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Objective: In this study, we aimed to investigate the classification of symptomatic
plaques by evaluating the models generated via two different approaches, a
radiomics-based machine learning (ML) approach, and an end-to-end learning
approach which utilized deep learning (DL) techniques with several
representative model frameworks.
Methods:We collected high-resolution magnetic resonance imaging (HRMRI) data
from 104 patients with carotid artery stenosis, who were diagnosed with either
symptomatic plaques (SPs) or asymptomatic plaques (ASPs), in two medical
centers. 74 patients were diagnosed with SPs and 30 patients were ASPs.
Sampling Perfection with Application-optimized Contrasts (SPACE) by using
different flip angle Evolutions was used for MRI imaging. Repeated stratified five-
fold cross-validation was used to evaluate the accuracy and receiver operating
characteristic (ROC) of the trained classifier. The two proposed approaches were
investigated to train the models separately. The difference in the model
performance of the two proposed methods was quantitatively evaluated to find
a better model to differentiate between SPs and ASPs.
Results: 3D-SE-Densenet-121 model showed the best performance among all
prediction models (AUC, accuracy, precision, sensitivity, and F1-score of 0.9300,
0.9308, 0.9008, 0.8588, and 0.8614, respectively), which were 0.0689, 0.1119,
0.1043, 0.0805, and 0.1089 higher than the best radiomics-based ML model
(MLP). Decision curve analysis showed that the 3D-SE-Densenet-121 model
delivered more net benefit than the best radiomics-based ML model (MLP) with
a wider threshold probability.
Conclusion: The DL models were able to accurately differentiate between
symptomatic and asymptomatic carotid plaques with limited data, which
outperformed radiomics-based ML models in identifying symptomatic plaques.

KEYWORDS

prognosis, MRI image analysis, radiomics, machine learning, deep learning, stroke risk
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1. Introduction

Many recent studies have shown that vulnerable plaques are generally associated with a

high risk of cerebral infarction, and the identification of vulnerable plaques by assessing

plaque components is becoming increasingly crucial (1). Characteristic plaque

components, such as intraplaque hemorrhage (IPH) and lipid-rich necrotic core (LRNC),
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are highly associated with ischemic cerebrovascular events and are

usually referred to as SPs (2). Early identification of SPs may

facilitate prognosis and thereby mitigate adverse outcomes of

ischemic cerebrovascular events. In the literature, CT and

ultrasound-based texture analysis of plaques has been used to

differentiate SPs from ASPs (3). Compared to CT and

ultrasound, 3D-HRMRI has a good resolution in soft tissue, and

the combination of multiple contrast levels provides more

valuable information in clinical practice. Recently, many

researchers have introduced ML based technologies to process

high dimensional data from HRMRI. Le et al. (4) found that 3D

imaging models have better robustness and predictive accuracy

than 2D imaging models. HRMRI can accurately identify the

composition of plaques; however, the small size of plaques and

the lack of histological validation make clinical application

challenging (5, 6). Evaluation of plaque characteristics in

symptomatic patients showed that fibrous cap thickness, the

presence of IPH, and the size of an LRNC can be imaging

biomarkers of ischemic events (7). However, images contain

much more information than can be visualized or quantified by

simple manual measurements.

Recently, the emergence of HRMRI acquisition and artificial

intelligence technologies provides opportunities to transform

HRMRI image information into quantitatively mineable data. One

of the key risk factors for stroke is plaque stability, and many

studies have focused on the non-invasive identification of

symptomatic plaques to guide treatment strategies (8). The

identification of imaging features of SPs via visual assessment of

radiology professionals is the most intuitive, but it requires years

of professional training and is partially subjective. In the study

reported by Chen et al. (7), the AI model (p = 0.0003) performed

better than visual assessment model (p = 0.021). Researchers

prefer to build AI models because they offer several advantages

over traditional methods. These models can evaluate large

amounts of data quickly and accurately, automate tedious tasks,

reduce the potential for human error, and provide objective insights.

Radiomics-based image analysis is proposed to extract and

analyze a large number of quantitative features from regions of

interest (ROIs), which are believed to reflect the imaging

phenotype of carotid plaques. Radiomics-based ML models are

an important tool for differentiating SPs from ASPs (9, 10).

Combining radiomics analysis with classical ML and integrated

learning algorithms is an emerging technology.

However, high-throughput radiomics analysis is limited by the

manual delineation of carotid plaque boundaries, which is time-

consuming and poorly reproducible in creating ROIs. DL

algorithms are considered to be more advanced ML techniques

and are used in many research areas. DL is based on various

artificial neural networks that learn effective features from image

data without delineating carotid plaque boundaries, which can

greatly reduce the time for HRMRI image pre-processing (11).

For image analysis, DL technologies have proven to be effective

in disease classification as well as localization and segmentation

of lesions, and these techniques have shown superior accuracy

and efficiency in diagnostic and image analysis tasks compared

to traditional methods (12).
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The accurate recognition of carotid plaques using deep learning

is challenged by limitations in the dataset, overfitting, and

redundant computations. To optimize feature extraction and

reduce unnecessary computations, we chose DenseNet, which has

a unique connectivity pattern that effectively mitigates gradient

disappearance. Additionally, SENet enhances the relevant feature

channels while suppressing the less useful ones, enabling adaptive

recalibration and improving accuracy. We integrated SENet (13)

with DenseNet to extract useful information and achieve high

accuracy in recognizing carotid plaques.

The purpose of this study was to investigate the feasibility of

discriminate SPs and ASPs based on MRI images. The

discrimination models were generated through two approaches in

this paper, a radiomics-based ML and an end-to-end DL approach.
2. Materials and methods

The overall process pipelines were summarized in Figure 1.
2.1. Participant recruitment

This study was conducted in accordance with the Declaration

of Helsinki and ethics approval was obtained from the local

institutional ethics review board. HRMRI data of 195 patients

with carotid plaques were collected in Tianjin Huanhu Hospital

and Tianjin First Central Hospital from December 2016 to April

2021. Participants provided informed written consent for

retrospective data analysis. The principles for the inclusion and

exclusion criteria were set in accordance with the literature (7).

