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and meta-analysis
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1School of Nursing, Hangzhou Medical College, Hangzhou, China, 2School of Public Health, Hangzhou
Normal University, Hangzhou, China, 3School of Nursing, Hangzhou Normal University, Hangzhou, China,
4School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China

Introduction: To perform a meta-analysis to discover the performance of ML
algorithms in identifying Congenital long QT syndrome (LQTS).
Methods: The searched databases included Cochrane, EMBASE, Web of Science,
and PubMed. Our study considered all English-language studies that reported
the detection of LQTS using ML algorithms. Quality was assessed using
QUADAS-2 and QUADAS-AI tools. The bivariate mixed effects models were
used in our study. Based on genotype data for LQTS, we performed a subgroup
analysis.
Results: Out of 536 studies, 8 met all inclusion criteria. The pooled area under the
receiving operating curve (SAUROC) for detecting LQTS was 0.95 (95% CI: 0.31–
1.00); sensitivity was 0.87 (95% CI: 0.83–0.90), and specificity was 0.91 (95% CI:
0.88–0.93). Additionally, diagnostic odd ratio (DOR) was 65 (95% CI: 39–109).
The positive likelihood ratio (PLR) was 9.3 (95% CI: 7.0–12.3) and the negative
likelihood ratio (NLR) was 0.14 (95% CI: 0.11–0.20), with very low heterogeneity
(I2= 16%).
Discussion:We found that machine learning can be used to detect features of rare
cardiovascular disease like LQTS, thus increasing our understanding of intelligent
interpretation of ECG. To improve ML performance in the classification of LQTS
subtypes, further research is required.
Systematic Review Registration: identifier PROSPERO CRD42022360122.
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Introduction

Congenital long QT syndrome (LQTS) is characterized by a prolonged QT interval and

abnormal T wave morphology on the electrocardiogram (ECG) (1, 2). Clinically, patients are

often asymptomatic, but can suffer from syncope, seizures, or sudden cardiac death (3, 4).

A prevalence of 1:2,000–3,000 is estimated to exist for LQTS, which represents a very

rare condition (2, 5, 6). A main method for diagnosing LQTS is to measure the heart

rate-corrected QT interval (QTc) (2, 4). Specific ECG features, such as T-wave

morphologies, QT interval changes on treadmill QT-stress or epinephrine tests, that may

help to diagnose LQTS, but may not be reliable enough to provide accurate diagnostic

value (7–11). Even though LQTS is characterized by QT prolongation, many patients
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appear normal on the ECG, despite they were clinically and/or

genetically diagnosed (12, 13). Consequently, diagnosing LQTS is

particularly challenging for general cardiologists, resulting in this

disease being significantly underdiagnosed (4, 14).

Many studies have demonstrated that physicians have difficulty

reading ECGs in clinical situations (15, 16). A number of

researchers have used machine learning (ML) to investigate

whether artificial intelligence (AI) can enhance ECG interpretation

and clinical decision-making. ML can potentially take into account

subtleties in ECG waves that humans do not consider in routine

interpretations of ECG signals. It has been shown that ML

improves ECG interpretation and clinical decision-making for

several common cardiovascular diseases like atrial fibrillation or

heart failure (17). Several high-quality studies have been conducted

on ML algorithms for LQTS, but their diagnostic value remains

unclear (18–21). Detecting and identifying LQTS properly is vital

to preventing syncope, seizures, and sudden cardiac death in LQTS

people. Consequently, a meta-analysis was conducted in order to

discover whether ML algorithms could be used to identify LQTS.
Materials and methods

This study was performed according to the PRISMA statement

(22) and was registered in PROSPERO (CRD42022360122).
Search strategy

The Cochrane, EMBASE, Web of Science, and PubMed

databases were searched from inception through 16 August 2022.

