signaling pathways by inhibiting p38 mitogen-activated protein

kinase (p38) (204). It has been found that P38 and JNK

signaling pathways are highly activated in HF and participate in

cardiac remodeling (205, 206). In an intriguing study, treating

HF mice with curcumin for ten weeks significantly improved

cardiac function, remodeling, and decreased expression of

biomarkers related to them_ ROS, TNF-α, MMP-2, and MMP-9.

In addition, expression of DDK-3 increased in curcumin-treated

mice, compared with untreated mice with HF. Curcumin

treatment (100 mg/day/kg, 10 weeks) in rabbits with chronic

heart failure was associated with decreased p38/JNK signaling

pathway activation and expression of ASK1, one of the upstream

components of these pathways. So, these results indicate that

curcumin exerts cardioprotective effects by increasing DDK-3

and ASK1 expression, suppressing the p38/JNK signaling

pathway (115).

5.2.3. Curcumin and other mechanisms
Liu et al. studied the effects of curcumin on isoproterenol

(ISO)-induced CH and the molecular mechanism behind it. The

result showed that curcumin (200 mg/kg/day, 4 weeks) prevented

ISO-induced CH in Male Sprague-Dawley rats and cardiac

fibrosis by decreasing autophagy through positively modulating

mTOR (117). It has been found that the mTOR signaling

pathway exerted cardioprotective effects by decreasing autophagy

(207). Consistent with these studies, Bai et al. also showed that

curcumin treatment (50 mg/kg/day, 9 weeks) prevented CH and

improved cardiac function in male Wistar rats. Also, curcumin

improved vascular relaxation by increasing endothelium response

to acetylcholine and increasing expression of the Na+/Ca2+

exchanger (NCX) and eNOS in the myocardium and vascular

endothelium. Treatment with NCX inhibitor KB-R7943 reversed

the protective effects of curcumin on the myocardium and

vessels. These results indicate that curcumin exerts

cardioprotective effects by upregulating NCX expression in

response to increased afterload (119).
5.3. Quercetin

Quercetin (QCT) is a natural flavonoid polyphenol widely

found in fruits and vegetables such as onions, peppers, plums,

mangos, and berries and is a potent anti-inflammatory,

antioxidant, and anti-cancer component (208–211). Quercetin

regulates several molecular pathways in cellular processes and

exerts many beneficial effects on the cardiovascular system, such

as anti-hypertensive and cardioprotective effects, by suppressing
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inflammation, oxidative stress, and apoptosis in the heart (212,

213). Several studies investigated the mechanisms behind the

cardioprotective effects of QCT. Liu et al. showed that QCT

inhibits the NF-κB pathway by activating peroxisome

proliferator-activated receptor-γ (PPARγ) protein and preventing

cardiac damage (214). Moreover, a recent study showed that

QCT protects cardiomyocytes against oxidative stress by

regulating mitophagy and endoplasmic reticulum stress by

suppressing the SIRT1/TMBIM6 pathway (215).

For further investigation, Chang et al. administered QCT to

improve cardiac function and hypertrophy in rats with TAC-

induced HF. QCT decreased cardiac fibrosis by modulating TGF-

β and MMPs, inflammatory cytokines (TNF-α, IL-13, IL-18), and

production of ROS by activating the expression of SIRT5 and

IDH2 desuccinylation. Succinylation regulates mitochondrial

metabolism and function; impaired succinylation and

mitochondrial function lead to oxidative stress and inflammation.

This study showed that QCT regulates mitochondrial energy

metabolism and improves oxidative stress by increasing

succinylation through increasing expression of SIRT5 (216).

Anti-hypertrophic properties of quercetin have been reported in

several studies (217–219). QCT can prevent cardiac remodeling

in mice. Wang et al. showed that QCT decreased cardiomyocyte

Ca2+ oscillation frequency, resulting in regulated excitation-

contraction of the myocardium and anti-arrhythmia effects. Also,

quercetin attenuated ventricular wall thickness in mice, indicating

the anti-hypertrophic effects of QCT (219). Additionally, QCT

treatment (20 mg/kg/day, 8–12 weeks) in Spontaneous

hypertensive rats improved CH and cardiac fibrosis by

preventing mitochondrial dysfunction. SIRT3/PARP-1 was this

study’s suggested target pathway of QCT (120). SIRT3 is a type

III histone deacetylase with anti-hypertrophic effects on the heart

(220). The expression of SIRT3 was increased by QCT, indicating

that the anti-hypertrophic effects of QCT are related to the

SIRT3-mediated signaling pathways. PARP-1 is an up-regulated

enzyme in hypertrophic hearts, and overexpression of SIRT3

inhibits its function (220). Moreover, In vitro investigation

showed that treating Ang II-induced H9c2 cells with QCT

prevents hypertrophic response, restores impaired mitochondrial

structure and function, reduces ROS generation, and decreases

oxidative stress (120).

