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Hypoxia-inducible factor
activation promotes osteogenic
transition of valve interstitial cells
and accelerates aortic valve
calcification in a mice model of
chronic kidney disease
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Introduction: Valve calcification (VC) is a widespread complication in chronic
kidney disease (CKD) patients. VC is an active process with the involvement of in
situ osteogenic transition of valve interstitial cells (VICs). VC is accompanied by
the activation of hypoxia inducible factor (HIF) pathway, but the role of HIF
activation in the calcification process remains undiscovered.
Methods and result: Using in vitro and in vivo approaches we addressed the role of
HIF activation in osteogenic transition of VICs and CKD-associated VC. Elevation
of osteogenic (Runx2, Sox9) and HIF activation markers (HIF-1α and HIF-2α) and
VC occurred in adenine-induced CKD mice. High phosphate (Pi) induced
upregulation of osteogenic (Runx2, alkaline-phosphatase, Sox9, osteocalcin) and
hypoxia markers (HIF-1α, HIF-2α, Glut-1), and calcification in VICs. Down-
regulation of HIF-1α and HIF-2α inhibited, whereas further activation of HIF
pathway by hypoxic exposure (1% O2) or hypoxia mimetics [desferrioxamine,
CoCl2, Daprodustat (DPD)] promoted Pi-induced calcification of VICs. Pi
augmented the formation of reactive oxygen species (ROS) and decreased
viability of VICs, whose effects were further exacerbated by hypoxia. N-acetyl
cysteine inhibited Pi-induced ROS production, cell death and calcification under
both normoxic and hypoxic conditions. DPD treatment corrected anemia but
promoted aortic VC in the CKD mice model.
Abbreviations

ALP, alkaline phosphatase; AR, alizarin red; BMP2, bone morphogenetic protein 2; CKD, chronic kidney
disease; Ctrl, control; DFO, Desferrioxamine; DMEM, Dublecco’s modified eagle medium; DMSO, dimethyl
sulphoxide; DPBS, Dulbecco’s phosphate-buffered saline; DPD, Daprodustat; ECM, extracellular matrix;
EPO, erythropoietin; ESAs, erythropoiesis-stimulating agents; FBS, fetal bovine serum; Glut-1, glucose
transporter 1; HIF, hypoxia inducible factor; H&E, hematoxylin eosin; NAC, N-acetyl cysteine; OCN,
osteocalcin; OD, optical density; OM, osteogenic medium; OPN, osteopontin; Pi, inorganic phosphate; ROS,
reactive oxygen species; Runx2, Runt-related transcription factor 2; VC, valve calcification; VICs, valve
interstitial cells; VSMCs, vascular smooth muscle cells.
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Discussion: HIF activation plays a fundamental role in Pi-induced osteogenic transition of
VICs and CKD-induced VC. The cellular mechanism involves stabilization of HIF-1α and
HIF-2α, increased ROS production and cell death. Targeting the HIF pathways may thus
be investigated as a therapeutic approach to attenuate aortic VC.

KEYWORDS

hypoxia, valve interstitial cell, osteogenic differentiation, valve calcification, hypoxia inducible factor,

chronic kidney disease, reactive oxygen species
1. Introduction

Vascular calcification and valvular heart disease are highly

prevalent in patients with chronic kidney disease (CKD). In

particular, the prevalence of valve calcification (VC) is eight

times higher in end stage renal disease patients undergoing

hemodialysis than in the general population (1). Aortic and

mitral valves are affected most frequently, and calcification of

both valves arises 10–20 years sooner in CKD patients compared

with subjects with normal kidney function (1–3).

Hyperphosphatemia is a critical etiopathogenic factor in CKD-

associated vascular and valvular calcification (4–6).

Heart valves are avascular, though metabolically active tissues,

composed of an outer monolayer of valve endothelial cells and

several internal layers of valve interstitial cells (VICs) (7). For a

long time VC was considered as a passive deposition of calcium-

phosphate which supposition was challenged by studies showing

the existence of osteoblast-like and osteoclast-like cells in human

aortic valve leaflets (8, 9). About 13% of aortic valves removed

during valve replacement surgery contain lamellar bone-like

organized structures (10).

Many lines of evidence suggest that VC is an actively regulated

process in which in situ phenotypic transition of VICs into

osteoblast-like cells and myofibroblasts occurs (8, 11, 12). Studies

indicated that excessive formation of reactive oxygen species

(ROS) play a crucial role in the initiation and progression of

these processes (13). The osteogenic transition of VICs is

characterized by elevated expression of osteogenic markers

including runt-related transcription factor 2 (Runx2), bone

morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP),

osteopontin (OPN) and osteocalcin (OCN) (14, 15). Importantly,

these osteogenic markers are found to be upregulated along with

increased ROS production in calcified human aortic valves (14–16).

Most of the healthy human heart valves are avascular, therefore

adequate nutrition and oxygenation of VICs are ensured via

diffusion from the circulating blood (17–19), [reviewed in (20)].