Supplementary Table S1 provided a detailed description of the

search strategy. The references of all the studies included in this

study were also manually searched.
Criteria for inclusion and exclusion

Abstracts and titles of the retrieved studies were reviewed by two

authors. Study eligibility criteria were as follows: (1) clearly described

ML models and ECG regions used in the LQTS detection, (2)

presented the results of the ML algorithms and LQTS detection,

(3) be written in English, (4) patients with complete ECG records,

(5) provided sensitivity and specificity information, (6) provided

the number of LQTS patients, (7) explicitly described data sources

and datasets used. These were the criteria for exclusion: (1) only

reported risk factors and incidence of LQTS, (2) studies with

incomplete data, (3) studies not in English. There was no

restriction on the region or year of publication.
Definition of LQTS

According to HRS/EHRA/APHRS Expert Consensus

Statement Recommendations (23), a diagnosis of LQTS is made

in the presence of QTc≥ 500 milliseconds (ms) in repeated 12-
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lead ECGs, or in the presence of a QTc between 480 and 499 ms

in a patient with unexplained syncope, or in the presence of the

Schwartz score≥ 3.5 points. A secondary cause for QT

prolongation should be ruled out in all of these cases.

Additionally, LQTS can also be diagnosed if one of the LQTS

genes carries an unequivocally pathogenic mutation. It is

estimated that 90 percent of genotype-positive patients and 75

percent of all clinically diagnosed LQTS cases are caused by

three main genes. LQT1 and 2 are derived from functional loss-

of-function variants in the potassium channel genes KCNQ1 and

KCNH2, respectively. LQT3 is based on gain-of-function variants

in SCN5A (2). These genes respectively encode for the slow and

rapid delayed rectifier current and the fast inward cardiac

sodium current, which will lead to prolonged QT interval. Three

subtypes of ST-T segments exhibit distinct morphologies, and

these features can be used to accurately predict genotype (24, 25).
Literature screening

Traditional methods, editorials, and short reports for detecting

LQTS were excluded. The final analysis was conducted by the same

two authors (M-JW and W-QW) who reviewed all included

studies. The chief investigator (X-WZ) resolved all disagreements

between two authors about the selection of potential studies.

Algorithms and ECG features from the studies that provided the

most detailed information were retained. In order to compile and

detect duplicates, EndNote X9.1 (Thomson Reuters) was used.
Data extraction and quality assessment

We used a data extraction sheet to extract variables in our

study. Literature searches and study selection were conducted

prior to defining the data sheets. Publication year, author, target

disease, task, data size, ECG features, algorithm type, and model

performance metrics were extracted from each study.

Quality was assessed using the QUADAS-2 tool (26). To address

the specifics of AI-related studies, QUADAS-AI tool was also used in

our study (27). Each relevant article was independently assessed by

two researchers (WZ and X-WZ) for bias risk and applicability

concerns according to QUADAS-2 guidelines. Four domains

(patient selection, index test, reference standard, flow and timing)

of articles were assessed for bias using a range of questions. For

each of the four domains, bias risk was estimated using a three-

tailed scale: high, low, or unclear. A three-tailed scale was also used

to assess applicability, with the exception of “flow and timing”.

Consensus was used during scoring to resolve disagreements. All

decisions were reached by consensus.
Primary and subgroup analysis

We considered all studies in the full analysis dataset that tested

ML models for detecting LQTS patients. A two-part analysis of the
frontiersin.org
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datasets was conducted: (a) training dataset; (b) test/validation

dataset. LQTS types 1, 2, and 3 were also analyzed as subgroups (28).
Statistical analysis

In this study, we analyzed the metrics (C-index and accuracy) for

evaluating ML models. When the 95%CI and standard error (SE) of

the C-index were missing, the SE was estimated according to Debray

TP et al.’s research (29). ROC, sensitivity, specificity, PLR, NLR, DOR,

and their 95%CI were computed (30, 31). Moderate accuracy is

considered to be DOR > 25, and high accuracy is considered to be

DOR > 100 (32, 33). For each test, sensitivity and specificity

estimates were plotted on forest plots and in the ROC space as part

of preliminary exploratory analyses. An AUC was determined,

along with a 95% CI and a P-value. Heterogeneity was assessed

using a forest plot, and significance was determined using Chi-

squared and I2 statistics. Random effect models were used to

estimate the effect size for all included studies, which helps reduce

heterogeneity between them. Consequently, Bivariate mixed effects

models were used to calculate pooled estimates. Subgroup analyses

were conducted, as well as sensitivity analyses if necessary. In order

to assess publication bias, logarithms of DOR were plotted against

square roots of effective sample sizes; P < 0.05 for the slope

coefficient indicates significant publication bias. Statistical analyses
FIGURE 1