In another study, QCT treatment (10 mg/kg/day, 4 days)

reversed ISO-induced CH in male swiss mice by conducting

antioxidant effects and improving mitochondrial dysfunction

(121). Oxidative stress and ROS play essential roles in the

development of CH. In this study, QCT treatment restored

endogenous antioxidant enzyme (CAT and SOD) activity,

increased sulfhydryl protein levels, and decreased H2O2 (a major

ROS). Ca2+-induced swelling of mitochondria in ISO rats

reduced after treatment with QCT; activating the mitochondrial

SOD enzyme and increasing resistance toward Ca2+-induced

swelling are the possible mechanisms. Altogether this study

revealed that QCT attenuates pre-existing CH by balancing

oxidation and protecting mitochondria (121). QCT (130 mg/kg/

day, 7 days) also reduced mean arterial blood pressure and aortic

medial wall thickening, improved cardiac function, and prevented
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cardiac hypertrophy in PO-induced male Sprague-Dawley rats by

abdominal aortic constriction (AAC) (221). Protein kinase C

(PKC), extracellular regulated kinase 1/2 (ERK1/2), and Akt are

contributing signaling pathways in CH pathogenesis. In this

study, treatment with QCT normalized PKCβII translocation and

inhibited PKC and ERK1/2 pathways in AAC rats. QCT also

reduced oxidative stress in the heart tissue of AAC rats. This

study showed that rats with a QCT-supplemented diet have

lower blood pressure and CH in pressure-overload stress

conditions (221) (Table 1).
5.4. Gallic acid

Gallic acid (3, 4, 5-trihydroxy benzoic acid) is a polyphenol

component in green tea, blackberry, grapes, wine, mangoes, and

walnuts. It can be an anti-cancer, anti-allergic, anti-microbial,

antioxidant, and anti-inflammatory factor (222, 223). Gallic acid

(GA) impacts the cardiovascular system, such as attenuating

cardiac fibrosis, hypertension, oxidative stress, and eventually HF.

The antioxidative effects of gallic acid suppress cardiac

hypertrophy and protect cardiomyocytes against damage (127,

224, 225). An in vitro investigation conducted by Yan et al.

showed that GA suppresses angiotensin II (Ang II)-induced

cardiomyocytes hypertrophy by inhibiting Ang II-related

pathways such as JAK2, p-STAT3, p-ERK1/2, p-AKT, and

NFATc1 and reducing expression of Ang II downstream

products (GFR, gp130, and CaNA). In this experiment, GA

increased cardiomyocyte autophagy by inhibiting ULK1

phosphorylation (autophagy regulator), which leads to the

degradation of unnecessary products and improved cardiac

remodeling. GA at 1–200 μM had no significant toxic effect on

cardiomyocytes. On the other hand, in vivo study revealed that

treated TAC-induced HF C57BL/6 mice with GA (5 or 20 mg/kg,

8 weeks) led to downregulating the expression of ANP, BNP, and

β-MHC, thereby decreasing CH. GA decreased inflammatory

markers, myocardial superoxide products, and fibrosis factors in

the heart of mice with HF. Collectively, GA exerts its

cardioprotective effects and improves cardiac remodeling by

activating autophagy through various pathways (126). In another

study, GA (100 mg/kg/day, 2 weeks) significantly improved

cardiac size and cardiac function in TAC-induced HF CD-1 male

mice models, compared to conventional drugs of HF. The levels

of HF markers, such as ANP, BNP, and β-MHC, significantly

decreased after GA treatment. Further investigation revealed that

GA reduced cardiac fibrosis by decreasing the phosphorylation of

Smad3 protein and inhibiting the TGF-β1/Smad signaling

pathway (127).

Pulmonary fibrosis is a severe complication of HF due to

increased left atrial pressure, pulmonary edema, and fibrosis

formation (226). According to the anti-fibrotic effects of gallic

acid in other studies, Jin et al. found that treatment of TAC-

induced HF CD-1 male mice with GA (100 mg/kg/day, 2 weeks)

reduced pulmonary fibrosis by downregulating the expression of

collagen type I, fibronectin, and connective tissue growth factor

(CTGF). Expression of epithelial-mesenchymal transition (EMT)
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markers, including N-cadherin and SNAI1, was increased in the

TAC group, and treatment with GA reduced their expression,

suggesting the inhibitory role of GA in HF-induced pulmonary

fibrosis by inhibiting the EMT process (128). EMT participates

in tissue repair and induces pulmonary fibrosis (227). According

to the well-established effects of GA on CVDs, Jin et al.

investigated mechanisms of GA affecting blood pressure and CH.

