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Introduction/background: Patients with heart failure and reduced ejection
fraction (HFrEF) are consistently underprescribed guideline-directed
medications. Although many barriers to prescribing are known, identification of
these barriers has relied on traditional a priori hypotheses or qualitative
methods. Machine learning can overcome many limitations of traditional
methods to capture complex relationships in data and lead to a more
comprehensive understanding of the underpinnings driving underprescribing.
Here, we used machine learning methods and routinely available electronic
health record data to identify predictors of prescribing.
Methods: We evaluated the predictive performance of machine learning
algorithms to predict prescription of four types of medications for adults with
HFrEF: angiotensin converting enzyme inhibitor/angiotensin receptor blocker
(ACE/ARB), angiotensin receptor-neprilysin inhibitor (ARNI), evidence-based beta
blocker (BB), or mineralocorticoid receptor antagonist (MRA). The models with
the best predictive performance were used to identify the top 20 characteristics
associated with prescribing each medication type. Shapley values were used to
provide insight into the importance and direction of the predictor relationships
with medication prescribing.
Results: For 3,832 patients meeting the inclusion criteria, 70% were prescribed an
ACE/ARB, 8% an ARNI, 75% a BB, and 40% an MRA. The best-predicting model for
each medication type was a random forest (area under the curve: 0.788–0.821;
Brier score: 0.063–0.185). Across all medications, top predictors of prescribing
included prescription of other evidence-based medications and younger age.
Unique to prescribing an ARNI, the top predictors included lack of diagnoses of
chronic kidney disease, chronic obstructive pulmonary disease, or hypotension,
as well as being in a relationship, nontobacco use, and alcohol use.
Abbreviations

HFrEF, heart failure and reduced ejection fraction; EHR, electronic health record; ACE/ARB, angiotensin
converting enzyme inhibitor/angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor;
BB, evidence-based beta blocker; MRA, mineralocorticoid receptor antagonists; AUC, area under the
receiver operating characteristic curve; QRS, QRS complex; ICD, implantable cardioverter defibrillator; ML,
machine learning.
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Discussion/conclusions: We identified multiple predictors of prescribing for HFrEF
medications that are being used to strategically design interventions to address barriers
to prescribing and to inform further investigations. The machine learning approach used
in this study to identify predictors of suboptimal prescribing can also be used by other
health systems to identify and address locally relevant gaps and solutions to prescribing.
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1. Introduction

Most patients with HFrEF have significant gaps in the

prescribing of evidence-based medications (1–8). In the absence of

intolerance or contraindications, many barriers to prescribing these

medications have been described. Barriers include clinical inertia

and patient characteristics such as certain thresholds for vitals or

laboratory values, e.g., blood pressure and potassium (5, 8–11).

Given the large potential benefits of treatment (1–8), it is

critical to identify all factors associated with underprescribing.

Known barriers to HFrEF prescribing have been identified using

traditional quantitative and qualitative methods. However,

traditional quantitative methods require an a priori signal to

evaluate, while qualitative methods require clinician awareness of

factors that may influence their prescribing behaviors. These

traditional methods are also limited in their ability to

comprehensively consider the complexity of factors that can

dynamically influence prescribing, leaving the possibility of some

barriers being undiscovered. A comprehensive understanding of

the underpinnings driving underprescribing can lead to the

strategic design of interventions to address barriers (12).

Machine learning (ML) methods are a hypothesis-free means to

identify factors that influence prescribing for HFrEF when the

relationships between predictors and the outcome is unknown. ML

may offer advantages over traditional approaches when applied to

healthcare data, in particular mitigating the need to prespecify

variable relationships and handling complex interactions and

nonlinear variable effects (13–16). Applying such approaches to real-

world electronic health record (EHR) data also facilitates a pragmatic

evaluation of predictors in a real-world clinical context where such

interactions and nonlinear variable effects are important to account for.

In this single-center study, we used ML and regression-based

approaches to identify important predictors of prescribing

evidence-based medications for HFrEF that are routinely available

within the EHR. We compared penalized regression, decision trees,

and random forests for predicting prescribing of evidence-based

medications for HFrEF. For the best-performing model, we

ascertained the most important predictors of prescribing that could

then be used by the health system to design interventions or

inform areas in need of further investigation.
2. Materials and methods

2.1. Study population

This study was conducted at the UCHealth system, which

includes three large regional centers (North, Metro, and South)
02
comprised of 12 hospitals, 900 clinics, and over 6,000 physicians

who serve academic, rural, suburban, and community settings.