Inclusion criteria were set as (a) Patients had an acute ischemic

stroke within the past 7 days, whose corresponding unilateral

infarction was confined to a single carotid region as defined by

diffusion-weighted imaging (14); (b) Patients with symptom

duration ≤24 h met the WHO definition of transient ischemic

attack but had documented acute ischemic infarction; (c) carotid

lumen stenosis >30% (15).

Exclusion criteria were set as (a) patients with ≥70% carotid

stenosis; (b) cardiogenic stroke; (c) patients with bilateral infarcts

or clinical signs due to bilateral carotid plaques; and (d) other

causes, such as MRI images missing some slice data. 91 patients

were excluded from the study.

Ischemic stroke can be caused by both the characteristics of

carotid plaque and degree of stenosis. In patients with less than

30% carotid stenosis, the carotid plaque is small and still in the

formation stage, which is not likely related to the current

ischemia status of the participant. Embolism in patients who

have had an ischemic stroke may be originated from an embolus

elsewhere in the body other than carotid. Therefore, patients

with less than 30% carotid stenosis should be excluded to

prevent interference from other factors (15). On the other hand,

patients with carotid artery stenosis greater than 70% may

experience ischemic stroke due to insufficient blood supply,

rather than the characteristics of the carotid plaque. Therefore,

patients with carotid artery stenosis greater than 70% should also
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FIGURE 1

Radiomics and DL pipelines. The two approaches were developed separately, and the performance was evaluated based on AUC, accuracy, sensitivity,
specificity, and F1-score.
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be excluded in this study (16). Therefore, in this study, we sought

to establish a quantitative imaging biomarker to identify SPs and

ASPs in 30%–70% carotid stenosis.

All patients were divided into SPs and ASPs groups. The

detailed criteria for the diagnosis of SPs are: patients with

regions of ADC <620 × 10−6 mm2/s (CST-ADC) (17) or Tmax

>6 s mismatch volume (penumbra volume–infarct volume) of

15 ml or more (18). The rest of the carotid plaque is ASPs.

Finally, we utilized high-resolution magnetic resonance

imaging (HRMRI) data from 104 patients with carotid artery

stenosis, who were diagnosed with either symptomatic plaques

(SPs) or asymptomatic plaques (ASPs), in two medical centers.

74 patients were diagnosed with SPs and 30 patients were ASPs.

In our study, we focused on patients with 30%–70% carotid

artery stenosis. Previous studies have shown that the stroke risk

is consistently 2–3 times higher for 70%–99% distal stenosis

compared to 50%–69% stenosis. Compared to 70%–99% stenosis,

50%–69% stenosis is not a high risk and major factor for SPs

(16). In contrast, in patients with <30% carotid stenosis, ischemic

stroke may not originate from symptomatic plaque in the

carotid artery. Therefore, we sought to establish a quantitative

imaging biomarker to identify SPs and ASPs in 30%–70% carotid

stenosis.
2.2. Data split

In order to address the limitation of a small sample size, we

performed a repeated stratified five-fold cross-validation

approach. This was done five times to ensure robustness of the

results and obtain more reliable mean and standard values for
Frontiers in Cardiovascular Medicine 03
the classification metrics. This approach was applied to both

machine learning and deep learning methods in our study.
2.3. Magnetic resonance imaging data

The MRI imaging equipment of Tianjin Huanhu Hospital and

Tianjin I Central Hospital are of the same type. All imaging data

were acquired from two 3-T MRI systems (MAGNETOM

Prisma, Siemens Healthcare, Erlangen Germany) with a 64-

channel integrated head/neck coil. The imaging protocol included

SPACE, DWI, and DSC-PWI. For the SPACE sequencing, the

repetition time was set to 700 ms, the echo time was 12 ms, and

the slice thickness was 1.0 mm. DWI images were acquired using

a spin-echo type echo-planar (SE-EPI) sequence with b values as

0 and 1,000 s/mm2. In addition, apparent diffusion coefficient

(ADC) maps were calculated from the diffusion scan raw data in

a pixel-by-pixel manner. For the parameters of DWI, the

repetition time was set to 2,900 ms; the echo time was set to

73 ms, the field of view was set to 240 × 240 mm2, the size of the

matrix was set to 168 × 134, the number of the slice was set to

19, slice thickness was set to 5 mm, acquisition time was set to

23 s. For DSC-PWI (TR = 1,500 ms, TE = 30 ms, FOV = 22 cm,

matrix = 128 × 128, 19 × 5 mm slices, total scan time = 1 min

38 s), gradient-echo planar imaging was performed during the

passage of 0.1 mmol/kg of gadolinium-based contrast agent

(Magnevist; Schering, Berlin, Germany) administered at a rate of

3 ml/sec. For each MRI image section, 50 temporal

measurements were acquired for DCS-PWI analysis.

Valid MRI scanning images from 104 patients with carotid

stenosis were included in this paper.
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2.4. Radiomic-based ML as assessment
model

2.4.1. Plaque segmentation, data processing and
feature extraction

Two board-certified radiologists were invited to analyze all

images, with eight and five years of imaging experience in

clinical practice. ROIs were obtained by manually segmenting

SPACE images using 3D-Slicer (version 5.0.3). The segmentation

label of each image is fulfilled by one radiologist and checked by

the other.

Due to the limited amount of training data in our dataset,

volumentations (19) techniques including “Random Rotation”,

“Random Flip”, “Gaussian Blur”, “Gaussian Noise” and four

combinations of static data augumentations were used to expand

the dataset to sixty times the original dataset, which could also

help the model to focus on task-related features (20). The

augmented data were used as train data only and were not used

in the model testing. Radiomics features were extracted using the

pyradiomics (21) feature package based on Anaconda Prompt

(version 4.2.0), according to the Image Biomarker

Standardization Initiative (IBSI) feature guidelines. All images

were co-registered, normalized, interpolated, and resampled to

1 × 1 × 1 mm3 resolution prior to radiomics extraction. First-

order features (e.g., energy, entropy and mean), shape features

(e.g., sphericity, surface area, voxel volume, etc.), gray level

cooccurrence matrix (GLCM), gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM) and gray level

dependence matrix (GLDM) of original images and filtered

images were extracted by pyradiomics.
2.4.2. Radiomic feature selection
We chose four methods to select radiomics features. One

method did not involve feature selection, while the other three

methods used feature selection. The three methods were LASSO,

ANOVA_LASSO, and ANOVA_spearman_LASSO. LASSO

employed only the LASSO feature screening method, while

ANOVA_LASSO used the ANOVA feature selection method

first, followed by the LASSO feature screening method.