Treatment with GA (320 mg/kg/day, 16 weeks) lowered systolic

blood pressure and suppressed the RAAS system by decreasing

aortic ACE1 and AT1 receptor levels in Wistar-Kyoto rats

owning hypertension-induced cardiac hypertrophy. Arterial

remodeling and vascular contractibility were also reduced by GA

treatment, indicating the regulatory effect of GA on vascular

smooth muscle. Collectively, GA alleviated hypertension and CH

by suppressing Nox2 activity and Nox2-induced oxidative stress

via inhibiting GATA4 expression (78).

Additionally, GA prevented ISO-induced CH and improved

cardiac dysfunction by decreasing the expression of hypertrophy-

related and fibrosis-related genes. GA (100 mg/kg/day, 3 weeks)

suppressed the JNK2/ERK1/2 signaling axis (members of the

MAPK pathway) in Male CD-1(ICR) mice with ISO-induced CH.

To investigate the role of JNK2 in cardiac fibrosis and

hypertrophy, they transfected JNK2 into cardiomyocytes which led

to increased Smad3 and collagen type I protein levels, inducing

cell hypertrophy and fibrosis. Consequently, this study showed

that GA prevents ISO-induced cardiac hypertrophy by regulating

JNK2 signaling and Smad3 binding activity (129) (Table 1).
5.5. Genistein

Estrogen has shown an influential role in protecting the

cardiovascular system, especially in improving the pulmonary and

cardiac function of pulmonary hypertension (PH) cases, by binding

to estrogen receptor-β (ERβ) (228, 229). Genistein, an isoflavone

derived from soybean, functions as a natural estrogen, can bind to

ERβ stronger than estrogen, and can exert anti-inflammatory and

anti-cancer effects (230–232). According to the unwanted side

effects of estrogen as a drug, genistein can be used instead of the

pharmacological form of estrogen. Also, several studies have shown

that genistein intake can ameliorate cardiovascular risk factors such

as hypertension and lipid profile (233). Matori et al. showed that

treating the PH Male Sprague-Dawley rats models with 1 mg/kg/

day genistein attenuated RV remodeling, PH-induced RHF, lung

remodeling, and pulmonary fibrosis. An in vitro examination

demonstrated that genistein (1 μmol/l, 48 h) suppressed the

proliferation of human pulmonary artery smooth muscle cells and

inhibited cardiomyocyte hypertrophy by binding to the ER-β

receptor. This study confirms the beneficial cardiopulmonary effects

of genistein in rats with PH (130).

Genistein has shown anti-hypertrophic effects in several

studies. Meng et al. reported that genistein (40 mg/kg/day, 7

weeks) attenuates PO-induced CH in C57/BL6 male mice and

improves cardiac function by directly decreasing phosphorylation

JNK1/2, thereby blocking this signaling pathway (131). Nitric

oxide synthases (NOS) catalyze NO production from L-arginine.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1174816
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Hedayati et al. 10.3389/fcvm.2023.1174816
Neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide

synthase (eNOS) have anti-hypertrophic effects on the heart, but

inducible nitric oxide synthase (iNOS) induces hypertrophy

(234). Maulik et al. investigated the effects of genistein (0.1 and

0.2 mg/kg/day, 14 days) on ISO-induced CH in male Wistar rats

and investigated the role of NOS enzymes in developing cardiac

hypertrophy. Genistein exerts anti-hypertrophic effects via eNOS,

nNOS, and antioxidant effects in ISO-induced CH rat models

(132). Recent studies have shown that genistein exerts parts of its

effects by regulating the expression of miRNAs (235). Gan et al.

showed that treatment of female ICR mice with genistein

(100 mg/kg/day, 21 days) upregulated miR-451, suggesting that

genistein exerts its anti-hypertrophic effects via enhancing

expression of miR-451 and miR-451 suppresses cardiac

hypertrophy by directly inhibiting TIMP2 expression. Expression

of the TIMP2 gene was increased in the ISO-induced CH heart,

indicating pro-hypertrophic effects of TIMP2 (133) (Table 1).
5.6. Pterostilbene

Pterostilbene [4-(3,5dimethoxystyryl) phenol] is a polyphenol

structurally similar to RES and has potential pharmacological

impacts such as anti-cancer, anti-inflammatory, antioxidant, and

anti-apoptosis (236–238). Similar to RES, Pterostilbene (PTS)

also exerts cardioprotective effects by suppressing oxidative stress

and apoptosis by activating the AMPK pathway (239) or by

upregulating PGC1α through activating AMPK/SIRT1 pathway

(240). Furthermore, Lacerda et al. revealed that administration of

PTS-HPβCD complex (25, 50, or 100 mg/kg/day, 2 weeks)