The entire system is serviced by a single instance of the Epic

EHR software program (Epic Systems, Verona, WI, United

States). We collected data on eligible patients from Health Data

Compass, our institutional enterprise data warehouse that

extracts, integrates, and delivers data from the EHR and medical/

medication claims data for patients within the UCHealth system.

This protocol was approved by the University of Colorado

Multiple Institutional Review Board using deidentified and

uniquely encoded datasets, with waiver of informed consent.

Patients included non-deceased adults (age ≥18 years) with

prevalent HFrEF documented at any patient visit within the

health system on or before December 11, 2018. HFrEF was

defined as a most recent ejection fraction value ≤40%. Patients
were excluded if they did not have at least one outpatient visit

with cardiology or primary care between December 11, 2016, and

December 11, 2018. These patients were excluded to maximize

representation of patients receiving longitudinal care at UCHealth.
2.2. Primary outcome

The outcomes of interest were four types of medications used

to treat HFrEF: angiotensin converting enzyme inhibitor/

angiotensin receptor blocker (ACE/ARB), angiotensin receptor-

neprilysin inhibitor (ARNI), evidence-based beta blocker (BB), or

mineralocorticoid receptor antagonists (MRA). Evidence-based

BBs included metoprolol succinate, bisoprolol, and carvedilol. A

patient was determined to be prescribed a given medication type

(yes/no) if at least one medication in that category was ordered

or dispensed between December 11, 2017, and December 11,

2019 (latest date of data available). The medication did not need

to be prescribed after a patient met eligibility criteria, given that

the medications of interest can be used for other indications.

This time period was chosen (1) due to limited access to

medication dispensing data [via SureScripts (17, 26) integration

with the EHR]; (2) to account for the possibility of prescribing a

medication with refills that would cover up to a 1-year supply on

or before December 11, 2018 (date of study eligibility); and (3)

to allow patients with a new diagnosis as of the study eligibility

date sufficient time to safely be initiated on the medications

(within 1-year post study eligibility). When dispensing data was

available through SureScripts, dispenses were evaluated to

account for medication orders initiated outside of the health

system’s EHR. A patient’s index date associated with a particular

medication category is defined as the most recent date that
frontiersin.org
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medication was prescribed on or before December 11, 2019. The

index date for those who were not prescribed a given medication

was defined as the most recent office visit on or before

December 11, 2019.
2.3. Clinical predictors

Candidate variables were determined by study investigators

representing advanced heart failure specialists, general

cardiology, electrophysiology, clinical pharmacy, and

epidemiology. A total of 126 candidate predictor variables were

selected based on availability in structured fields in the EHR

and because they are either generally recognized as barriers to

prescribing or were determined to be novel predictors to

explore. See Supplementary Appendix S1 for a detailed list of

candidate variables, which includes patient demographics, social

history, insurance type, vitals, diagnoses, procedures,

medications, and laboratory values. In some cases, missing

values were considered as candidate variables (e.g., missing

social security number). The number of unique medications

was defined based on 10-digit Generic Product Identifier (GPI)

codes that specify the active ingredient including the base

formulation. The timing of measuring candidate predictor

variables was based on the patient-specific index dates for each

medication type (not baseline date of study eligibility) and all

available data up to the index date. Baseline characteristics were

collected on or before December 11, 2018 (date of study

eligibility). Values for predictors that were outside of possible

physiologic ranges (e.g., ejection fraction of −99.6) were

considered to be erroneous and set to be missing.
FIGURE 1

Approach to selecting a predictive model and feature importance of candidat
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2.4. Statistical analysis

Patient characteristics were summarized overall and for each

medication type. Continuous variables were normalized prior to

inclusion in model training. Missing variables were imputed

using random forest imputation (18). Four separate analyses were

performed to identify top predictors associated with each of the

medication outcomes of interest. We trained and evaluated the

predictive performance of several predictive models, specifically

decision tree, random forest, and logistic regression with lasso,

ridge, and elastic net regularization (19–22). Figure 1 provides

an overview of the model-building and training process. We

performed a 100-fold Monte-Carlo cross-validation using an 80%

training and 20% test split. Hyperparameter optimization was

performed using a grid search within 5-fold cross-validation on

the training set. A manual grid optimization approach was used

to ensure that the grid contained the optimal hyperparameters

(e.g., if a hyperparameter value was identified on the upper end

of the grid range, the grid was expanded to ensure that the

overall optimal hyperparameter was not beyond the bounds of

the grid space). For outcomes with severe class imbalance (i.e.,

outcome prevalence of <10%), we oversampled the minority class

using the data augmentation method of synthetic minority

oversampling (23, 24) in the training set.