Flowchart of literature search.
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were conducted using Stata 15.0 (Stata Corp LP, College Station,

TX) and the midas command.
Results

Study selection

In the initial search, 536 unique records were identified. In our

study, 525 articles were excluded due to inclusion and exclusion

criteria. The full-text review was performed on 11 studies, and 8

of these met all criteria for inclusion (Figure 1) (19, 21, 34–39).
Study characteristics

Publication dates ranged from 2011 to 2022. There are eight

studies to be reviewed across four regions: (1) Europe (n = 4), (2)

North America (n = 2), (3) Oceania (n = 1), and (4) Asia (n = 1).

The eight ML models included convolutional neural networks

(CNNs) (n = 5), support vector machines (SVMs) (n = 2), and

artificial neural networks (ANNs) (n = 1). In the majority of

studies (n = 7) the ECG signals were used as inputs to the ML

algorithm (19, 21, 34–37, 39), while in the remaining study (n =

1) the ECG signals were combined with demographic
frontiersin.org
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characteristics (age and gender) (38). Two studies analyzed data

from multiple centers, while six studies examined data from a

single center. Eight studies developed ML models in order to

detect LQTS, and three of them differentiated genotypes further

(19, 21, 34). The algorithm was evaluated using k-fold cross-

validation in most studies (n = 6). The full analysis dataset

included 16,584 participants. Cohort size ranged from 81 to

12,200. Study participants ranged in age from 21.60 ± 15.00 to

60.00 ± 18.00 years; 29.0% to 58.0% were males. LQTS patients

were all over 16 years old. Finally, we included 2,692 LQTS

patients and 14,417 controls: 42% were LQT1, 46% were LQT2,

and 12% were LQT3. A total of 7,493,577 ECGs obtained from

12-lead ECGs were included in this study. The length of resting

QTc ranged from 400 to 467 ms. There were 2,128, 362, and 202

LQTS patients in the training, test, and validation part,

respectively (Table 1).
Risk of bias assessment

Detailed quality assessment results are presented in

Supplementary Table S2. Providing that the source, size, and

input data quality were accurately characterized, along with clear

criteria for patient eligibility, a low risk of bias was observed in
TABLE 1 Characteristics of included studies.

Study Country Dataset
source

Population,
n

Control gro

Aufiero (2022) Netherlands Amsterdam
UMC
University
Hospital Leuven

LQTS: 570
Controls: 12,200

Genotype-negat
patients with ot
possible cardiac
disease

Bos (2021) USA Mayo Clinic LQTS: 967
Controls: 1,092

Genotype-negat
patients

Doldi (2021) Germany Single center LQTS: 124
Controls: 161

Genotype-negat
patients with ot
possible cardiac
disease

Hajimolahoseini
(2019)

Canada Single center LQTS: 45
Controls: 36

Genotype-negat
patients

Hermans (2020) Netherlands Amsterdam
UMC;
University
Hospital Leuven

LQTS: 333
Controls: 345

Genotype-negat
family member

Hermans (2018) Netherlands MUSE
Cardiology
Information
system

LQTS: 340
Controls: 348

Genotype-negat
family member

Immanuel (2016) Australia THEW database LQTS: 194
Controls: 140

Healthy individ

Zeraatkar (2011) Iran MIT/BIH
database

LQTS: 47
Controls: 95

Healthy individ
and TWA
arrhythmia pat

Study Dataset
size

Number of
leads

External
validation

Algorithm
evaluation

Aufiero (2022) 7, 481, 758
ECGs

12-lead ECGs Y 5-fold cross
validation
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the “patient selection” domain. The index test was judged

primarily on the validity of models on external datasets.