prevents right ventricular (RV) remodeling and improves RV

function in pulmonary hypertension-induced right-sided HF rat

models. Enhancing the glutathione redox cycle was suggested as

an underlying mechanism of the antioxidative effects of PTS

(134). The glutathione redox cycle protects the cell membrane

from LPO and oxidative stress (241). Also, expression of total

phospholamban (PLB) and SERCA (sarco/endoplasmic reticulum

Ca2+-ATPase) was increased after treatment with PTS-HPβCD

complex, indicating that PTS improves cardiac contractibility and

function by improving the calcium handling process in the heart

(134). Phospholamban is a protein that regulates calcium

channels in the heart, and SERCA is a calcium transporter in the

cell. Both these proteins play a significant role in calcium

transportation and cardiac muscle contractility (242, 243)

(Table 1).
5.7. Kaempferol (KF)

Kaempferol (3,4′,5,7-tetrahydroxyflavone) (KF) is a type of

flavonoid found in grapes, tomatoes, aloe Vera, coccinia grandis,

and moringa oleifera (244). Kaempferol can protect cells against

oxidative stress and inflammation and exerts various

pharmacological effects such as anti-microbial, anti-diabetic, and

anti-cancer (245). Kaempferol exerts pleiotropic beneficial effects

on the cardiovascular system, including ameliorating cardiac
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fibrosis, preventing HF, improving myocardial damage repair,

and decreasing atherosclerosis (135, 246, 247). Zhou et al.

showed that KF (15 mmol/l, 10 min) improves myocardial

ischemia by exerting antioxidant activity and inhibiting glycogen

synthase kinase-3 beta (GSK-3β) activity in adult male Sprague-

Dawley rats with myocardial ischemia/reperfusion (I/R) injury

(247). Diabetes is one of the significant risk factors for HF

development (248); thus, according to the positive effects of KF

on both the cardiovascular system and diabetes, Zhang et al.

investigated the effect of KF (20 mg/kg/day, 42 days) in diabetic

adult male Wistar rats with HF. Results of this study

demonstrated that treatment with KF exerts significant

cardioprotective effects in diabetic rats as it suppresses

inflammation, oxidative stress, and apoptosis and alleviates blood

glucose levels and serum cardiac markers (135).

Regarding the underlyingmechanism, KFmodulated the nuclear

factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which

protects cells against ROS, and the nuclear factor-light-chain-

enhancer of activated B cells (NF-κβ) signaling pathway, which has

a vital role in fibrosis. The activity of antioxidant enzymes was

increased, while the LPO level was decreased after treatment with

KF. Expression of inflammatory factors, including NF-κβ p65,

TNF-α, IL-6, IL-1β, p-IKKβ, and COX-2, significantly decreased.

KF enhanced AKT/GSK-3β singling pathway by increasing the

phosphorylation of AKT and GSK-3β. Decreased phosphorylation

of p-p38 MAPK and decreased expression of PI3K in the KF group

indicates the inhibitory role of KF on ERK/p38 MAPK and PI3K

signaling pathways. Cardiac apoptosis markers (caspase-3 and Bax)

were decreased, while the anti-apoptotic marker (Bcl-2) was

increased in cardiac tissue after KF treatment. The

histopathological investigation revealed decreased destruction of

myofibrils and lesser TUNEL-positive cells in the cardiac tissue of

rats treated with KF (135).

Feng et al. investigated the role of KF in CH and the molecular

mechanism behind it. Treatment with KF (100 mg/kg/day,

6 weeks) improved cardiac function and prevented CH in mice

that underwent aorta banding surgery. Interstitial fibrosis,

oxidative stress, and apoptosis were also reduced after KF

administration (141). ASK1/MAPK and their downstream targets,

p38, and JNK were upregulated in the PO-induced CH

condition. The stimulating activity of ASK1/MAPK signaling

pathways in H9c2 cardiomyocytes in vitro enhanced

cardiomyocyte growth and enlargement, whereas treatment with

KF reversed these results. Therefore, it could be speculated that

KF functioned by reducing oxidative stress and suppressing

apoptosis by inhibiting ASK1/MAPK signaling pathway (141).

ASK1/MAPK signaling pathway plays a pivotal role in response

to stress, especially oxidative stress, and induces apoptosis (249).

P38 and JNK are subfamilies of MAPKs and regulate cell

apoptosis (250) (Table 1).
5.8. Luteolin

Luteolin (3′,4′,5′,7′-tetrahydroxyflavone) (LUT) is a type of

flavonoid found in carrot, cabbage, tea, celery, and apple that
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possess various beneficial effects such as antioxidant, anti-

inflammatory, and anti-apoptotic (251). Recent studies have

reported that LUT exerts cardioprotective effects against

myocardial ischemia, coronary artery disease, and HF (136, 251).