We compared the performance of the different predictive

models in the test data set. Predictive performance was primarily

assessed using area under the receiver operating characteristic

curve (AUC), which is a measure of discrimination (i.e., ability

to distinguish between high and low probability of prescribing).

We compared the differences between the AUCs from the

different methods using the DeLong test (25). We additionally
e variables.
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report the Brier score, which is a measure of overall performance

(26). In this framework, each feature is assigned an importance

value for each observation. Shapley Additive Explanation (SHAP)

values were reported for the best-performing predictive model to

identify the top predictors for prescribing each medication type

(27). The mean SHAP value across all observations indicates how

much each predictor contributes to the target variable and in

what direction. The purpose of developing an ML/regression

model is to identify the top predictors of prescribing that jointly

predict the outcome. This model is not developed for prospective

use for obtaining predictions in clinical practice. The process of

identifying the best-performing model based on predictive

performance was used to select a model from which to describe

the top predictors for prescribing used by that model. A similar

approach has been used in other settings to identify clinical

predictors of an outcome (28–30).

All analyses were performed in Python 3.7.5 using the packages

imblearn 0.0, numpy 1.18.1, pandas 1.1.2, scikit-learn 0.24.2,

researchpy 0.3.2, and shap 0.40.0.
3. Results

3.1. Patient characteristics

A total of 3,832 individuals met the inclusion criteria. The

median age of the population was 69 years, 30% were female,

and 87.7% were non-Hispanic. Table 1 describes the baseline

characteristics of these individuals overall and stratified by

medication type. Of these, 69.6% were prescribed an ACE/ARB,

7.5% an ARNI, 74.6% a BB, 39.7% an MRA, and 16.7% were

prescribed none of these medications.
3.2. Model performance

Table 2 presents the performance metrics of the different

models for each medication type.

The random forest was the best-performing model across all

medication categories: ACE/ARB (AUC = 0.791, Brier score =

0.158), ARNI (AUC = 0.821, Brier score = 0.063), evidence-based

BB (AUC = 0.797, Brier score = 0.140), and MRA (AUC = 0.788,

Brier score = 0.185). For each of the medication categories, by

Delong’s test, there were not statistically significant differences at

the 0.05 level between the AUCs for the random forest, elastic

net, lasso, and ridge regression methods, although the best-

performing models (random forests) consistently had

significantly higher AUCs than the decision trees.
3.3. Top features for predicting prescribing

Figure 2 illustrates the top 20 features of importance (limited

for visual clarity) for each medication outcome sorted by the

mean absolute SHAP value. See Supplementary Appendix S2 for

all features of importance for each of the medication outcomes.
Frontiers in Cardiovascular Medicine 04
3.4. Top predictors by medication outcome

Among the top 20 predictors for ACE/ARB prescribing were

higher values of potassium and estimated glomerular filtration

rate (eGFR) and lower values of serum creatinine and BUN. For

prescription of ARNI, some of the strongest predictors were

younger age and implantable cardioverter defibrillator (ICD).

Other predictors among the top 20 for ARNI included being in a

relationship (not single), absence of tobacco use, and no

diagnosis of chronic kidney disease (CKD), chronic obstructive

pulmonary disease (COPD), or hypotension. Among the top 20

predictors for evidence-based BB prescribing were lower values of

heart rate, systolic blood pressure, and glucose values. Among

the strongest predictors for MRA prescribing were younger age

and lower systolic blood pressure values. Other predictors among

the top 20 for MRA included lower values of diastolic blood

pressure and serum creatinine.
3.5. Top predictors across all medication
outcomes