On the other hand, valve thickening compromise the diffusional

oxygen transfer, and additional blood supply is required to

support the needs of active metabolism of valve cells. In line of

this notion, a large body of evidence show the presence of

intrinsic neovasculature in thickened and stenotic valves (19, 21),

[reviewed in (20)]. Formation of neovessels is found to be

associated with increased expression of hypoxia inducible factor

(HIF) alpha subunits HIF-1α and HIF-2α (22, 23), activation of

the HIF pathway and upregulation of vascular endothelial growth

factor (20, 22, 24–28). Additionally, studies revealed that

neovessel density correlates with valve calcification (19–22, 24).
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Hypoxia and sustained HIF activation have been shown to

promote vascular smooth muscle cells (VSMCs) phenotype

switch towards osteoblast-like cells, and accelerate vascular

calcification (29–31). Therefore, in this work we have investigated

whether hypoxia and HIF signaling are actively participating in

osteogenic trans-differentiation of VICs and subsequent VC. We

choose the adenine and high phosphate-induced CKD model as

our in vivo approach and high inorganic phosphate (Pi)-induced

calcification of human VICs for the in vitro experiments.
2. Materials and methods

2.1. Materials

We purchased all the reagents from Sigma-Aldrich Co

(St. Louis, MO, USA) unless indicated otherwise.
2.2. Induction of CKD and DPD treatment in
mice

Mice were kept in plastic cages with standard beddings in

12-hour light—12 h dark cycles and unlimited access to food and

water. We performed the experiments with the approval of the

Institutional Ethics Committee of University of Debrecen under a

registration number of 10/2021/DEMÁB, and all procedures

conformed to the guidelines from Directive 2010/63/EU of the

European Parliament on the protection of animals used for

scientific purposes. Animal studies were reported in compliance

with the ARRIVE guidelines.

Ten male C57BL/6 mice (8–10 weeks old, n = 5/group) were

randomly divided into 2 groups: control (Ctrl) and CKD. CKD

was induced by an adenine-containing diet as described

previously (31, 32). In the first 6 weeks the mice received a diet

containing adenine (0.2%) and elevated phosphate (0.7%)

followed by adenine (0.2%) and high phosphate (1.8%) diet

(S8106-S075 and S8893-S006 respectively, Ssniff, Soest, Germany)

for 4 weeks.

In a separate experiment we tested the effect of the hypoxia

mimetic drug Daprodustat DPD (HY-17608, MedChemExpress,

NJ, USA) on calcification. To this end, 15 male C57BL/6 mice

(8–10 weeks old) were divided into 3 groups (Ctrl, CKD, CKD +

DPD, n = 5/group). DPD was suspended in 1% methylcellulose

and was administered orally at a dose of 15 mg/kg/day between

weeks 7 and 10 as described previously (31). The dose of DPD is

the minimal dose that corrects anemia in C57BL/6 mice which
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was chosen based on our previous study (31). We euthanized the

mice by CO2 inhalation at the end of the experiments, and

collected blood by cardiac puncture for analysis.
2.3. Laboratory analysis of renal function
and anemia in mice

Plasma phosphate, urea and creatinine levels were assessed

spectrophotometrically and by a kinetic assay respectively, on a

CobasR 6,000 device (Roche Diagnostics, Mannheim, Germany).

Hematology parameters were determined from citrate-

anticoagulated whole blood by a Siemens Advia-2120i analyzer

(Siemens, Tarrytown, NY, USA) with the use of 800 Mouse

C57BL program of Multi Species software.
2.4. Imaging and quantification of aortic
calcification

OsteoSenseTM dye (OsteoSense 680 EX and NEV10020EX;

PerkinElmer, MA, USA) was reconstituted in DPBS in a

concentration of 20 nmol/ml. We anesthetized the mice with

isoflurane inhalation and injected the dye in a dose of 2 nmol/

20 g body weight through the retro-orbital venous sinus. Imaging

was performed 24 h post-injection. We euthanized the mice with

CO2 inhalation, perfused with 5 ml of PBS, and analyzed the

isolated hearts ex vivo by an IVIS Spectrum In Vivo Imaging

System (PerkinElmer, MA, USA).
2.5. Histology and immunohistochemistry

After the OsteoSenseTM imaging, the isolated hearts were fixed

in 10% neutral buffered formalin and were embedded in paraffin

blocks and cut into 4–5 µm-thick cross-sections. Sections were

deparaffinized and rehydrated followed by von Kossa and

Alizarin Red stainings with standard procedures. All the sections

were counterstained with hematoxylin eosin. Von Kossa staining

was quantified by Image J software.
2.6. Cell culture and reagents

Human VICs (P10462, Innoprot, Bizkaia, Spain) were

maintained in Fibroblast Medium (P60108, Innoprot)

supplemented with 10% FBS (10270-106, Gibco, Grand Island,

NY, USA), sodium pyruvate, L-glutamine and antibiotic

antimycotic solution, according to the manufacturer’s protocol.

Cells were cultured at 37°C in a humidified atmosphere with 5%

CO2 content. We performed the experiments on VICs derived

from 3 different donors between passages 4 and 8.