Diagnostic performance may be overestimated if the model is

tested exclusively on internal data, the “index test” domain

lacked external validation, resulting in a high risk of bias.

Additionally, the absence of external validation adversely affected

the level of concern regarding applicability, as the results of

diagnostic effectiveness cannot be extrapolated to the general

population based on an in-house data set alone. The same

reference standard was used in all studies. The review question

matched the target conditions defined by a reference standard.

All included studies described genetic testing as the reference

standard. The timing between the index test and the reference

standard was often inaccurate. Most studies, however, provided

positive information concerning these indicators.
Machine learning model and LQTS
detection

In eight studies, the performance of ML approaches was

examined for detecting LQTS patients. ML was found to be an

effective method for diagnosing LQTS in this meta-analysis.

According to the full analysis dataset, the ML models performed
up Population in
training, n

Population
in test, n

Population in
validation, n

Population
with
β-blocker, n

ive
her

LQT1: 172
LQT2: 214
LQT3: 72

N/A LQT1: 32
LQT2: 80
LQT3: 0

LQT1: 97
LQT2: 154
LQT3: 10

ive LQTS: 587 LQT1: 149
LQT2: 109
LQT3: 32

LQTS: 90 N/A

ive
her

LQT1: 65
LQT2: 44
LQT3: 12
LQT5: 3

N/A N/A N/A

ive LQTS: 45 N/A N/A N/A

ive
s

LQT1: 126
LQT2: 156
LQT3: 51

LQT1: 16
LQT2: 51
LQT3: 5

N/A N/A

ive
s

LQT1: 129
LQT2: 160
LQT3: 51

N/A N/A N/A

uals LQT1: 133
LQT2: 61

N/A N/A LQT1: 36
LQT2: 23

uals

ients

LQTS: 47 N/A N/A N/A

Prolonged
QTc criteria

Feature Length of
resting QTc, ms

- ≥450 ms for males
≥460 ms for

females

P wave, QRS complex,
S segment, T wave

LQT1: 456 ± 34
LQT2: 451 ± 36
LQT3: 450 ± 36

(continued)
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TABLE 1 Continued

Study Dataset
size

Number of
leads

External
validation

Algorithm
evaluation

Prolonged
QTc criteria

Feature Length of
resting QTc, ms

Bos (2021) 9,085 ECGs 12-lead ECGs N Holdout, 10% of
dataset

≥450 ms QT-Interval LQTS: 467 ± 43

Doldi (2021) 730 ECGs 12-lead ECGs N 5-fold cross-
validation

≥450 ms for males
≥460 ms for

females

RR-Interval, QT-
Interval

LQTS: 465 ± 32

Hajimolahoseini
(2019)

162 ECGs 12-lead ECGs N Cross-validation >470 ms QRS complex, R-R
intervals

N/A

Hermans (2020) 678 ECGs 12-lead ECGs Y 10-fold cross-
validation

≥450 ms for males
≥460 ms for

females

R peak, QRS complex,
T-wave

Training: LQTS: 457 ± 38;
LQT1: 455 ± 34; LQT2: 462 ±

36; LQT3: 446 ± 50
Test: LQTS: 456 ± 37; LQT1:
467 ± 44; LQT2: 455 ± 34;

LQT3: 421 ± 11

Hermans (2018) 688 ECGs 12-lead ECGs N 10-fold cross-
validation

>480 ms QT-interval, T-wave
morphology, RR-

interval

N/A

Immanuel (2016) 334 ECGs 12-lead ECGs N Holdout, 15% of
dataset

≥450 ms T-waves, R-wave
amplitude, RR interval

400–450

Zeraatkar (2011) 142 ECGs 12-lead ECGs N Cross-validation ≥450 ms QRS complex, T-wave N/A

Study Sensitivity Specificity AUROC Algorithm
Aufiero (2022) Training: LQT1: 0.840; LQT2: 0.900; LQT3:

0.970
Training: LQT1: 0.960; LQT2: 0.960; LQT3:

0.920
Training: LQT1: 0.900; LQT2: 0.920;

LQT3: 0.890
CNN

Validation: LQT1:0.870; LQT2: 0.900 Validation: LQT1: 0.930; LQT2: 0.880 Validation: LQT1: 0.900; LQT2: 0.890

Bos (2021) Training: LQTS: 0.837 Training: LQTS: 0.806 Training: LQTS: 0.900 CNN

Test: LQTS: 0.837; LQT1: 0.846; LQT2:
0.881; LQT3: 0.781

Test: LQTS: 0.854; LQT1: 0.872; LQT2:
0.895; LQT3: 0.802

Test: LQTS: 0.914; LQT1: 0.921; LQT2:
0.944; LQT3: 0.863

Validation: LQTS: 0.790 Validation: LQTS: 0.787 Validation: LQTS: 0.862

Doldi (2021) Training: LQTS: 0.908 Training: LQTS: 0.929 Training: LQTS: 0.970 CNN

Hajimolahoseini
(2019)

Training: LQTS: 0.960 Training: LQTS: 0.970 N/A CNN

Hermans (2020) Training: LQTS: 0.830 Training: LQTS: 0.850 Training: LQTS: 0.990 SVM

Test: LQTS: 0.750 Test: LQTS: 0.840 Test: LQTS: 0.840

Hermans (2018) Training: LQTS: 0.820 Training: LQTS: 0.861 Training: LQTS: 0.901 SVM

Immanuel (2016) Training: LQTS: 0.943; LQT1: 0.882 Training: LQTS: 0.822; LQT1: 0.889 Training: LQTS: 0.880; LQT1: 0.710 CNN

Zeraatkar (2011) Training: LQTS: 0.997 Training: LQTS: 0.998 N/A ANN

CNN, convolutional neural network; ANN, artificial neural network; SVM, support vector machine; Y, yes; N, no.

FIGURE 2

SAUROC of ML algorithms for detecting LQTS.
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well in identifying LQTS, and the overall pooled AUROC for ML to

identify LQTS was 0.95 (95% CI: 0.31–1.00) (Figure 2).

Additionally, sensitivity, specificity, and DOR were 0.87

(95% CI: 0.83–0.90), 0.91 (95% CI: 0.88–0.93), and 65 (95% CI:

39–109), respectively (Figures 3, 4). Fagan nomogram showed
Frontiers in Cardiovascular Medicine 05
that a positive test increases significantly the pretest probability

of LQTS, from 20% to 70%, while a negative test decreases

significantly the pretest probability, from 20% to 3%

(Supplementary Figure S3). PLR was 9.3 (95% CI: 7.0–12.3) and

NLR was 0.14 (95% CI: 0.11–0.20), with very low heterogeneity

(I2 = 16%) (Supplementary Figures S4, S5). Asymmetry was not

found in Deeks’ funnel plots for publication bias. The

publication bias coefficient was 17.60, which was not significant

(P = 0.23). All studies did not demonstrate publication bias.
Training dataset

The overall pooled SAUROC for ML to detect LQTS was 0.96

(95% CI: 0.32–1.00) (Supplementary Figure S6). Sensitivity,

specificity, and DOR were 0.90 (95% CI: 0.86–0.93), 0.93 (95%

CI: 0.89–0.96), and 125 (95% CI: 55–285), respectively

(Supplementary Figures S7, S8). Fagan nomogram showed that

a positive test increases significantly the pretest probability of

LQTS, from 20% to 77%, while a negative test decreases
frontiersin.org
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FIGURE 3

Sensitivity and specificity of ML algorithms for detecting LQTS.

FIGURE 4

DOR of ML algorithms for detecting LQTS.