Across all medication outcomes, prescribing of at least two of the

other three medication types of interest was consistent among the top

five predictors. All three other medications of interest (ACE/ARB,

evidence-based BB, and MRA) were among the top five predictors

for prescribing ARNI. Prescription of an ARNI was not among the

top 10 predictors of prescribing an ACE/ARB or MRA, nor among

the top 20 predictors of prescribing an evidence-based BB. For all

medication outcomes, prescription of a loop diuretic and a statin

were among the top 20 predictors. With the exception of evidence-

based BB, younger age was among the top 10 predictors for all

medication outcomes. Greater number of medications and lower

ejection fraction values were also among the top 20 predictors for

all medication outcomes, except ARNI.
4. Discussion

We applied ML methods to data readily available within most

EHRs to identify predictors of prescribing evidence-based

medications for HFrEF at our health system. We found that

several ML methods performed similarly well for predicting

prescribing of guideline-directed medical therapy (GDMT). From

the random forest models, we identified multiple predictors of

prescribing ACE/ARB, ARNI, evidence-based BB, and MRAs that

can be used to guide the development of targeted strategies to

improve prescribing for HFrEF and inform hypotheses for future

study. Our application of machine learning approaches and the

use of SHAP to identify predictors of prescribing are unique and

strengths of this study. By exploring the use of ML algorithms to

build predictive models for prescribing, we take advantage of

their ability to account for possible interactions, collinearity, and

nonlinear effects that commonly exist in complex healthcare data

(40–43). By using SHAP, a model-agnostic approach to identify
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Table 2 Performance metrics of the different models for each medication outcome of interest.

Outcome Modeling technique AUC (95% CI) Brier Score (95% CI)
ACE/ARB Decision tree 0.744 (0.714–0.748) 0.171 (0.170–0.173)

Random forest 0.791 (0.788–0.794) 0.158 (0.157–0.159)

Logistic regression: lasso 0.783 (0.780–0.786) 0.162 (0.161–0.163)

Logistic regression: ridge 0.780 (0.777–0.783) 0.163 (0.162–0.164)

Logistic regression: elastic net 0.782 (0.779–0.785) 0.162 (0.161–0.163)

ARNI Decision tree 0.788 (0.783–0.792) 0.146 (0.144–0.148)

Random forest 0.821 (0.816–0.826) 0.063 (0.063–0.064)

Logistic regression: lasso 0.820 (0.815–0.824) 0.155 (0.154–0.157)

Logistic regression: ridge 0.816 (0.811–0.821) 0.156 (0.154–0.157)

Logistic regression: elastic net 0.818 (0.813–0.823) 0.155 (0.153–0.156)

BB Decision tree 0.753 (0.749–0.756) 0.150 (0.149–0.151)

Random forest 0.797 (0.794–0.800) 0.140 (0.139–0.141)

Logistic regression: lasso 0.789 (0.786–0.793) 0.143 (0.142–0.144)

Logistic regression: ridge 0.789 (0.786–0.793) 0.143 (0.142–0.144)

Logistic regression: elastic net 0.790 (0.786–0.793) 0.143 (0.142–0.144)

MRA Decision tree 0.717 (0.713–0.720) 0.207 (0.206–0.209)

Random forest 0.788 (0.786–0.791) 0.185 (0.184–0.186)

Logistic regression: lasso 0.786 (0.783–0.789) 0.184 (0.182–0.185)

Logistic regression: ridge 0.784 (0.781–0.787) 0.184 (0.183–0.185)

Logistic regression: elastic net 0.785 (0.782–0.788) 0.184 (0.183–0.185)

AUC, area under the receiver operating characteristic curve; ACE/ARB, angiotensin converting enzyme inhibitor/angiotensin receptor blocker; ARNI, angiotensin receptor-

neprilysin inhibitor; BB, evidence-based beta blocker; MRA, mineralocorticoid receptor antagonists.

Performance metrics for the random forest models are in bold.
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feature importance, we were able to quantify the directionality and

importance of the relationship between the predictors and

medication outcomes. SHAP additionally has an implementation

to explain the modeling of local interaction and nonlinear

predictor effects (31, 32), which can be explored in future studies

to further investigate predictor behavior. Another strength of our

study is the use of real-world EHR data, in contrast to data

sources that are narrowly focused on a specific issue or setting or

that rely on data generated from tightly controlled clinical trials

(43, 33). We also included diverse social history data available

within EHRs (e.g., substance use, primary language, relationship

status), which facilitates the evaluation of more holistic factors

influencing prescribing decisions. The use of EHR data allowed

for evaluation of a large set of routinely collected data to detect

predictor variables. In this setting, we found that a penalized

logistic regression performed similarly to the best-performing ML

approach; however, our approach for model-building and model-

agnostic explanation allows for the evaluation of ML algorithms

that may have superior predictive performance when applied to

future explorations of complex EHR data. This model-building

approach to defining predictors of prescribing is actively being

used by our health system to strategically design interventions to

overcome barriers to evidence-based prescribing. As the context

and evidence change, this approach to using ML to define

predictors of prescribing can be repeated to identify new issues

and design corresponding solutions for them.