To induce calcification we exposed VICs to an osteogenic

medium (OM) which was obtained by supplementing the growth

medium with inorganic phosphate (Pi in the form of NaH2PO4

and Na2HPO4, pH 7.4, 2.5 mmol/L, or as indicated) and Ca
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(CaCl2, 0.3 mmol/L). Both growth medium and OM were

changed in every other day throughout the experiments.
2.7. Hypoxic treatment

To provide hypoxic environment we placed the cells into a

modular incubator chamber (Billups-Rothenberg Inc, Del Mar,

CA, USA). We filled the chamber with a gas mixture of 1% O2,

5% CO2, and 94% of N2 (Linde, Dublin, Ireland) and applied a

continuous slow flow (0.1 L/min) of the gas throughout the

experiment. For normoxia, we used a gas mixture of 21% O2, 5%

CO2, and 74% of N2. In other experiments, we used hypoxia

mimetic drugs such as desferrioxamine (DFO, 40 μmol/L), CoCl2
(200 μmol/L) and DPD (20 µmol/L) or the HIF-1 inhibitor

chetomin (Tocris, Bristol, United Kingdom, 12 nmol/L).
2.8. Alizarin red staining and quantification

At the end of the experiment we washed the cells with PBS, and

fixed with 4% paraformaldehyde for 20 min. After rinsing with PBS

we stained the cells with Alizarin Red S solution (2%, pH 4.2) for

10 min at room temperature. Following this we applied several

washes with deionized water to remove unbound dye. After

taking pictures of the staining, we dissolved the dye in 100 µl of

100 mmol/L hexadecylpyridinium-chloride and determined

optical density at 560 nm. Experiments were repeated at least

three times minimum in triplicates.
2.9. Quantification of Ca deposition

VICs cultured in 96-well plates were washed with PBS and

decalcified with HCl for 30 min at room temperature. We

measured Ca content from HCl-containing supernatants with

QuantiChrom Calcium Assay kit (Gentaur, Kampenhout,

Belgium). To obtain protein concentration, we washed the cells

with PBS and lysed in a lysis buffer containing NaOH (0.1 mol/L)

and sodium dodecyl sulphate (0.1%). We determined protein

concentration with BCA protein assay kit (ThermoFisher,

Waltham, MA, USA) and nomalized Ca content of the cells to

protein content. Experiments were repeated at least three times in

triplicates.
2.10. Quantification of OCN

VICs were cultured in 6-well plates. After removing the

medium, we added 100 μl of EDTA (0.5 mol/L, pH 6.9) to the

wells. We quantified OCN content of the EDTA-solubilized

samples by an enzyme-linked immunosorbent assay (Bio-Techne

R&D Systems, Minneapolis, MN, USA). OCN content was

normalized to protein content and expressed as ng OCN/mg

protein. Experiments were repeated at least three times in

duplicates.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1168339
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 List of primary antibodies used in western blot.

Protein Company, catalog number Concentration
HIF-1α GeneTex (Irvine, CA, USA), GTX127309 1 µg/ml

HIF-2α Cell Signaling (Danvers, Massachusetts, USA),
#7096

3 µg/ml

Glut-1 GeneTex (Irvine, CA, USA), GTX15309 0.25 µg/ml

Runx2 Proteintech (Rosemont, IL, USA), 20700-1-AP 0.6 µg/ml

Sox9 Invitrogen (Carlsbad, CA, USA), PA5-81966 0.1 ug/ml

ALP Santa Cruz Biotech. Inc. (Dallas, TX, USA), sc-
365765

0.4 µg/ml
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2.11. Real-time qPCR

RNA was isolated from the hearts of the mice with Tri reagent

(Molecular Research Center, Cincinnati, OH, USA) according to

the manufacturer’s protocol. To prepare cDNA we used High

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Waltham, USA). The qPCR was carried out on a BioRad CFX96

Real-time System (Bio-Rad, Hercules, CA, USA) with the use of

iTaqTM Universal SYBR® Green Supermix (Bio-Rad) and

predesigned primers to detect mRNA levels of HIF-1α, HIF-2α,

Runx2 and Sox9 (Table 1). We used the comparative Ct method

to calculate the expression level of the transcripts, and mouse

HPRT was used for normalization as internal control.

Experiments were repeated at least three times in triplicates.
2.12. Western blot analysis

We lysed VICs in Laemmli lysis buffer and the cell lysate was

resolved by SDS-PAGE (7.5%–10%). Proteins were blotted onto

nitrocellulose membranes (Amersham, GE Healthcare, Chicago,

IL, USA). Western blotting was performed with the use of

primary antibodies listed in Table 2. Secondary antibodies—

horseradish peroxidase linked rabbit (NA-934) and mouse IgG

(NA-931) (Amersham)—were applied at a concentration of 0.5

µg/ml. Blots were developed with enhanced chemiluminescence

system Clarity Western ECL (BioRad, Hercules, CA, USA).

Chemiluminescent signals were either detected on an x-ray film

or with a C-Digit Blot Scanner (LI-COR Biosciences, Lincoln,

NE, USA). Following the development, all membranes were

stripped and re-probed for β-actin using anti-β-actin antibody at

a concentration of 0.5 µg/ml (sc-47778, Santa Cruz

Biotechnology Inc., Dallas, TX, USA). We used the inbuilt

software of the C-Digit Blot Scanner for quantification.

Experiments were repeated three times.
2.13. RNA silencing

We used Lipofectamine RNAiMAX reagent (Invitrogen,

Carlsbad, CA, USA) to transfect VICs with siRNA. We followed

the protocol that was provided by the manufacturer. The siRNA

for HIF-1α (AM16708, ID: 106498) and HIF-2α (AM16708, ID:

106446) and silencer negative control #1 (4390843) were

purchased from Invitrogen. To confirm the efficiency of silencing

we performed Western blot analysis. Experiments were repeated

at least three times.
TABLE 1 List of primers used in quantitative PCR.