ANOVA_spearman_LASSO utilized the ANOVA feature

screening method first, followed by the spearman correlation

coefficient screening, and finally, LASSO for feature selection.

In this paper, we present ANOVA_spearman_LASSO as an

example and provide technical details for its three steps. Other

feature selection methods follow the same pattern. Firstly, we

calculated the ANOVA (One Way Analysis of Variance) p-values

between labels and features in the classification task and removed

features with p > 0.05. In this step, we followed the first step of

radiomics features selection in Yang et al.’s paper (22). Secondly,

to construct radiomics features, similar features with high

correlation were rejected using Spearman’s correlation analysis.

Feature pairs with a Spearman’s correlation coefficient greater

than 0.9 were considered highly correlated features, and only one

type of feature was used in the feature engineering. Finally, the

Least Absolute Shrinkage and Selection Operator (LASSO)
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method (23) was used to select the features with non-zero

coefficients from the primary dataset. The features selected by

LASSO were normalized using the Z scores in the training and

validatation datasets.

2.4.3. Radiomics-based ML approach as
assessment model

The radiomics-based ML approach used nine classic ML

models: K-Nearest Neighbor (KNN), Logistic Regression (LR),

Support Vector Machines (SVM), Decision Tree (DT), Random

Forest (RF), XGBoost, AdaBoost, LightGBM, CatBoost,

Multilayer Perceptron (MLP). These algorithms were

implemented using Scikit-learn, an open-source Python ML

library (24). In order to obtain optimal hyperparameters, grid

search optimization with repeated stratified five-fold cross-

validation was used to fine-tune the models to reduce bias due to

model overfitting. The hyperparameters with the highest average

AUC score during the five-fold cross-validation were considered

the best model for this particular round of five-fold cross-

validation analysis. The five-fold cross-validation returns with

only one set of optimal hyperparameters. Five repetitions of five-

fold cross-validation result with five different configurations of

data segmentation. Therefore, there are five different sets of

hyperparameters for the repeated five-fold cross-validation. The

range of hyperparameters to find using the grid search method

and its description can be found in the Supplementary S2.

Similar technologies were also used in the following analysis to

evaluate the models generated via the Deep Learning approach.
2.5. Deep learning approach as assessment
model

DL techniques, especially convolution neural networks, have

demonstrated outstanding performance in diagnostic and image

analysis tasks (25). In contrast to traditional ML methods, they

do not require quantification and selection of radiological

features, as they are trained directly on the image in an end-to-

end paradigm. In this study, two different network architectures

were trained and evaluated, including 3D-DenseNet (26) and

3D-SE-DenseNet (13).

The three-dimensional rectangles are padded from the ROI

annotation. After assessing the general size range of carotid

arteries, we determined a 3D rectangular cube with a size of

30 × 30 × 60 pixels.

The multilayer perceptron, 3D-DenseNet and 3D-SE-DenseNet

choose the same optimiser and share the same set of

hyperparameters. A stochastic gradient descent (SGD) optimizer

was used to minimize the cross-entropy loss between the model

output and the target classification labels. A weighted random

sampler was used to overcome the sample imbalance problem in

this study. We utilized the same static data augmentation method

as the previously mentioned radiomics-based machine learning

method. In deep learning, a grid search method is used to find

the best learning rate and batch size parameters for optimal

performance. The range of hyperparameters in deep learning
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1173769
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Gui et al. 10.3389/fcvm.2023.1173769
methods can be found in the Supplementary S2. We stopped

training after 500 epochs. A repeated stratified five-fold cross-

validation technique was used and the model with the optimal

stratified cross-validation evaluation metric was obtained using

the same hyperparameters. The classification performance of all

two network architectures was tested in the same way. We

evaluated the DL models by accuracy, precision, recall, F1 score,

and area under the curve (AUC). A decision curve analysis was

conducted to further assess the classification models.
2.5.1. DenseNet
As deep learning networks get deeper, the issue of gradient

disappearance becomes increasingly apparent. This is where

DenseNet comes in, improving on other networks by reducing

the number of parameters and addressing gradient

disappearance. The network links all layers to the feature map

directly to ensure maximum information transmission. In

contrast to traditional convolutional neural networks, where L

connections exist in the L layer, DenseNet boasts L(L + 1)/2

connections. Alternating between Dense Block and Transition

layers (As shown in Figure 2), the Dense Block is crucial to

the structure, connecting every layer in the network and

promoting information transfer while reducing gradient

disappearance. This reduces the number of parameters and

makes the network simpler to train. Transition layers sit

between Dense Blocks and contain a batch normalization layer

(BN), convolution layer (Conv), and an average pooling layer

to further lessen dimensions.
FIGURE 3

SE block structure.
2.5.2. SENet
SENet is a sub-network structure that enhances network

performance at the feature channel level. By automatically

determining the importance of each feature channel through

learning, SENet improves useful features and suppresses those

that are not as useful for the task at hand. The network

comprises Squeeze, Excitation, and Reweight blocks.
FIGURE 2

DenseNet network structure diagram.
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Figure 3 depicts the SE Block, where X represents the input

image with c1 feature channels. A series of convolution

operations on X yields U with c2 feature channels. Through the

Squeeze operation, the entire network acquires a global receptive

field, while the Excitation generates weights for each feature

channel. Finally, the Reweight re-calibrates original features in

the channel dimension, to create an operation from U to X.
2.5.3. SE-DenseNet
The present research utilizes DenseNet’s dense connection

and SENet’s feature recalibration feature to classify carotid

plaque. A sub-structure network, SENet, is incorporated into

DenseNet to create SE-DenseNet, as illustrated in Figure 4. By

placing SENet before and after each Dense Block in the network,

SE-DenseNet can effectively obtain and enhance beneficial

features while suppressing features that are not relevant to the

current task.
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FIGURE 4

SE-DenseNet structure diagram.
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2.6. Evaluation metrics

To evaluate our models with an unbalanced sample size, we

used the AUC value as the primary indicator. We represented

the relationship between the recall rate and false positive rate at

different decision thresholds through the generation of an ROC

curve. The AUC, a dependable metric for evaluating model

classification performance, was derived from the ROC curve. A

score of 1.00 denotes perfect separation, while a score of 0.50

corresponds to random classification.