Wu et al. 10.3389/fcvm.2023.1172451
significantly the pretest probability, from 20% to 3%

(Supplementary Figure S9). The overall pooled PLR was 13.4

(95% CI: 8.0–22.4) and the NLR was 0.11 (95% CI: 0.07–0.16),

with medium heterogeneity (I2 = 62%) (Supplementary Figures

S10, S11). There was no asymmetry in Deeks’ funnel plot

for publication bias as well. However, the publication bias

evaluation indicated that the bias coefficient was 59.68 and

significant (P = 0.01).
Test and validation dataset

The ability of ML to detect LQTS in the test/validation dataset

was evaluated in three studies. The overall pooled SAUROC for

diagnosing LQTS was 0.92 (95% CI: 0.29–1.00) (Supplementary

Figure S12). The sensitivity, specificity, and DOR were 0.82

(95% CI: 0.75–0.87), 0.89 (95% CI: 0.85–0.91), and 34 (95% CI:
Frontiers in Cardiovascular Medicine 06
24–49), respectively (Supplementary Figures S13, S14). Fagan

nomogram showed that a positive test increases significantly the

pretest probability of LQTS, from 20% to 64%, while a negative

test decreases significantly the pretest probability, from 20% to

5% (Supplementary Figure S15). The PLR was 7.1 (95% CI:

5.6–9.0), and the NLR was 0.21 (95% CI: 0.15–0.28), with low

heterogeneity (I2 = 37%) (Supplementary Figures S16, S17).

Publication bias was evaluated, and a bias coefficient of −11.04
was found to be non-significant (P = 0.26). Test/validation

datasets did not demonstrate publication bias.
Subgroup analysis

In order to evaluate ML detection performance for LQTS

subtypes, subgroup analysis was conducted (Table 2). LQT3 was

not studied extensively, so we only examined ML’s performance

in identifying LQT1 and LQT2.

LQT1
Three studies assessed ML’s performance for identifying LQT1.

The overall pooled AUROC for identifying LQT1 was 0.89 (95%

CI: 0.16–1.00). Additionally, the sensitivity, specificity, DOR were

0.86 (95%CI: 0.83–0.88), 0.91 (95%CI: 0.86–0.94), and 60 (95%

CI: 37–99). The PLR was 9.4 (95% CI: 6.0–14.8), and the NLR

was 0.16 (95% CI: 0.13–0.19).

LQT2
Two studies assessed ML’s performance for identifying LQT2.

The overall pooled AUROC for identifying LQT2 was 0.92 (95%
frontiersin.org
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TABLE 2 Performance of detecting LQTS subtypes.

Type AUROC Sensitivity (95%CI) Specificity (95%CI) PLR (95%CI) NLR (95%CI) DOR (95%CI)
LQT1 0.89 0.86 (0.83–0.88) 0.91 (0.86–0.94) 9.4 (6.0–14.8) 0.16 (0.13–0.19) 60 (37–99)

LQT2 0.92 0.88 (0.85–0.91) 0.91 (0.88–0.94) 10.2 (7.1–14.8) 0.13 (0.10–0.17) 79 (45–138)

Wu et al. 10.3389/fcvm.2023.1172451
CI: 0.18–1.00). Additionally, the sensitivity, specificity, DOR were

0.88 (95%CI: 0.85–0.91), 0.91 (95%CI: 0.88–0.94), and 79 (95%

CI: 45–138). The PLR was 10.2 (95% CI: 7.1–14.8), and the NLR

was 0.13 (95% CI: 0.10–0.17).
Discussion

ML algorithms for the detection of LQTS were investigated

through this meta-analysis. The overall pooled estimation

indicated that ML performed well in recognizing LQTS; thus, we

believe that pooling the diagnostic accuracy from eligible studies

would be beneficial to cardiologists and researchers.
Performance and clinical relevance of
models

Providing appropriate treatment for LQTS requires accurate

identification (6). As of today, LQTS has been diagnosed not by

genetic testing, but by the Schwartz Score, along with ECGs and

clinical parameters that can be used in conjunction with genetic

testing (2). Genetic testing is recommended if clinical

presentation, family history, and ECG characteristics indicate

LQTS, but its high cost and time delay limit its application.