Gene Forward
HIF-1α 5′-GTTGCCACTTCCCCACAATG-3’

HIF-2α 5′-TCGGACACATAAGCTCCTGT-3′

Runx2 5′-GCATCCTATCAGTTCCCAATG-3′

Sox9 5′-GCTCTACTCCACCTTCACTTAC-3′

HPRT 5′- TCCTCCTCAGACCGCTTTT-3′
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2.14. Intracellular ROS measurement

The level of ROS was measured with CM-H2DCFDA assay

(Life Technologies, Carlsbad, CA, USA). The cells were loaded

with the dye (10 μmol/L, 30 min), then washed thoroughly with

HBSS. After a 4-hour treatment the cells were washed with HBSS

and the fluorescence intensity was evaluated with the use of

488 nm excitation and 533 nm emission wavelengths. In some

experiments, we applied the ROS inhibitor N-acetyl cysteine

(NAC, 1 mmol/L) during the treatment. Experiments were

repeated at least three times in quadruplicates.
2.15. Determination of cell viability

We performed an MTT assay to measure cell viability. A

solution of 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium

bromide (0.5 mg/mL in HBSS) was incubated with the cells for

4 h. Following this, we removed the MTT solution and dissolved

the formazan crystals in 100 μl of DMSO. Using DMSO as a

blank, we measured optical density of the samples at 570 nm.

Experiments were repeated at least three times in quadruplicates.
2.16. Data analysis

We show all the results as mean ± SD. We used GraphPad

Prism software (version 8.01, San Diego, CA, USA) to perform

statistical analyses. Normality of distribution was assessed by

Shapiro-Wilk test. All data passed normality and equal variance

tests, therefore we used parametric tests to determine p values.

Two-tailed Student’s t-test (in case of two groups) and one-way

ANOVA followed by Tukey’s post hoc test (in case of more than

two groups) were used to determine statistically significant

differences between the groups. A value of p < 0.05 was

considered significant.
Reverse
5′-TTCACTGTCTAGACCACCGG-3′

5′-CCACAGCAATGAAACCCTCC-3′

5′-GAGGTGGTGGTGCATGGT-3′

5′-TGTGTGTAGACTGGTTGTTCC-3′

5′- CCTGGTTCATCATCGCTAATC-3′
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3. Results

3.1. Activation of osteogenic and hypoxia
signaling in heart of CKD mice and in valve
interstitial cells (VICs) exposed to high
phosphate

Cardiac VC is the main cause of cardiovascular disease and

mortality in CKD patients. We induced CKD in C57BL/6 mice

with a two-phase diet containing adenine (0.2%) and moderately

elevated phosphate (0.7%) in the first 6 weeks and adenine

(0.2%) and high phosphate (1.8%) in the following 4 weeks.

Control mice (Ctrl) received a standard mice diet with 0.3%

phosphate content (Figure 1A). The development of CKD was

associated with significant decrease in body weight (Figure 1B),

and increased urea, creatinine and phosphate levels in plasma
FIGURE 1

Activation of osteogenic and hypoxia signaling and calcification in the heart
(C) plasma urea, (D) plasma creatinine, (E) plasma phosphate levels in contro
Runx2, Sox9, HIF-1α and HIF-1α normalized to HPRT from heart tissue deri
field and macroscopic fluorescence reflectance imaging of calcification and
expressed as mean ± SD. Ordinary one-way ANOVA followed by Tukey’s m
0.01, ***p < 0.005, ****p < 0.001.
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(Figures 1C–E). To address whether CKD induces osteogenic

and hypoxia pathways, we determined mRNA levels of

osteogenic transcription factors Runx2 and Sox9 and hypoxia

markers HIF-1α and HIF-2α in the heart of Ctrl and CKD mice.

Both osteogenic and hypoxia markers were elevated in the heart

tissue of CKD mice in comparison to Ctrl (Figures 1F,G).

Furthermore, to evaluate osteogenic activity in mouse hearts we

performed OsteoSenseTM staining in Ctrl and CKD mice.

Fluorescent intensity of the heart tissue was higher in CKD mice

compared to Ctrl mice (4.21 × 108 vs. 6.99 × 108 p/s, p < 0.001,

Figure 1H).

Osteogenic trans-differentiation and extracellular matrix

(ECM) mineralization of VICs play a major role in the

development of cardiac VC. To set up an in vitro model of VC

we treated VICs with osteogenic medium (OM: growth medium

supplemented with 2.5 mmol/L Pi and 0.3 mmol/L Ca). In
of CKD mice. (A) Scheme of the experimental protocol. (B) Body weight,
l (Ctrl) and CKD mice (n= 5/group). (F,G) Relative mRNA expressions of
ved from Ctrl and CKD mice (n= 5, measured in triplicates). (H) Bright-
quantification in the heart of Ctrl and CKD mice (n= 5/group). Data are
ultiply comparison test was used to calculate p values. *p < 0.05, **p <
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response to OM we observed time-dependent upregulation of

Runx2 and Sox9, the master transcription factors regulating

osteogenesis and chondrogenesis respectively, as well as alkaline

phosphatase (ALP) (Figures 2A,B). OM triggered calcification of

VICs which was assessed by Alizarin Red staining and Ca

measurement from HCl-solubilized ECM (Figures 2C,D).