In addition to AUC, we utilized other measures to assess the

models’ performance. Accuracy represents the model’s robustness

and is defined by the percentage of correctly identified labels out

of the entire population. Precision, or the positive predictive

value, is the probability that a predicted true label is indeed true.

Sensitivity, referred to as the true positive rate (TPR) or recall, is

the percentage of correctly identified true class labels. Lastly, the

F1-score, which is the harmonic mean of sensitivity and

precision, was used as another measure.In the result section, the

results are shown as the mean of repeated five-fold cross-validation.
TABLE 1 Demographic and imaging marks of patient populations.

Characteristic Normal
(n = 74)

Stroke
(n = 30)
2.7. Statistical analysis

The Means ± SDs were calculated for continuous variables and

percentages for categorical variables. For analysis of variance, we

included variables that showed statistical significance in the one-

way ANOVA test and variables with Spearman’s correlation

coefficient less than 0.9. All statistical analysis were performed

using SPSS 24.0. Two-sided p-value of <0.05 was considered

statistically significant.

Age (mean ± SD[years]) 64.61 ± 7.46 64.90 ± 7.31

Male 59 27

Female 15 3

ADC <620 × 10−6 mm2/s (mean ± SD[ml]) 0 ± 0 0.86 ± 2.54

Tmax >4 s (mean ± SD[ml]) 28.34 ± 81.88 74.54 ± 115.41

Tmax >6 s (mean ± SD[ml]) 1.02 ± 3.24 53.48 ± 38.26

Tmax >8 s (mean ± SD[ml]) 0.63 ± 3.49 2.54 ± 6.61

Tmax >10 s (mean ± SD[ml]) 0.14 ± 1.20 0.31 ± 1.71
3. Results

We provide a detailed evaluation and variance of radiomics-

based ML and DL models using repeated stratified five-fold

cross-validation approach in the Supplementary S1.
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3.1. Demographics

MRI imaging data from 104 patients (86 males and 18

females) with carotid stenosis were included in the analysis. 22

patients’ imaging data were acquired from the Tianjin First

Central Hospital and 82 patients’ imaging data were acquired

from the Tianjin Huanhu Hospital, with a median age of 64

years (range: 41–82). The demographics were shown in Table 1.

74 of the 104 patients were diagnosed with ischemic stroke.

Figure 5 showed images of carotid plaque in a representative

case of carotid stenosis.
3.2. Radiomics features for the carotid
plaques

In total, 5,174 features were initially extracted from the SPACE

of MRI. We utilized four methods to select radiomics features. One

approach for constructing a classification model in radiomics does

not require feature selection as it utilizes the complete set of

radiomics features available. The AUC metrics of the

classification models are shown in Figure 6. The model with the

best classification performance is the Multilayer Perceptron

model. The AUC, accuracy, precision, sensitivity, and F1 score of

Multilayer Perceptron are 0.8009, 0.7824, 0.5994, 0.5568, and

0.5892 respectively.
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FIGURE 5

Carotid plaque segmentation. (A) SPACE sequence of MRI images with a carotid plaque in a patient. (B) Manually selected plaque segmentation. (C) 3D
reconstruction of carotid plaque.

FIGURE 6

The AUC of the radiomics-based ML model with four feature selection methods.
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The AUC evaluation metrics of the classification model using

the LASSO feature selection method are shown in Figure 6. The

model with the best classification performance is the Multilayer

Perceptron model. The AUC, accuracy, precision, sensitivity, and

F1 score of Multilayer Perceptron are 0.8465, 0.8326, 0.7849,

0.6462, and 0.6735 respectively.

The AUC evaluation metrics of the classification model using

the ANOVA_LASSO feature selection method is shown in

Figure 6. The model with the best classification performance is

the Multilayer Perceptron model. The AUC, accuracy, precision,

sensitivity, and F1 score of Multilayer Perceptron are 0.8552,

0.8130, 0.6686, 0.6859, and 0.6699 respectively.

The AUC evaluation results of the classification model using

the ANOVA_spearman_LASSO feature selection method are

shown in Figure 6. The model with the best classification

performance is the Multilayer Perceptron model. The AUC,

accuracy, precision, sensitivity, and F1 score of Multilayer

Perceptron are 0.8611, 0.8189, 0.7965, 0.7783, and 0.7525

respectively.

The classification performance of radiomics-based ML

approaches in discriminating SPs and ASPs based on the best
Frontiers in Cardiovascular Medicine 07
feature selection approach, i.e., ANOVA_spearman_LASSO, was

summarized in Table 2.

Our results demonstrated that the radiomics-based ML model

employing ANOVA_spearman_LASSO feature selection and MLP

classification displayed the highest AUC value. The ROC curve for

this model, as measured by repeated stratified five-fold cross-

validation, is shown in Figure 7A.
3.3. The DL approach as assessment model

Two DL frameworks were used in this section, 3D-DenseNet,

and 3D-SE-DenseNet, and several models were derived from the

original framework and evaluated in this paper. The 3D-

DenseNet model series were generated and assessed in the image

dataset, including 3D-DenseNet121, 3D-DenseNet169, 3D-

DenseNet201, 3D-DenseNet264. The 3D-DenseNet demonstrated

the best performance. The 3D-SE-Densenet model series

included 3D-SE-Densenet121, 3D-SE-Densenet169, 3D-SE-

Densenet201 and 3D-SE-Densenet264. The 3D-SE-Densenet121

showed the best performance.
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TABLE 2 The outcome of the radiomics-based ML models with ANOVA_spearman_LASSO method. Models with the highest performance are highlighted
in bold.