Hu et al. reported that treating HF Sprague-Dawley rats with

LUT (10 ug/kg/day, 10 days) improves cardiomyocyte

contractibility and heart function and decreases apoptosis and

cardiac fibrosis. LUT increases cardiac contractibility by

increasing intracellular Ca2+ (136). Sarcoplasmic reticulum

Ca2+-ATPase 2a (SERCA2a) regulates excitation/contraction

coupling in the heart by regulating the concentration of Ca2+

and has been shown to play an essential role in HF pathogenesis

as its expression decrease in HF (252, 253). PLB is a SERCA2a

inhibitor whose phosphorylation suppresses activity (254). Hu

et al. showed that LUT increased the expression of SERCA2a and

Sp1, a transcription factor, by activating the PI3K/Akt pathway

and increasing PLB phosphorylation. This study verified the

enhancing role of LUT on cardiac contractibility in HF (136)

(Table 1).
5.9. Epigallocatechin gallate (EGCG)

Epigallocatechin gallate (EGCG) is a natural polyphenol

flavonoid abundant in green tea and is known for its antioxidant

properties. Several studies have shown that EGCG is vital in

decreasing oxidative stress in the cardiovascular system (255).

For instance, a study by Sheng et al. showed that EGCG

attenuates PO-induced CH by suppressing apoptosis and

oxidative stress in rats (256). Another study investigated the

possible mechanism of EGCG (50, 100 mg/kg/day, 6 weeks) in

attenuating PO-induced CH in Male Sprague–Dawley rats. The

findings implied the role of EGCG in reducing oxidative stress

and apoptosis; EGCG increased the expression of Bcl-2 and

telomere repeat-binding factor 2 (TRF2), which are anti-

apoptotic agents. In addition, EGCG reduces oxidative stress in

the heart by decreasing the level of MDA and increasing SOD

activity (140). According to the cardioprotective effects of EGCG,

Muhammad et al. showed the beneficial effects of EGCG

(200 mg/kg/day, 30 days) in preventing aging-mediated CH,

fibrosis, and remodeling, as well as in improving cardiac function

in aged Wistar albino rats. Mechanistically, EGCG decreased the

production of ROS, improved the antioxidant defense system,

and reduced apoptosis via suppressing TGFβ/TNFα/NF-κB

pathway in (139) (Table 1).
5.10. Apigenin

Apigenin (4′,5,7-trihydroxyflavone) is a flavonoid component

distributed in various plants like parsley, oranges, and garlic and

has different beneficial pharmacological effects, including

antioxidant and anti-inflammatory effects (257). In this regard,

Gao et al. investigated the effect of apigenin treatment on

improving hypertension and hypertension-induced CH in

Wistar-Kyoto rats. They showed that apigenin (20 μg/h, 4 weeks)
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prevents cardiac hypertrophy via suppressing NADPH oxidase-

dependent ROS (137). Previous studies have reported that

hypoxia-inducible factor (HIF)-1α mediates CH through its effect

on HIMF (hypoxia-induced mitogenic factor) (38, 258). Apigenin

can exert inhibitory effects on HIF-1α; therefore, Zhu et al.

investigated the anti-hypertrophic effects of apigenin by

inhibiting HIF-1α. They treated cardiac hypertrophy induced by

renovascular hypertension in rats with apigenin (50–100 mg/kg/

day, 4 weeks). The result showed that apigenin decreased blood

pressure, heart weight, and serum angiotensin II, indicating a

positive role of apigenin in hypertension and CH. Levels of

serum and myocardial-free fatty acids also decreased after

apigenin treatment. HIF-1α deregulates cardiac metabolism by

inhibiting the expression of mitochondrial proteins involved in

metabolisms, such as PPARα, CPT-1, and PDK-4. Apigenin

improved abnormal myocardial glucolipid metabolism by

upregulating PPARα, CPT-1, and PDK-4 via suppressing HIF-

1α. This study revealed that apigenin’s anti-hypertrophic effects

are associated with its effect on HIF-1α (138) (Table 1).
5.11. Caffeic acid

Caffeic acid (CA) is a natural flavonoid found in various foods

and herbs, such as coffee, red wine, thyme, sage, and spearmint

(259). CA has a wide range of beneficial effects on cellular

processes, such as modulating cell growth, proliferation, and

anti-inflammatory effects; hence, this molecule could positively

affect the cardiovascular system. It is reported that intravenous

administration of caffeic acid decreases blood pressure and

improves cardiac function (260). It also exerts cardioprotective

effects by reducing MI-related oxidative stress (261). According

to the association of CA with the MAPK pathway and the role

of this pathway in CH, Ren et al. indicated inhibitory effects of

CA on PO-induced CH. In addition, the treatment improved

cardiac function and decreased cardiac fibrosis. CA treatment

(100 mg/kg/day, 6 weeks) in the C57 male mice with induced

cardiac hypertrophy downregulated the MAPK pathway by

decreasing phosphorylation of ERK1/2, indicating that MAPK

suppression mediates CA anti-hypertrophic effects. Consistent

with these results, CA suppressed PE-induced hypertrophy in

vitro by downregulating MEK/ERK signaling pathway (143)