Furthermore, OM induced deposition of the Ca-binding protein

osteocalcin (OCN) in the ECM (Figure 2E). Along with these

responses, OM also triggered a hypoxia response in VICs,

characterized by elevated protein expression of HIF-1α, HIF-2α

and Glut-1 (Figures 2F,G).
3.2. Hypoxia signaling is involved in high
Pi-induced calcification of VICs

Recent works highlighted that hypoxia signaling is activated in

calcifying aorta and showed that hypoxia inducible factors (HIFs)

play a critical role in osteogenic differentiation of VSMCs (26–28).

To address whether hypoxia signaling is implicated in

osteogenic differentiation of VICs, we used siRNA to

downregulate protein expressions of HIF-1α and HIF-2α, the

regulatory subunits of the HIF complexes. Western blots revealed
FIGURE 2

Osteogenic stimulation induces osteogenic transdifferentiation, calcification a
Ctrl or osteogenic conditions (OM, 2.5 mmol/L excess Pi, 0.3 mmol/L excess
Western Blot from whole cell lysate (24, 48, 72 h). Membranes were re-probed
three independent experiments. (C) Calcium deposition in the ECM (day 5) eval
from 5 independent experiments. (D) Calcium content of the HCl-solubiliz
expression of HIF-1α and HIF-2α in whole cell lysates (24 h). Membranes
expression of HIF-1α and HIF-2α normalized to β-actin from 3 independent
Data are expressed as mean ± SD. Ordinary one-way ANOVA followed by Tu
**p < 0.01, ***p < 0.005, ****p < 0.001.
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that the gene silencing approaches were successful

(Supplementary Figures S1A,B). Knockdown of either HIF-1α

or HIF-2α was associated with decreased calcification of VICs as

assessed by Alizarin Red staining (Figures 3A,B) suggesting that

HIF pathways are not only activated upon osteogenic stimulation,

but they are actively participated in the calcification process.
3.3. Hypoxia enhances calcification of VICs
in a HIF-1α- and HIF-2α-dependent manner

After defining the crucial involvement of hypoxia signaling in

phosphate-induced calcification of VICs we asked whether

hypoxia influences OM-induced osteogenic differentiation and

calcification of VICs. First, we exposed VICs to normoxia (21%

O2) or hypoxia (1% O2) for 24 h and evaluated protein

expressions of HIF-1α, HIF-2α and Glut-1. As expected, hypoxia

triggered a hypoxia response in VICs characterized by elevated

protein expression of HIF-1α, HIF-2α and Glut-1 (Figure 4A).

Then we treated VICs with OM (2.5 mmol/L Pi, 0.3 mmol/L Ca)

under normoxic (21% O2) and hypoxic (1% O2) conditions for

24 and 48 h. Compared to control, OM slightly increased Runx2

and Sox9 expressions under normoxic condition after 48 h of
nd activation of hypoxia signaling in VICs. Confluent VICs were cultured in
Ca over Ctrl). (A,B) Runx2, ALP and Sox9 protein expressions detected by
for β-actin. Representative Western blots and densitometry analysis from

uated by AR staining. Representative image and quantification are depicted
ed ECM. (E) OCN level of EDTA-solubilized ECM (day 10). (F,G) Protein
were re-probed for β-actin. Representative Western blots and relative
experiments. (E,G) Representative AR staining (day 4) and quantification.
key’s multiply comparison test was used to calculate p values. *p < 0.05,
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FIGURE 3

HIF pathway is critically involved in osteogenic trans-differentiation of VICs. (A,B) Confluent VICs were cultured in control (Ctrl) or osteogenic conditions
(OM, 2.5 mmol/L excess Pi, 0.3 mmol/L excess Ca over Ctrl) in the presence of HIF-1α, HIF-2α or scrambled siRNA. Representative AR staining (day 4) and
quantification. Data are expressed as mean ± SD. Ordinary one-way ANOVA followed by Tukey’s multiply comparison test was used to calculate p values.
****p < 0.001.
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exposure (Figure 4B). On the other hand, hypoxia strongly

upregulated Runx2 expression even in the absence of OM

stimulation (Figure 4B). Osteogenic stimuli could not further

increase Runx2 expression under hypoxia (Figure 4B).

Compared to normoxia, Sox9 expression was elevated under

hypoxia at each condition (Figure 4B). These results suggest that

hypoxia may exaggerate osteogenic reprogramming of VICs.

Next, we addressed the effect of hypoxia on ECM calcification

in VICs. We induced VICs calcification with OM containing

calcium (0.3 mmol/L excess) and different amounts of excess Pi

(1.5; 2.0; 2.5 mmol/L) under normoxic and hypoxic conditions.

As revealed by Alizarin Red staining and calcium measurement,

hypoxia potentiated the pro-calcification effect of Pi at each

tested concentrations (Figures 4C,D). Then we investigated time-

dependency of VICs calcification under normoxic and hypoxic

conditions. Alizarin Red staining showed positivity after 2 days

of OM exposure under hypoxic condition, whereas calcification

became detectable only on day 6 under normoxia (Figure 4E).

Calcium measurement from HCl-solubilized ECM also supported

the finding that hypoxia potentiates and accelerates Pi-induced

calcification of VICs (Figure 4F).