Models Accuracy (%) Precision (%) Sensitivity (%) F1-score (%) AUC (%)
SVM 80.36 ± 5.45 74.63 ± 3.58 71.50 ± 1.74 66.37 ± 3.69 84.89 ± 3.89

LR 80.77 ± 6.67 69.85 ± 2.43 64.48 ± 4.79 66.11 ± 6.26 83.63 ± 1.75

KNN 78.28 ± 8.05 66.45 ± 10.02 67.37 ± 2.85 70.06 ± 2.15 81.16 ± 0.92

Decision Tree 78.86 ± 8.00 72.66 ± 4.95 60.49 ± 8.89 72.57 ± 3.79 74.29 ± 7.10

Random Forest 79.04 ± 6.31 71.31 ± 2.01 71.31 ± 2.01 71.28 ± 3.11 79.95 ± 2.43

AdaBoost 81.73 ± 7.16 76.47 ± 5.30 68.18 ± 5.33 74.08 ± 4.59 84.57 ± 1.12

CatBoost 81.15 ± 6.63 79.73 ± 8.30 74.52 ± 2.70 73.72 ± 2.54 85.32 ± 2.03

LightGBM 80.58 ± 8.56 76.67 ± 5.44 74.55 ± 2.91 74.74 ± 3.70 81.95 ± 1.81

XGBoost 80.55 ± 6.20 71.89 ± 3.87 68.18 ± 5.60 73.99 ± 2.26 85.78 ± 2.79

MLP 81.89 ± 7.03 79.65 ± 3.32 77.83 ± 4.94 75.25 ± 3.38 86.11 ± 4.54

FIGURE 7

ROC and DCA results of the MLP and 3D-Densenet121. (A) ROC for MLP method; (B) DCA curve analysis for the best run of MLP method; (C) ROC for
3D-SE-Densenet121method; (D) DCA for the best run of 3D-SE-Densenet121 method.
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The performance of the CNN models in differentiating SPs and

ASPs was shown in Table 3. The AUC, accuracy, precision,

sensitivity, and F1 score of 3D-Densenet121 algorithm were

0.8968, 0.9094, 0.8795, 0.8035, and 0.8556, respectively. The

AUC, accuracy, precision, sensitivity, and F1 score of 3D-SE-

DenseNet121 algorithm were 0.9300, 0.9308, 0.9008, 0.8588, and

0.8614, respectively. Based on these results, 3D-SE-DenseNet121
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outperformed the 3D-DenseNet. The AUC, accuracy, precision,

sensitivity and F1 score of the 3D-SE-DenseNet121 algorithm

were 0.0332, 0.0214, 0.0213, 0.0553, and 0.0058 higher than those

of 3D-DenseNet121, respectively.

The ROC curve for 3D-SE-DenseNet121, as measured

by repeated stratified five-fold cross-validation, is shown in

Figure 7C.
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TABLE 3 The outcome of the deep learning models. Models with the highest performance are highlighted in bold.

Models Accuracy (%) Precision (%) Sensitivity (%) F1-score (%) AUC (%)
3D-DenseNet121 90.94 ± 3.81 87.95 ± 5.02 80.35 ± 5.05 85.56 ± 5.85 89.68 ± 2.60

3D-DenseNet169 88.47 ± 4.43 82.18 ± 4.63 81.15 ± 6.11 80.20 ± 3.61 88.55 ± 4.59

3D-DenseNet201 87.88 ± 4.64 83.85 ± 5.03 80.04 ± 4.05 83.62 ± 3.96 85.77 ± 1.92

3D-DenseNet264 85.98 ± 4.56 80.43 ± 3.17 78.90 ± 1.95 79.27 ± 3.41 84.94 ± 3.49

3D-SE-DenseNet121 93.08 ± 3.67 90.08 ± 3.38 85.88 ± 2.26 86.14 ± 4.28 93.00 ± 1.96

3D-SE-DenseNet169 92.10 ± 3.13 87.77 ± 2.11 80.51 ± 8.41 82.80 ± 2.70 91.27 ± 1.58

3D-SE-DenseNet201 88.85 ± 3.32 82.45 ± 4.26 82.41 ± 2.47 79.63 ± 3.78 87.76 ± 2.11

3D-SE-DenseNet264 85.61 ± 5.95 81.76 ± 1.32 80.96 ± 3.25 84.21 ± 3.03 86.97 ± 2.07
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3.4. Decision curve analysis

We performed a decision curve analysis (DCA) to assess the

classification models in terms of net benefit against threshold

probability, which could be crucial in clinical applications. A

decision curve analysis graph with threshold probability on the

x-axis and net benefit on the y-axis illustrated the trade-offs

between true positives and false positives as the threshold

probability varies, respectively.

Figure 7B showed the DCA results for the best run of the best-

performing ML model using MLP. The decision curve analysis for

the best run of MLP showed that within a threshold probability

from 6% to 77% or 80% to 91%, checking patients based on the

classification model leads to a higher net benefit than assigning all

patients as SPs or ASPs.

To optimize the 3D-SE-Densenet121 model, DCA analysis

(Figure 7D) suggests that utilizing threshold probabilities

between 1% to 99% would yield the most significant advantages

for the classification model.

Comparing the DCA results of 3D-SE-Densenet121 and MLP,

the 3D-SE-Densenet121 demonstrated more robust performance

and brought more net benefit than MLP with a wider range of

threshold probability.
4. Discussion

In this study, we recruited 104 patients with carotid stenosis.

HRMRI was conducted to acquire imaging data. The radiomics-

based ML approach and DL approaches were proposed and

investigated in this study to differentiate SPs and ASPs.