Exercise and QT-stand testing may lead to overdiagnosis of

LQTS in children and adolescents with low likelihoods of the

illness (40). For the diagnosis of LQTS, the 12-lead ECGs is still

the most essential diagnostic tool. Studies have shown that the

present ECG-based ML models play a significant role in

diagnosis and genotyping of LQTS with excellent accuracy. This

could mean that ML models could be implemented in clinical

care, for example, it could potentially serve as a clinical decision

tool to help general cardiologists predict which patients might

need further workup.
Pooled performance and heterogeneity

LQTS patients were identified by genetic testing in all the

included studies. To estimate the overall performance of ML,

AUROC values were pooled across all models presented. LQTS

genotypes were identified and distinguished using ML algorithms

with high sensitivity and specificity; the PLR, NLR, and DOR

values indicate effective test performance. All accuracy values

were above 0.89, which suggested that ECG-based ML models

were effective in predicting LQTS. However, the CI was very

broad and the AUC estimate was skewed to the upper end of the

95% CI, possibly due to a lack of available studies. One of the
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most common reasons for a broadening CI is an insufficient

sample size. Our study only included a total of 2,692 LQTS

patients, which may make the CI too broad. Another explanation

may be the wide variation in the standard errors of the included

models (ranging from 0.008 to 0.034). Besides, AUC values of

training datasets are generally higher than those of test/validation

datasets. Only two included studies were tested on the test/

validation dataset, so the overall pooled AUROC of our study

mainly comes from the training dataset, which may explain the

higher AUC estimate.

This meta-analysis was conducted using a subgroup analysis to

resolve heterogeneity between studies. However, model

performance differed significantly between studies. It was

found that the models tested on the full analysis dataset

(AUROC of 0.95) performed less well than those tested on the

training dataset (AUROC of 0.96), while they performed better

than those tested on the test/validation dataset (AUROC of

0.92). Based on the fact that two studies of the test/validation

dataset used external validation data, we assumed that the

sources of heterogeneity were derived from different

population groups.
Performance of subgroup analysis

In the eight included studies, the pooled estimation was better

in the training dataset compared to the test/validation dataset after

dividing them into two categories according to the different

datasets, indicating ML models require more external verification

in order to prevent overestimation caused by overfitting and bias

(41). Only Aufero and Hermans’ model was externally validated

among all the included studies (34, 37). Validation datasets are

used to tune hyperparameters, while test datasets are used to

evaluate the final model fit unbiasedly (42). It is more common

for ML models to be validated internally by using test datasets

derived from the training dataset rather than externally by using

independent datasets.

Also, we analyzed the performance of ML models for

identifying LQTS subtypes. ML models are more accurate in

detecting LQT2 than LQT1. Bos et al. used unsupervised

feature extraction, in which all 12-lead ECG waveform were

analyzed agnostically during training. The LQTS subtypes of

this model were subsequently classified using this

unsupervised training model. Considering the nature of CNNs,

they could not identify which ECG features were critical for

identifying LQTS subtypes (21). Aufiero et al. assumed that

QRS features are the main ECG signal for classification as

their ML models derive much from the initial part of the QRS

complex (34).
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Clinical model performance

Even though genetic testing is an effective method for

identifying genetic heterogeneity, it cannot definitively exclude

LQTS as a diagnosis (43). 12-lead ECGs is recommended as a

basis for diagnosing LQTS (28, 44). Therefore, it is imperative

to investigate whether ECG-based ML models could improve

patient outcomes. We distinguished between studies

comparing the performance of ML models with that of expert

cardiologists. There were only two studies that validated their

models and showed that they were almost as accurate as

experts at providing diagnostic information (34, 37). ML

models were in good agreement with experts with regard to

sensitivity and specificity. Theoretically, ML models could not

replace experts, but could be used to assist physicians with

limited knowledge of LQTS (37).
Future directions and academic
contribution

The fact that many models were developed using similar

populations should be noted. Four models were developed based

on patients predominantly of European ancestry, with three

models developed in the Netherlands and only one model

developed in Iran. It is known that LQTS genes are influenced

by ancestry in terms of diversity and prevalence of genetic

variants (45). Prior studies have demonstrated that arrhythmia-

associated sequence variants as well as polymorphisms vary

significantly by ethnicity (46–48). According to a study that

assessed KCNQ1 (LQT1) and KCNH2 (LQT2) variants in 744

individuals, 86% (42 of 49) of them were ethnicity-specific and

were found exclusively in Asians (n = 2), Hispanics (n = 2),

African Americans (n = 26), and Europeans (n = 12) (46).