To see whether HIF signaling was involved in hypoxia-induced

acceleration of VICs calcification, first we applied the HIF inhibitor

chetomin and investigated OM-induced calcification under
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hypoxic condition. As shown by Alizarin Red staining and

calcium measurement, chetomin inhibited calcification of VICs

(Figures 5A,B). Then we knocked-down HIF-1α, HIF-2α or both

with the use of target-specific siRNAs under hypoxia. Western

blots revealed that the gene silencing approaches were successful

(Supplementary Figures S1C,D). Silencing of either HIF-1α or

HIF-2α resulted in attenuation, whereas silencing of both HIF-α

subunits caused complete inhibition of hypoxia-induced

calcification (Figures 5C–E), supporting the involvement of HIF

signaling in hypoxia-induced VICs calcification.
3.4. The involvement of ROS in hypoxia-
mediated potentiation of VICs calcification

Recent evidence suggested a causative role for excess ROS-

mediated oxidative stress in the osteogenic differentiation of

VICs (13, 16). To explore whether unfettered production of ROS

is implicated in VICs calcification under hypoxia we measured

ROS production in control and OM-stimulated VICs under

normoxic and hypoxic conditions. Osteogenic stimulation

increased ROS production under normoxia (Figure 6A).

Compared to normoxia, hypoxia increased ROS production in

VICs in both control and OM conditions (Figure 6A). The
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FIGURE 4

Hypoxia enhances OM-induced calcification of VICs. (A) Confluent VICs were maintained under normoxic (Nor, 21% O2) or hypoxic (Hyp, 1% O2)
conditions. (A) HIF-1α, HIF-2α, Glut-1 and β-actin protein expressions detected by Western Blot from whole cell lysate (24 h). Representative Western
blots and densitometry analysis from three independent experiments. (B) Confluent VICs under normoxic (21% O2) or hypoxic (1% O2) conditions
were exposed to OM (2.5 mmol/L excess Pi, 0.3 mmol/L excess Ca over Ctrl). Runx2 and Sox9 protein expressions detected by Western Blot from
whole cell lysate (24, 48 h). Membranes were re-probed for β-actin. Representative Western blots and densitometry analysis from three independent
experiments. (C,D) Confluent VICs were exposed to OM with different Pi content (1.5–2.5 mmol/L excess over Ctrl) under normoxic (21% O2) and
hypoxic conditions (1% O2). (C) Representative AR staining (day 6) and quantification. (D) Calcium content of the HCl-solubilized ECM (day 6). (E,F)
Time course of calcium accumulation under normoxic and hypoxic conditions in the presence of OM. (E) Representative AR staining and
quantification. (F) Calcium content of the HCl-solubilized ECM. Data are expressed as mean ± SD. (A-D,F) Ordinary one-way ANOVA followed by
Tukey’s multiply comparison test was used to obtain p values. (E) Multiply t-tests to compare normoxia and hypoxia samples at each time points
were performed to obtain p values. *p < 0.05, **p < 0.01, ****p < 0.001.
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glutathione precursor, N-acetyl-cysteine (NAC) attenuated

excessive ROS production in all conditions (Figure 6A).

Apoptotic cell death and the release of apoptotic bodies is

an important calcification mechanism. Excess ROS production

can trigger cell death, therefore next we investigated cell viability

in control and OM-treated VICs under normoxia and hypoxia

after 4 days of exposure in the presence or absence of NAC.

Osteogenic stimulation triggered a decline in cell viability in

normoxia and even more cell death was observed in hypoxia

(Figure 6B). NAC prevented OM-induced cell death under

both normoxia and hypoxia (Figure 6B). Attenuation of

unfettered ROS production and cell death by NAC was

associated with complete inhibition of OM-induced VICs

calcification as revealed by Alizarin red staining and calcium

measurements (Figures 6C,D).
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3.5. Hypoxia mimetic drugs enhance VICs
calcification

Hypoxia mimetic drugs mimic the effect of real hypoxia

through the stabilization of HIFα subunits. We investigated three

different hypoxia mimetic drugs, cobalt-chloride (CoCl2),

desferrioxamine (DFO) and Daprodustat (DPD), to see whether

they influence Pi-induced VICs calcification under normoxic

condition. We treated VICs with CoCl2 (200 µmol/L), DFO

(40 µmol/L) or DPD (20 µmol/L) for 24 h and first we evaluated

protein expressions of HIF-1α and HIF-2α from whole cell lysate

(Figure 7A). Hypoxia mimetics increased both HIF-1α and HIF-

2α levels markedly in VICs.

Next, we investigated the effects of hypoxia mimetic drugs on

OM-induced calcification of VICs. We treated VICs with OM
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FIGURE 5

Hypoxia enhances OM-induced osteogenic trans-differentiation of VICs through HIF-1 signaling. (A,B) Confluent VICs were maintained in Ctrl or OM
(2.5 mmol/L excess Pi, 0.3 mmol/L excess Ca over Ctrl) conditions under hypoxia (1% O2) in the presence or absence of the HIF-1 inhibitor chetomin
(Chet, 12 nmol/L). (A) Representative AR staining (day 4) and quantification. (B) Calcium content of the HCl-solubilized ECM (day 4). (C–F) VICs were
kept under Ctrl or OM conditions in hypoxia (1% O2) in the presence of HIF-1α, HIF-2α or both, or scrambled siRNA. (C) Representative AR staining
(day 4) and quantification. (D) Calcium content of the HCl-solubilized ECM (day 4). (E) Representative AR staining (day 4) and quantification of HIF-1α,
HIF-2α double knocked-down cells. Data are expressed as mean ± SD. p values were calculated using one-way ANOVA followed by Tukey’s multiply
comparison analysis. ****p < 0.001.
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(0.3 mmol/L excess Ca, 2.5 mmol/L excess Pi) in the presence or

absence of CoCl2 (200 µmol/L), DFO (40 µmol/L) or DPD

(20 µmol/L). Alizarin Red staining and calcium measurement

were performed on day 5. We observed that all the three tested

hypoxia mimetic drugs enhanced OM-induced calcification in

VICs (Figures 7B,C). These results suggest that not only real

hypoxia but also chemical activation of the HIF pathways

enhances calcification of VICs.