The ANOVA_spearman_LASSO and MLP model combination

has emerged as the most effective radiomics-based ML model, as

shown by our research. Utilizing feature selection, the best radiomics-

based ML models demonstrated superior performance, with higher

AUC, accuracy, precision, sensitivity, and F1 scores than models

without feature selection, with differences of 0.0602, 0.0365, 0.1971,

0.2215, and 0.1633, respectively. These findings underscore the

significance of feature selection in accurately distinguishing between

ASPs and SPs. By implementing feature selection in our study, we

have gained numerous benefits. Firstly, it has enhanced the accuracy

of our model and mitigated the danger of overfitting. Moreover,

feature screening has deepened our comprehension of the model’s

workings and has also reduced computational costs.
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By utilizing ANOVA_spearman_LASSO, the top radiomics-

based ML models achieved superior performance as compared to

models utilizing ANOVA_LASSO. The former displayed

significantly higher AUC, accuracy, precision, sensitivity, and F1

scores, with differences of 0.0059, 0.0059, 0.1279, 0.0924 and

0.0826, respectively. These results underscore the significance of

utilizing the spearman method in accurately distinguishing

between ASPs and SPs. The MRI image data is amplified by

sixty-fold using static data enhancement techniques. Radiomics

technique yielded 5,174 extracted image histology features.

However, some of these features, such as the first-order features

in the “random rotate” approach to data enhancement, were

redundant. To address this issue, we employed the Spearman

method, a nonparametric, ranking-based method that is better

equipped to handle nonlinear data relationships, eliminate

unimportant and irrelevant features, and prevent overfitting and

underfitting of the model. As a result, the filtered features were

more representative, better explained the prediction results.

The raw MRI image data is amplified by a factor of sixty through

static data enhancement techniques. With the radiomics technique,

we extracted a total of 5,174 image histology features. Although

we extracted a large number of image histology features, we

included a large number of redundant features, such as first order

features in the “random rotate” approach to data enhancement.

The Spearman method is a nonparametric, ranking-based method

that can better handle the nonlinear relationships of the data,

eliminate unimportant and useless features, and avoid overfitting

and underfitting of the model. The filtered features are more

representative, can better explain the prediction results of the

model, and are more easily understood by people.

The 3D-SE-Densenet121 showed the best performance among all

models. The best performance method for radiomics-based ML

approach was the combination of ANOVA_ spearman_LASSO and

MLP. The best performance method for the DL approach was 3D-

SE-Densenet121 model. The AUC, accuracy, precision, sensitivity,

and F1 scores of the best DL method (3D-SE-Densenet121) were

0.0689, 0.1119, 0.1043, 0.0805, and 0.1089 higher than those of the

best radiomics-based ML models (MLP), respectively.

It was clear that the DL models had better performance than

the radiomics-based ML model in differentiating ASPs from SPs

(AUC = 0.9294 vs. AUC = 0.8853). These results were consistent

with the findings for Mantle Cell Lymphoma (27) and Deep

Vein Thrombosis (28) that DL models had better diagnostic

performance than radiomics-based ML models. This was due to
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the fact that DL extracts more representative high-level abstract

features from the raw data, while machine learning requires

manual feature selection and design. In addition, it was clear that

the model performance was directly reflected in the DCA results.

The 3D-SE-Densenet-121 model demonstrated the highest

performance in all the model evaluation metrics. Unlike the MLP

model based on radiomics features, the 3D-SE-Densenet-121

model demonstrated stable and robust net benefit in DCA.

Furthermore, the LightGBM, XGBoost, Multilayer Perceptron

models and the CNN-based 3D-SE-Densenet model (i.e.,

nonlinear classifiers with high complexity) showed higher

performance compared to other models, which suggested that

models with higher nonlinear complexity were favored for

HRMRI data.

Additionally, compared with the AUC results of other papers, our

classification models for SPs and ASPs have achieved better

performance. Li et al. (10) constructed a 3D HRMRI-based

radiomics model to identify symptomatic plaques with an AUC of

0.906. Compared to our study, Li et al.’s study had a lower AUC

than our best model’s 0.9300, and he used a single-center dataset

while we acquired data from two centers. Huang et al. (29) used

radiomics ultrasonography to non-invasively predict SPs and ASPs

with a training set of 0.930 and a test set of 0.922, which is also

lower than the AUC of our highest model. The two-dimensional

radiomics model using maximum plaque area slices to classify

carotid plaques in the study by Zhang et al. (9) showed better

performance than the conventional methods (AUC= 0.984 vs.

AUC= 0.804), but the size of the dataset and the absence of

repeated stratified cross-validation might lower the reproducibility

of this paper.

Although, this paper was not intended to focus on model

complexity, the analysis of the relationship between the number of

learning parameters and model performance was not included in

this paper, we still observed some preliminary performance

discrepancies with different number of learning parameters and

different network architectures. Among all the models tested in this

paper, our experiments showed that 3D-DenseNet121, which has

the fewest parameters among the four 3D-DenseNet

models, demonstrated the best performance. Similarly, 3D-SE-

DenseNet121, which was the 3D-SE-DenseNet model with the

fewest parameters among the four 3D-SE-DenseNet models, yielded

the best results in our experiments. Furthermore, 3D-SE-

DenseNet121 model outperformed 3D-DenseNet despite that

3D-SE-DenseNet121 had more parameters. These results suggests

that the SE Block has a positive impact on the model’s

performance. Therefore, when working with small spatial sample

sizes, choosing the right number of parameters and architecture

was crucial.

To our knowledge, this paper represents the first study to

utilize 3D HRMRI-based radiomics-based ML and DL models

for evaluating carotid plaque properties. Through comparing and

systematically examining these two approaches with the same

dataset, our proposed methods have demonstrated robustness

and high-performance, particularly in the case of the DL approach.

However, our study has several limitations. First of all, the

limitation in the size of the MRI image data set severely limits
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the robustness and generalizability of the findings in this

paper, future studies should be conducted with larger cohorts

to further validated the methods proposed in this paper.