European ancestry showed higher frequencies of LQT1 and 2

compared to other ethnicities. It is most prevalent among

African Americans (4.5%) who carry the rare variant of the

SCN5A (LQT3) gene (47). SCN5A variants were found in 829

individuals, with 49% of them being African Americans. In

particular, among African Americans, 13% have a variant of

SCN5A related to increased arrhythmia risks, while neither

Asians nor Europeans do (46). To ensure generalization, we

encourage the development of models based on data from

different centers and countries.

Further research is needed to determine the most effective

strategies for integrating ML models into clinical workflows and

to assess the effectiveness of these strategies on relevant clinical

outcomes. Several factors, including sex, age, and comorbidities,

may contribute to clinically relevant heterogeneity in the

detection of LQTS (24). With the use of ML models, it can be

possible to investigate whether or not it is possible to identify the

precise population using pre-specified parameters in order to

administer treatment more effectively to groups of patients that

are more homogeneous.
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Strengths and limitations

A number of strengths can be found in our study. In this study,

we attempted to investigate the potential of ML models in the

diagnosis and genotyping of LQTS. A comprehensive search

strategy and an in-depth analysis were employed. Any model

used to identify LQTS was included, which permitted us to

include models that were not originally intended for detecting

LQTS but may have merit. ML models for the two most

common LQTS subtypes were also analyzed by subgroup meta-

analysis, enhancing the relevance of our study.

According to the studies we included, we were limited by the

data they reported. Our meta-analysis has the following

limitations: (1) LQTS patients were identified using various types

of ML models in all the included studies. As a result, we are

unable to suggest which model was most suitable for detecting

LQTS based on the results of our study. Nevertheless, all of the

models examined in the included studies demonstrated that

ML algorithms can assist cardiologists in detecting LQTS. (2)

Only two studies were externally validated, which inherently

limited the quality of evidence. The outcome of this study

would have been improved if all studies had been externally

validated. (3) As LQTS is relatively rare, we enrolled only

2,692 patients with LQTS in our analysis, mostly with LQT1

or LQT2, and only 12% with LQT3, so further evaluation is

necessary to determine the performance of ML models for

LQTS subtypes. (4) As β-blocker will shorten the QT interval,

ML algorithms performance may differ on ECGs where

individuals are treated with β-blocker. In our study, only

Aufero and Hermans reported the number of LQTS patients

with β-blocker therapy (19, 34). However, like another six

studies, they also did not separate groups based on β-blocker

treatment due to the lack of sample size. Thus, it will be

important to investigate whether the discriminatory power of

ML algorithms can be replicated in an independent cohort of

LQTS patients. (5) For diagnosing LQTS, T-wave morphology

is most commonly used. Most researchers in our study also

implemented ML algorithms to identify the differentiation of

LQTS and controls based on T-wave morphology features after

calculating the length of QTc (19, 21, 34, 35, 37–39). They

extracted features from T-wave, such as the Q to T-peak, the

T-peak to T-end interval, T-wave magnitude, and T-loop

slopes to differentiate LQTS from other cardiovascular diseases

with similar T-wave. However, only 3 included studies

explicitly reported that the patients in control group had other

possible cardiac disease, restricting analysis of ML algorithms’

diagnostic value in individuals with any underlying

cardiovascular disease.
Conclusion

ML algorithms for the diagnosis of LQTS are currently being

developed, but they are gradually evolving into a form that can
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be applied to clinical practice. Clinically, however, the development

of algorithms for identifying LQTS subtypes is critical. In addition,

external validation of ML algorithms in LQTS is crucial. ML

algorithms could be popularized and applied to clinical practice

by cardiologists once they are validated in this manner.
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