Silencing of either HIF-1α or HIF-2α resulted in partial

inhibition of OM +DPD-induced calcification as assessed by

Alizarin Red staining (Figures 7D,E), pointing out the

contribution of HIF signaling to the promotion of VIC

calcification by DPD.
3.6. DPD enhances aortic VC in CKD mice

DPD is a hypoxia mimetic drug that is used to treat anemia in

CKD patients in Japan. After seeing that DPD enhances VICs

calcification in vitro we addressed its effect on VC in the

adenine-induced CKD model in male mice. Fifteen C57BL/6

mice (8–10 weeks old, male) were randomly assigned to 3
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groups, Ctrl, CKD, and CKD +DPD (Figure 8A). CKD was

induced with a diet containing adenine and elevated phosphate

(Figure 1A). After 6 weeks, these mice showed signs of

deteriorating kidney function characterized by elevated levels of

plasma urea, creatinine and phosphate levels (Supplementary

Figure S2). Then we increased phosphate content of the diet,

and started to administer DPD (15 mg/body weight kg/day

orally) in the next 4 weeks of the experiment (Figure 8A). At 10

weeks we terminated the experiment. At this time point, anemia

was developed in CKD mice, characterized by reduced Hb

concentration, decreased red blood cell count and low hematocrit

levels (Table 3). DPD efficiently corrected CKD-associated

anemia resulting in normalized Hb concentration, red blood cell

count and hematocrit levels, similar to the controls with normal

renal function (Table 3). Plasma urea, creatinine and phosphate

levels were similarly high in DPD- and vehicle-treated CKD mice

(Figures 8B,D). To address the effect of DPD on heart

calcification we performed OsteoSenseTM staining and detected

higher amount of hydroxyapatite deposition in the hearts derived

from DPD-treated CKD mice compared to vehicle-treated

CKD mice (2.35 × 109 ± 0.3 × 109 vs. 1.38 × 109 ± 0.17 × 109 p/s,

p < 0.05) (Figure 8E). Additionally, we performed histological
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FIGURE 6

ROS regulate calcification of VICs under both normoxia and hypoxia. (A–D) Confluent VICs were maintained under normoxia (21% O2) or hypoxia (1% O2)
in Ctrl or OM conditions in the presence or absence of NAC (1 mmol/L). (A) Intracellular ROS production in VICs after a 4-hour exposure. (B) Cell viability
assessed by MTT assay after 4 days of exposure. (C) Representative AR staining (day 4) and quantification. (B) Calcium content of the HCl-solubilized ECM
(day 4). Data are expressed as mean ± SD. Ordinary one-way ANOVA followed by Tukey’s multiply comparison test was used to obtain p values. *p < 0.05,
**p < 0.01, ***p < 0.005, ****p < 0.001.
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analysis of hearts derived from Ctrl, CKD and CKD +DPD mice to

detect VC. We found stronger von Kossa and alizarin red staining

in heart valves of CKD +DPD mice compared to CKD, whereas no

calcification was detectable in the heart of Ctrl mice (Figure 8F).

These results suggest that DPD—at the dose that is efficient to

correct CKD-associated anemia -, can accelerate VC in male

mice with CKD.
4. Discussion

Our study is the first demonstration that HIF-1 activation is

critically implicated in phosphate-induced calcification of VICs.

We found elevation of osteogenic markers along with hypoxia

markers in the heart tissue of adenine-induced CKD mice, as

well as high phosphate-treated VICs. Knock-down of HIF-1α or

HIF-2α resulted attenuation of phosphate-induced calcification of

VICs, suggesting a causative role of HIF-1 pathway activation in

this process. Further activation of the HIF-1 pathway by either

hypoxia or hypoxia mimetics intensified high-phosphate induced

calcification of VICs in a HIF-1α, HIF-2α and ROS-dependent

manner. The hypoxia mimetic drug DPD increased osteogenic
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activity in the heart tissue and intensified aortic valve

calcification in adenine-induced male CKD mice.

Previous studies showed that HIF-1α along with vascular

endothelial growth factor is upregulated in stenotic valves and

co-localize with areas of angiogenesis and calcification (20, 22,

24–28). Moreover, neovessel density positively correlates with the

extent of valve calcification (19–22, 24). A recent integrated

proteomic and metabolomic profile analyses of cardiac valves

identified HIF-1 signaling as a key pathway in calcific aortic

valve disease (33).

Previous works linked HIF-1 activation and valve calcification.