(Table 1).
5.12. Delphinidin

Delphinidin (3,3′,4′,5,5′,7-hexahydroxyflavylium) is a

flavonoid anthocyanidin found in pigmented fruits and

vegetables, such as blueberry. The anti-inflammatory and

antioxidant effects of delphinidin were well described (262). ROS

is a significant mediator of oxidative stress and has a vital role in

the development of CH by regulating various signaling pathways

and protein kinases (263). NADPH oxidase (NOX) is an

oxidoreductase enzyme and the leading producer of ROS in

cardiac myocytes (264, 265). Previous studies have shown that
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delphinidin exerts parts of its function by regulating NOX activity.

Chen et al. showed that treatment with a high dosage of

delphinidin ameliorated CH and cardiac dysfunction and reduced

oxidative stress and cardiac fibrosis in the heart. In vitro,

delphinidin (50 μM, 24 h) decreased the increased myocardial

NOX activity after Ang II induction; reduced ROS production;

and prevented cardiomyocyte hypertrophy in Neonatal rat

cardiomyocytes, with no cytotoxic effects (142). Treatment with

delphinidin prevented the increased expression of NOX by

activating AMPK, a NOX inhibitor, in response to hypertrophic

stimulators. Furthermore, high-dosage delphinidin treatment

increased the expression of Erk1/2, Jnk1/2, and p38 (kinases of

MAPK signaling pathway), indicating the role of the MAPK

signaling pathway in the anti-hypertrophy effect of delphinidin.

Exploring the effects of delphinidin (15 mg/kg/day, 8 weeks) on

aged-mediated cardiac remodeling showed that delphinidin

reversed CH by suppressing the phosphorylation of AMPK and

the activity of NOX in C57BL/6 mice with the aging-related

cardiac hypertrophy (142) (Table 1).
5.13. Hesperidin

Hesperidin (3,5,7-trihydroxyflavanone 7-rhamnoglucoside)

(HES) is a natural flavonoid with comprehensive pharmacological

properties such as anti-inflammatory and antioxidant (266). HES

has beneficial cardioprotective effects, especially in attenuating

CH (267). A recent study revealed that HES (200 mg/kg/day, 28

days) alleviates ISO-induced CH by suppressing oxidative stress,

apoptosis, and inflammation in CH-induced male albino Wistar

rats. It was indicated that treatment with HES improved

hemodynamic state and attenuated left ventricular function. HES

preserved the function and structure of mitochondria, myofibril,

and myocyte. Cardiac injury, apoptosis, and inflammatory

markers were decreased, and oxidative stress was reduced in

heart tissue by HES treatment. PPAR-γ is a metabolism regulator

which suppresses CH. Bhargava et al. showed that HES

upregulated the expression of PPAR-γ, indicating that HES anti-

hypertrophic effects arise from enhancing PPAR-γ expression

(144) (Table 1).
6. Polyphenols and bioavailability

Bioavailability is an essential issue regarding the clinical

application of pharmacological substances. Although RES is

reported as a safe component with no adverse effects on humans,

its low bioavailability (about 20%) is an essential drawback of

using it as a drug. The concentration of RES is dose-depended,

and the maximal concentration of 2.4 µM results from the

administration of 5 g RES. Drug delivery systems and reformed

formulation are novel ways to improve the bioavailability of RES

in humans. RES has been shown to improve myocardial

reperfusion, enhancing re-endothelialization and reducing

inflammation. Also, RES consumption before MI reduced infarct

size and cardiac arrhythmia and relieved myocardial injury faster.
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RES can increase the viability and proliferation of cardiac stem

cells, therefor transplanting RES-treated stem cells into an

ischemic heart improved cardiac injury in the peri-infarct zone

(268).

While curcumin could be administered as a drug, pure

curcumin has low oral bioavailability due to its low absorption

and rapid metabolism. In this regard, Ray et al. increased

curcumin bioavailability by designing a novel delivery system;

they encapsulated curcumin within the carboxymethyl chitosan

(CMC) nanoparticle and conjugated it to a myocyte-specific

homing peptide (CMC/peptide). This agent’s 5 mg/kg showed

better bioavailability than 35 mg/kg of pure curcumin. Treatment

with low dose CMC/peptide downregulated expression of

hypertrophic markers, apoptotic markers, and mediators.