Limited by the scale of our research and restricted availability

of clinical data, it is clear that the models’ performance in this

paper are still far from practical applications in clinical

scenarios. Larger datasets are thus required for further

investigation of the models from diverse perspectives to

investigate their clinical efficacy. Secondly, future studies with

fully automated segmentation and classification methods

should be investigated to further streamline the analysis and

minimize intervention from the healthcare professionals. In the

end, although radiomics methods seem to be easier to interpret

in terms of the significance of features, there are several

methods to explain DL models. For example, local saliency

analysis, class activation mapping and other methods can be

used to investigate the features learned by the DL models

which may further broaden our understanding in the imaging

characteristics of SP plaques.
5. Conclusion

In this paper, a multi-center high-resolution carotid MRI dataset

was constructed, and radiomics-based ML and DL approaches were

evaluated for the classification of carotid plaques. Compared with

radiomics-based ML approaches, DL approaches demonstrated

superior performance in the classification of carotid plaques on

sequential HRMRI, especially the 3D-SE-Densenet models, in

terms of accuracy and AUC. The 3D-SE-Densenet-121 model

showed the best performance among all models.
Data availability statement

The raw data of this paper were patient imaging data and our

ethics restrict publishing/sharing raw data to any other institutions.

However, the scripts and codes can be available upon requests.
Ethics statement

The studies involving human participants were reviewed and

approved by Huanhu Hospital, Tianjin University. The patients/

participants provided their written informed consent to

participate in this study.
Author contributions

CG contribtes in the data analysis and manuscript drafting, CC

contributes in the conceptualization of the project, original data

acquisition and funding acquisition, XZ contributes in the

conceptualization of the project, funding acquisiton, supervisions

of the project process and manuscript drafting and revision, JZ

contributes in the original data preprocessing. GN and DM
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1173769
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Gui et al. 10.3389/fcvm.2023.1173769
provides basic resource for this paper. All authors contributed to

the article and approved the submitted version.
Funding

This work was supported in part by the National Key Research

and Development Program of China under Grant

2022YFF1202900, the National Natural Science Foundation of

China under Grant 82102174, and China Postdoctoral Science

Foundation under Grant 2021TQ0243.
Acknowledgments

The authors would like to thank the Academy of Medical
Engineering and Translational Medicine, Tianjin University,
Tianjin, China, and the Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union
Medical College, Tianjin, China, for their equal contributions to
supporting this paper.
Frontiers in Cardiovascular Medicine 11
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2023.

1173769/full#supplementary-material
References
1. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From
vulnerable plaque to vulnerable patient—a call for new definitions and risk assessment
strategies: part I. Circulation. (2003) 108:1664–72. doi: 10.1161/01.CIR.0000087480.
94275.97

2. Kopczak A, Schindler A, Bayer-Karpinska A, Koch ML, Sepp D, Zeller J, et al.
Complicated carotid artery plaques as a cause of cryptogenic stroke. J Am Coll
Cardiol. (2020) 76:2212–22. doi: 10.1016/j.jacc.2020.09.532

3. Kakkos SK, Stevens JM, Nicolaides AN, Kyriacou E, Pattichis CS, Geroulakos G,
et al. Texture analysis of ultrasonic images of symptomatic carotid plaques can identify
those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc
Surg. (2007) 33:422–9. doi: 10.1016/j.ejvs.2006.10.018

4. Le EPV, Rundo L, Tarkin JM, Evans NR, Chowdhury MM, Coughlin PA, et al.
Assessing robustness of carotid artery CT angiography radiomics in the
identification of culprit lesions in cerebrovascular events. Sci Rep. (2021) 11:1–14.
doi: 10.1038/s41598-021-82760-w

5. Turan TN, Rumboldt Z, Granholm A-C, Columbo L, Welsh CT, Lopes-Virella
MF, et al. Intracranial atherosclerosis: correlation between in-vivo 3T high
resolution MRI and pathology. Atherosclerosis. (2014) 237:460–3. doi: 10.1016/j.
atherosclerosis.2014.10.007

6. Jiang Y, Zhu C, Peng W, Degnan AJ, Chen L, Wang X, et al. Ex-vivo imaging
and plaque type classification of intracranial atherosclerotic plaque using high
resolution MRI. Atherosclerosis. (2016) 249:10–6. doi: 10.1016/j.atherosclerosis.
2016.03.033

7. Chen S, Liu C, Chen X, Liu WV, Ma L, Zha Y. A radiomics approach to assess
high risk carotid plaques: a non-invasive imaging biomarker, retrospective study.
Front Neurol. (2022) 13:1–13. doi: 10.3389/fneur.2022.788652

8. Leng XY, Wong KS, Liebeskind DS. Evaluating intracranial atherosclerosis rather
than intracranial stenosis. STROKE. (2014) 45:645–51. doi: 10.1161/STROKEAHA.
113.002491

9. Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, et al. Identification of high-risk
carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. (2021)
31:3116–26. doi: 10.1007/s00330-020-07361-z

10. Li H, Liu J, Dong Z, Chen X, Zhou C, Huang C, et al. Identification of high-risk
intracranial plaques with 3D high-resolution magnetic resonance imaging-based
radiomics and machine learning. J Neurol. (2022) 269:6494–503. doi: 10.1007/
s00415-022-11315-4

11. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–44. doi: 10.
1038/nature14539

12. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image
analysis. In: Lee G, Fujita H, editors. Deep learning in medical image analysis:
Challenges and applications. (2020). p. 3–21. Available at: https://link.springer.com/
chapter/10.1007/978-3-030-33128-3_1

13. Hu J, Shen L, S G. Squeeze-and-excitation networks. Proc IEEE Conf Comput Vis
Pattern Recognit. (2018):7132–41. doi: 10.1109/TPAMI.2019.2913372

14. Takaya N, Yuan C, Chu B, Saam T, Underbill H, Cai J, et al. Association between
carotid plaque characteristics and subsequent ischemic cerebrovascular events: a
prospective assessment with MRI—initial results. Stroke. (2006) 37:818–23. doi: 10.
1161/01.STR.0000204638.91099.91

15. Neurolog- C. Benefit of carotid endarterectomy in patients with symp tomatic
moderate or severe stenos is benefit of carotid endarterectomy in patients with
symptomatic. (1998) 339(20):1415–25. doi: 10.1056/NEJM199811123392002