Some predictors of prescribing that we identified align with

findings from past studies, which serves to triangulate our

findings. For example, worse renal function is a well-known

barrier to prescribing ACE/ARB, ARNI, and MRA (34–36). In

our study, lower values of serum creatinine, which suggests better
Frontiers in Cardiovascular Medicine 07
renal function, was among the top 20 predictors of prescribing

for ACE/ARB and MRA. Although higher values of serum

creatinine was among the top 20 predictors for ARNI, the

absence of a CKD diagnosis was also one. Patients prescribed an

ARNI may have higher serum creatinine values within the range

of normal renal function. The finding of better renal function as

a predictor of prescribing confirms the presence of this

modifiable knowledge issue, for which our health system is

actively designing interventions, such as tailored clinical decision

support (CDS) tools and education to address.

Past studies also point to hyperkalemia or concerns of

precipitating hyperkalemia as common barriers to prescribing

ACE/ARB, ARNI, and MRA (37). Interestingly, in our study, the

absence of a hyperkalemia diagnosis was not among the top 20

predictors for prescribing these medications, but potassium

supplementation was for ACE/ARB, ARNI, and MRA.

Furthermore, higher values of serum potassium was a top

predictor for ACE/ARB. These discrepancies between our

findings and past studies may suggest that concerns related to

hyperkalemia are not as influential of a predictor after

accounting for the complex interacting effects of other key

predictors. Additional studies are needed to evaluate the

generalizability of this finding in other health systems. Based on

these findings, our health system is not currently prioritizing

resources to design interventions to address any modifiable

informational needs related to hyperkalemia.

Another common barrier to prescribing these medications are

concerns related to hypotension across all medications and

bradycardia for evidence-based BBs (38–40). This aligns well

with our findings of lower blood pressures and heart rates being

among the top predictors for prescribing evidence-based BBs
frontiersin.org
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FIGURE 2

Central illustration. Top 20 predictor variables from the random forests by medication outcome Random forest feature importance is defined by SHAP
values. Mean values are presented based on 100 cross-validation sampling estimates. With the exception of variables with “avg,” all variables are the values
most proximal (most recent) to the Index date of the medication outcome being prescribed. “Avg” indicates these variables represent the mean of the two
most recent values (most proximal to the index date). The albumin predictor variable is a binary indicator of availability of an albumin value at the time of
prescription. For continuous variables, red indicates lower values predict the outcome (e.g., lower heart rates predict 88 prescribing). For categorical
variables, red indicates that absence predicts the outcome (e.g., absence of a CKD diagnosis predicts ARNI prescribing). ARNI, angiotensin receptor-
neprilysin inhibitor.

Kim et al. 10.3389/fcvm.2023.1169574
(heart rate and blood pressure) and MRAs (blood pressure only).

However, blood pressure was not among the top predictors of

prescribing an ACE/ARB or ARNI. The absence of blood

pressure as a top predictor for ACE/ARB or ARNI may suggest

that clinicians are less concerned about hypotension with these

specific medications, but requires further investigation to

understand these findings within our health system and

externally. In the case of ACE/ARBs specifically, there is a large
Frontiers in Cardiovascular Medicine 08
therapeutic dose range and it is possible that the absence of

blood pressure as a predictor is because lower doses are

prescribed to these patients to mitigate clinician concerns.

There were also some notable findings when comparing

predictors of prescribing ARNI to the other medication

outcomes. We found that patients prescribed an ARNI were

more likely to be in a relationship (not single) and be

nontobacco users, which may suggest a stronger support system
frontiersin.org
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and choice of healthier lifestyle choices. A study conducted in

Sweden also found that patients in a relationship were more

likely to be prescribed ARNI (41). In our study, the absence of

CKD, COPD, and hypotension were among the top predictors,

while greater number of medications was not among the top

predictors (it was the 70th most important predictor; see

Supplementary Appendix B), which further supports the notion

that these patients were healthier. Younger age was also the third

strongest predictor of ARNI prescription. Other studies have also

associated younger age (41–44) and fewer comorbidities (43)

with ARNI prescription. Although we found the absence of a

CKD diagnosis was a predictor of ARNI, other studies report

conflicting findings regarding the association with CKD (42–44),

which may be related to differences in the types (inpatient,

outpatient, EHR, claims), volume, or variety of data used. At our

institution, we are continuing to explore these findings and any

potential solutions by conducting qualitative interviews.