Collectively, Ray et al. showed that an efficiently targeted delivery

regimen for curcumin enhances its therapeutic effects, reduces

CH, and improves cardiac function (269).

Additionally, Sungawa et al. investigated the effectiveness of a

novel surfactant-soluble oral drug delivery system (DDS) for

curcumin to develop a therapeutic aid for patients with MI-

induced HF. This DDS significantly enhanced gastrointestinal

absorption and effectiveness of curcumin, as administration of

0.5 mg/kg of DDS curcumin exerted the same effect as 50 mg/kg

of pure curcumin. In the meantime, no significant side effects

were detected regarding DDS curcumin administration. The

histopathologic examination showed that DDS curcumin

suppressed myocardial cell hypertrophy and perivascular fibrosis.

However, the exact dosage of pure oral curcumin did not apply

the same effects (270).

Creating a synthetic analog for curcumin is another way to

increase its bioavailability to use it as an efficient therapeutic

drug. Shimizu et al. examined the role of five different curcumin

analogs in inhibiting p300-HAT. Among these five analogues,

GO-Y030 ((1E, 4E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-1,4-

pentadiene-3-one) inhibited p300-HAT and improved HF more

efficiently than curcumin. Treating epinephrin-induced

cardiomyocyte with GO-Y030 at 1/10th of the curcumin dose

(1 μM vs. 10 µM) suppresses the interaction between p300 and

GATA4. The in-vivo investigation conducted by Shimizu et al.

revealed that administration of 0.5 mg/kg of GO-Y030 prevented

TAC-induced HF, CH, and cardiac fibrosis significantly, to the

same extent as 50 mg/kg/day curcumin. GO-Y030, at a dose

1/100th that of curcumin, collectively improves HF and can be

effective clinically in treating HF without notable liver and renal

toxicity (271).
7. Polyphenols and clinical trials

HF treatment is based on improving symptoms and preventing

further complications. Although these treatments effectively relieve

symptoms, the survival rate has not met the desirable goal yet.

Therefore, recent studies and clinical trials have focused on

targeting the pathogenic mechanism of HF (such as myocardial

contractibility and metabolism, inflammation, oxidative stress, etc.)

with new drugs (272, 273). Therefore, Gal et al. investigated the
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role of RES on left ventricular function and cardiac inflammation in

patients with HF. In this randomized, double-blind study, 3-month

treatment with 100 mg/day RES significantly reduced levels of total

cholesterol, LDL-cholesterol, and inflammatory cytokines (IL -1

and IL -6).

Moreover, the levels of NT-proBNP (a marker of the severity of

HF) and galectin-3 were significantly lower in the RES-treated group

compared to the placebo group. Echocardiography results showed

that treatment with RES significantly increased ejection fraction,

left ventricular stroke volume, left ventricular end-systolic volume,

and ventricular dilation, indicating positive effects of RES on

cardiac remodeling. The results showed that RES suppressed the

expression of ATP synthesis-related genes via oxidative

phosphorylation in leukocytes; however, this did not result in

mitochondrial dysfunction. This clinical study demonstrated that

RES has anti-inflammatory effects and improves the quality of life,

physical performance, cardiac function, and remodeling in

patients with MI-induced HF (99).

In another similar study, Gal et al. evaluated the effects of RES

on hemorheological parameters in HF patients. They found that

RES could significantly improve impaired red blood cell (RBC)

aggregation resulting from HF, which may be attributed to the

antioxidative effects of RES. Also, the result showed that RES

significantly improved the results of the 6-minute walk test of

HF patients (274). Various cardiovascular disorders are

associated with increased RBC aggregation, such as ischemic

heart disease, diabetes, venous thrombosis, and HF (275).

Increased levels of inflammatory cytokines and oxidants in the

blood due to HF are significant factors in RBC aggregation and

hemorheological disturbances (276, 277). Unstable angina, a

subtype of acute coronary syndrome (ACS), leads to cardiac

complications, such as arrhythmia, MI, and eventually HF.

Inflammation is a critical factor in the progression of ACS,

leading to further complications. According to the anti-

inflammatory effects of curcumin, it can be used as a therapeutic

drug in ACS, preventing complications such as HF. Dastani et al.

investigated the effects of administrating 80 mg/day of curcumin

to patients with unstable angina in a randomized, double-blind

clinical trial. This novel clinical trial showed no significant effect

of curcumin on preventing cardiovascular complications of

unstable angina, such as HF (278). In a double-blind, placebo-

controlled, randomized clinical trial, the effect of high-dose of

curcumin (a 90 mg curcumin capsule, twice a day for 24 weeks)

on the prevention of hypertensive heart disease was investigated.