16. Angiography S, Anzidei M, Napoli A, Marincola BC. Gadofosveset-enhanced
MR angiography of carotid arteries: does steady-state imaging improve accuracy of
first-pass imaging? Comparison with selective digital subtraction angiography.
Radiology. (2009) 251:457–66. doi: 10.1148/radiol.2512081197

17. Cao C, Liu Z, Liu G, Jin S, Xia S. Ability of weakly supervised learning to
detect acute ischemic stroke and hemorrhagic infarction lesions with diffusion-
weighted imaging. Quant Imaging Med Surg. (2022) 12:321–32. doi: 10.21037/qims-
21-324

18. Sacchetti DC, Cutting SM, McTaggart RA, Chang AD, Hemendinger M, Mac
Grory B, et al. Perfusion imaging and recurrent cerebrovascular events in
intracranial atherosclerotic disease or carotid occlusion. Int J Stroke. (2018)
13:592–9. doi: 10.1177/1747493018764075

19. Available at: https://github.com/ashawkey/volumentations.

20. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided
detection using convolutional neural networks and random view aggregation. IEEE
Trans Med Imaging. (2016) 35:1170–81. doi: 10.1109/TMI.2015.2482920

21. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

22. Yang L, Xu P, Zhang Y, Cui N, Wang M, Peng M, et al. A deep learning
radiomics model may help to improve the prediction performance of preoperative
grading in meningioma. Neuroradiology. (2022) 64:1373–82. doi: 10.1007/s00234-
022-02894-0

23. Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable model
building. Stat Med. (2007) 26:5512–28. doi: 10.1002/sim.3148

24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res. (2011) 12:2825–30.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2023.1173769/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1173769/full#supplementary-material
https://doi.org/10.1161/01.CIR.0000087480.94275.97
https://doi.org/10.1161/01.CIR.0000087480.94275.97
https://doi.org/10.1016/j.jacc.2020.09.532
https://doi.org/10.1016/j.ejvs.2006.10.018
https://doi.org/10.1038/s41598-021-82760-w
https://doi.org/10.1016/j.atherosclerosis.2014.10.007
https://doi.org/10.1016/j.atherosclerosis.2014.10.007
https://doi.org/10.1016/j.atherosclerosis.2016.03.033
https://doi.org/10.1016/j.atherosclerosis.2016.03.033
https://doi.org/10.3389/fneur.2022.788652
https://doi.org/10.1161/STROKEAHA.113.002491
https://doi.org/10.1161/STROKEAHA.113.002491
https://doi.org/10.1007/s00330-020-07361-z
https://doi.org/10.1007/s00415-022-11315-4
https://doi.org/10.1007/s00415-022-11315-4
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://link.springer.com/chapter/10.1007/978-3-030-33128-3_1
https://link.springer.com/chapter/10.1007/978-3-030-33128-3_1
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1161/01.STR.0000204638.91099.91
https://doi.org/10.1161/01.STR.0000204638.91099.91
https://doi.org/10.1056/NEJM199811123392002
https://doi.org/10.1148/radiol.2512081197
https://doi.org/10.21037/qims-21-324
https://doi.org/10.21037/qims-21-324
https://doi.org/10.1177/1747493018764075
https://github.com/ashawkey/volumentations
https://doi.org/10.1109/TMI.2015.2482920
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.1002/sim.3148
https://doi.org/10.3389/fcvm.2023.1173769
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Gui et al. 10.3389/fcvm.2023.1173769
25. Kayalibay B, Jensen G, van der Smagt P. CNN-based Segmentation of Medical
Imaging Data. (2017). Available at: http://arxiv.org/abs/1701.03056

26. Liu M, Li F, Yan H, Wang K, Ma Y, Shen L, et al. A multi-model deep
convolutional neural network for automatic hippocampus segmentation and
classification in Alzheimer’s disease. Neuroimage. (2020) 208:116459. doi: 10.1016/j.
neuroimage.2019.116459

27. Lisson CS, Lisson CG, Mezger MF, Wolf D, Schmidt SA, Thaiss WM, et al. Deep
neural networks and machine learning radiomics modelling for prediction of relapse
Frontiers in Cardiovascular Medicine 12
in mantle cell lymphoma. Cancers (Basel). (2022) 14(8):2008. doi: 10.3390/
cancers14082008

28. Hwang JH, Seo JW, Kim JH, Park S, Kim YJ, Kim KG. Comparison between
deep learning and conventional machine learning in classifying iliofemoral deep
venous thrombosis upon CT venography. Diagnostics. (2022) 12(2):274. doi: 10.
3390/diagnostics12020274

29. Huang Z, Cheng XQ, Liu HY, Bi XJ, Liu YN, Lv WZ, et al. Relation
of carotid plaque features detected with ultrasonography-based radiomics to
clinical symptoms. Transl Stroke Res. (2022) 13:970–82. doi: 10.1007/s12975-021-00963-9
frontiersin.org

http://arxiv.org/abs/1701.03056
https://doi.org/10.1016/j.neuroimage.2019.116459
https://doi.org/10.1016/j.neuroimage.2019.116459
https://doi.org/10.3390/cancers14082008
https://doi.org/10.3390/cancers14082008
https://doi.org/10.3390/diagnostics12020274
https://doi.org/10.3390/diagnostics12020274
https://doi.org/10.1007/s12975-021-00963-9
https://doi.org/10.3389/fcvm.2023.1173769
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Radiomics and artificial neural networks modelling for identification of high-risk carotid plaques
	Introduction
	Materials and methods
	Participant recruitment
	Data split
	Magnetic resonance imaging data
	Radiomic-based ML as assessment model
	Plaque segmentation, data processing and feature extraction
	Radiomic feature selection
	Radiomics-based ML approach as assessment model

	Deep learning approach as assessment model
	DenseNet
	SENet
	SE-DenseNet

	Evaluation metrics
	Statistical analysis

	Results
	Demographics
	Radiomics features for the carotid plaques
	The DL approach as assessment model
	Decision curve analysis

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