The higher relative cost of ARNI (45) may, in part, explain

some of the predictors uniquely associated with ARNI

prescription in our study. Younger patients with greater support

systems who have historically made healthier lifestyle choices

(tobacco abstinence) may be more likely to choose to invest in

more expensive medications. It is also possible that there is

implicit or explicit clinician bias that results in clinicians being

more likely to selectively recommend an ARNI to this

demographic. Others have found that patients of higher

socioeconomic status are more likely to be prescribed an ARNI

(42). In our study, we did not find commercial insurance, race,

or ethnicity predictive of ARNI, but others have found that non-

Hispanic patients are more likely to be prescribed an ARNI (42).

Similar to other studies, patients prescribed an ARNI were

more likely to be prescribed other guideline-concordant therapies

(42–44); the three other evidence-based medications and an ICD

were some of the strongest predictors. Although not a new

finding (42–44), the fact that we were able to reproduce this

using ML, which more rigorously considers the complex

interactions of diverse variables, supports the validity of our

other findings. ARNIs are more likely to be prescribed by

cardiologists who are more focused on optimizing management

of HFrEF and who may be more familiar with the evidence and

comfortable applying it than other providers (42, 46).

This study does have several limitations. EHR data often do not

include some important variables, such as social determinants of

health or patient-reported outcomes, which are known to

influence patient care (42, 47). Our study also does not allow for

evaluation or interpretation of temporal relationships between

our predictor variables and medication outcomes. For example,

we were limited to dates of prescriptions and unable to identify

which medications a patient was taking or actively prescribed at

a specific point in time, which is an inherent limitation of EHR

data in nonintegrated health systems. As such, ACE/ARB as a

predictor of prescribing ARNI should be interpreted as

prescription of an ACE/ARB in the past year is associated with

prescribing ARNI. Furthermore, given the inherent limitations in

accurately measuring medication doses with EHR data, we did

not evaluate doses of target medications or duration of
Frontiers in Cardiovascular Medicine 09
medication use, but these are important areas for future inquiry.

We also did not exclude absolute contraindications to the

medication outcomes of interest; however, such contraindications

are infrequent, and thus, this is unlikely to have significant

impact our findings.

Although our model has not been validated in an external data

set, this approach is highly relevant for health systems seeking to

improve prescribing for this high risk population. Using this

approach in our health system, we identified salient predictors of

suboptimal prescribing that will be used to strategically design

tailored interventions to address barriers to prescribing evidence-

based medications for HFrEF, notably educational initiatives and

CDS embedded within the EHR. For some predictors, such as a

patient’s relationship status, qualitative evaluations are needed to

shed light on why these predictors influence prescribing before

tailored interventions can be implemented. Although not all

predictors can be tangibly addressed (relationship status), many

are modifiable (e.g., clinician misconceptions or knowledge gaps).

It is possible that through additional qualitative exploration, we

identify that certain predictors such as relationship status have

underlying drivers that are modifiable. Future research could also

explore subgroup analyses for certain patient groups to better

understand why they were not prescribed evidence-based

medications. Given the persistence of nonadherence to evidence-

based prescribing over time despite many concerted efforts to

close the gaps, reimagined and multimodal interventions may be

required to significantly move the needle. This study can assist in

identifying modifiable barriers (e.g., salient knowledge gaps or

misconceptions) to design targeted interventions for HFrEF.

Types of interventions may include traditional modes of

education to address knowledge gaps, direct to patient activation

strategies (18), or integration of emerging technologies and

artificial intelligence to translate evidence-based

recommendations into clinician workflows at the right time (48).

For example, perhaps patient-facing CDS tools delivered via EHR

patient portals in combination with clinician-facing CDS tools

and audit and feedback with peer-benchmarking are needed to

improve the representativeness of prescribing ARNIs to patients

of diverse backgrounds. In this example, CDS tools empower

patients and remind or guide clinicians, while clinicians are also

held accountable through social norming.
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