The results indicated that high curcumin absorption had no

significant effects on left ventricular diastolic function but

significantly suppressed increment in the plasma BNP levels

(279). In another double-blind, placebo-controlled, randomized

clinical study, the efficiency of nano-curcumin (80 mg/day)

consumption on cardiovascular risk factors in patients with type

diabetics as well as mild to moderate coronary artery disease.

The result revealed that nano-curcumin reduced atherosclerosis

and hs-CRP levels as an inflammation indicator in diabetic heart

patients (280). However, future studies still need to investigate

the theory more widely.
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8. Future perspective

As reviewed earlier, polyphenols can play a critical role in

attenuating HF and CH, as they can prevent cardiac remodeling

mechanistically by blocking oxidative, inflammatory, apoptotic,

and fibrotic-related pathways. Moreover, polyphenols are easily

accessible and enriched within various natural plant-based

sources and could be considered novel promising therapeutic

approaches for HF. Additionally, the conventional HF

treatments’ low survival rates have forced studies to search for

other viable options as CVDs are growing globally. However,

these studies are still in their infancy, and limited clinical data

regarding the efficacy, side effects, and administration routes of

polyphenol-based drugs for treating cardiovascular diseases such

as HF and CH are available.

Despite the abundant presence of polyphenols in a human’s

regular nutritional diet, the poor solubility, low stability, rapid

metabolism and elimination, and eventually, weak bioavailability

are the rate-limiting factors for inhibiting these compounds from

exerting their full cardioprotective effects (281). Therefore, some

recent studies have focused on enhancing the polyphenols’

bioavailability, especially RES and curcumin, by employing

nanoformulations, such as lipid-based nanoparticles (liposomes),

protein-based nanoformulations, polymers, micelles, and metal

nanoparticles for drug delivery (281). For instance, RES and

curcumin co-delivery by polymeric micelles to doxorubicin-

treated cardiomyocyte cell lines resulted in higher drug solubility

and efficacy than non-polymeric forms and single-drug treatment

(282). Polymeric micelles used in these studies are biocompatible

and FDA-approved. Moreover, polymer-based drug delivery

vehicles such as Poly (D,L-lactic-co-glycolic acid) (PLGA)

nanoparticles demonstrated superior anti-atherosclerotic effects of

curcumin-bioperine treatment compared to non-coated ones.

Pillai et al. reported that curcumin-bioperine coated with PLGA

nanoparticles significantly reduced ox-LDL levels, downregulating

the atherosclerotic plaque-related gene expression in vitro (283).

The efficacy of PLGA-encapsulated curcumin was also illustrated

in vivo in later studies, where gold-capped curcumin

encapsulated within PLGA demonstrated enhanced solubility,

bioavailability, and eventually, improved anti-hypertrophic

characteristics in hypertrophic Wistar rat models (284).

Aside from polymeric-based drug delivery, extensive studies

were carried out on the efficacy of liposome-targeted therapy

(285–287). Liposomes are phospholipid-based nanocarriers

designed for both hydrophilic and hydrophobic drug delivery.

Liposome preparation progress in recent years has introduced the

ligand surface-engineered and long-circulating liposomes,

allowing stability and sustained drug release in target tissues and

enhanced bioavailability (288). The use of liposomes in CVDs

has become a promising candidate for future safe drug delivery

without cytotoxicity. RES-contained liposomes were

demonstrated to enhance the respiratory capacity of the

cardiomyocytes in vitro (289). Moreover, the transplantation of

mitochondrial-activated cardiac progenitor cells by liposomal

RES into the heart of the mouse models with cardiomyopathy
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resulted in reduced oxidative stress and apoptotic activities of the

cardiomyocytes (290).

Considering their minimal side effects and significant

therapeutic features, polyphenols have introduced themselves as

intriguing options for future HF treatment. However, due to the

low bioavailability and stability of polyphenols in the circulating

system, limited clinical trials have been conducted evaluating

their impact on human HF, and most of the studies are in vitro

and in vivo animal models. However, with recent advances in

novel drug delivery systems, there is rising hope for translating

nanoparticle delivery of these compounds to the clinical setting

soon.
9. Conclusions

In conclusion, this study predominantly reviewed the

therapeutic effects of polyphenol compounds and their

underlying mechanisms in improving pathologic cardiac

remodeling, leading to heart failure. Also, this study discusses the

most recent advances and challenges in translating the

antioxidative, anti-inflammatory, anti-apoptotic, and antifibrotic

characteristics of these nutraceuticals into clinical settings. The

potential application of nano-drug delivery systems was also

investigated regarding the limited solubility, stability, and

bioavailability of the polyphenols in humans. Finally, further in-

depth surveys are needed to understand better the involved

molecular pathways of polyphenols in modulating cardiac
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remodeling and HF. Also, there is a rising demand for viable

strategies to better translate the in vitro and animal study results

into the clinic.
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