For example, non-hypoxic activation of HIF-1α has been shown to

play a causative role in lipopolysaccharide and interferon gamma-

induced calcification of VICs (34). In a recent work,

down-regulation of the HIF1-α pathway was found to be

responsible for the anti-calcification effect of atractylenolide-1

(35). Similarly to our result (Figure 2), upregulation of HIF-1α

by high phosphate has been reported in VICs in connection with

ferroptosis (36). Our study provided evidence that HIF-1α and

HIF-2α are not only upregulated but taking a regulatory part in

the calcification process of VICs (Figure 3). In agreement with

our results, the critical involvement of HIF-1α activation in
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FIGURE 7

Hypoxia mimetic drugs augment OM-induced calcification of VICs. (A–C) Confluent VICs maintained in OM (2.5 mmol/L excess Pi, 0.3 mmol/L excess
Ca) were treated with hypoxia mimetic drugs CoCl2 (CC, 200 µmol/L), desferrioxamine (DFO, 40 µmol/L) and Daprodustat (DPD, 20 µmol/L). (A) Protein
expressions of HIF-1α and HIF-2α were detected by Western Blot in whole cell lysates (24 h). Membranes were re-probed for β-actin. Representative
Western blots and densitometry analysis from three independent experiments. (B) Representative AR staining (day 5) and quantification. (C) Calcium
content of the HCl-solubilized ECM (day 5). (D,E) VICs were kept under Ctrl or OM+DPD conditions in the presence of HIF-1α or HIF-2α or
scrambled siRNA. Representative AR staining (day 4) and quantification. Data are expressed as mean ± SD. Ordinary one-way ANOVA followed by
Tukey’s multiply comparison test was used to obtain p values. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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high-phosphate-induced calcification of VSMCs has been

reported (30).

Tissue hypoxia is implicated in the pathomechanism of many

human diseases including kidney disease (37, 38). Hypoxia

accelerates the progression of CKD via promoting fibrogenesis of

renal fibroblasts, and triggering epithelial-mesenchymal

transformation of renal tubular cells (39, 40). Due to CKD-

associated anemia and damage of the microvasculature, tissue

hypoxia in CKD is not limited to kidney but affects other organs

as well (41, 42). In line of this notion, here we showed increased

mRNA and protein expression of HIF-1α and HIF-2α in heart

derived from CKD mice (Figure 1).
Frontiers in Cardiovascular Medicine 11
Surprisingly, despite the growing evidence that VICs are

exposed to hypoxia in certain disease conditions the effect of

hypoxia on VICs remained mostly undiscovered. Recent studies

showed that hypoxia regulates extracellular matrix secretion and

induces pathological extracellular remodeling of VICs (43, 44).

Additionally, Kanno et al. showed upregulation of several

mesenchymal and hematopoietic progenitor markers in VICs

under hypoxic (2% O2) culture conditions, and connected

stemness of hypoxic VICs with increased potential towards

osteogenic differentiation (45).

The effect of hypoxia on osteogenic differentiation potential

was studied on diverse cells. Similarly to our results presented
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FIGURE 8

DPD increases aortic VC in mice with CKD. (A) Scheme of the experimental protocol. (B) Plasma urea, (C) creatinine, (D) phosphate levels (n= 5/group).
(E) Bright-field and macroscopic fluorescence reflectance imaging of calcification and quantification in the heart of Ctrl, CKD and CKD+DPD mice
(n= 5/group). (F) Histological analysis of heart valves obtained from Ctrl, CKD, and CKD +DPD mice. Representative H&E, von Kossa-stained and
alizarin red-stained heart sections and quantification of von Kossa staining. Scalebar: 100 µm. Data are expressed as mean ± SD. Ordinary one-way
ANOVA followed by Tukey’s multiply comparison test was used to obtain p values. **p < 0.01, ***p < 0.005, ****p < 0.001.

TABLE 3 Hematology parameters.

Hematology parameter Control CKD CKD + DPD p value p value

Ctrl vs CKD CKD vs. CKD + DPD
Hemoglobin (g/L) 117.4 ± 3.6 80.2 ± 8.9 119.2 ± 3.3 0.000012 0.0000077

Red blood cell count (T/L) 8.014 ± 0.15 6.044 ± 0.561 8.046 ± 0.29 0.000032 0.000052

Hematocrit 0.439 ± 0.017 0.301 ± 0.031 0.432 ± 0.014 0.000012 0.000013
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here (Figures 4,5), hypoxia promoted osteogenic differentiation of

VSMCs, multipotent human mesenchymal stromal cells and

periosteal cells (30, 46, 47). In contrast, hypoxia has been

reported to decrease the expression of osteogenic markers in

MG63 osteoblast-like cells (48). According to another study,

hypoxia does not influence osteogenic differentiation of primary

osteoblasts and mesenchymal precursors, but quick exposure to

anoxia inhibits bone nodule formation and calcification through
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the downregulation of Runx2 (49). Overall, these results suggest

that the effect of hypoxia on osteogenic differentiation is finely

regulated and cell specific, in which responses the differences in

Runx2 promoter activity in osseous and non-osseous cells might

play a role (50).

Exacerbated ROS production plays an important causative role

in vascular calcification and in the pathophysiology of calcific

aortic valve disease (13, 51). Increased ROS production was
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1168339
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Csiki et al. 10.3389/fcvm.2023.1168339
detected in aortic valve tissue from patients with pathological

heart valve dysfunctions in comparison with transplant-derived

control tissues (52). The relation between hypoxia and ROS

production is controversial, but a majority of the evidence

suggests that hypoxia stimulates ROS formation in most types of

mammalian cells (53). Hypoxia impairs the function of the

mitochondrial electron transport chain complexes leading to

increased ROS signals that play critical role in initiating hypoxia

response in diverse cell types (54–56). Additionally, a study on

pulmonary artery smooth muscle cells revealed that hypoxia-

induced mitochondrial ROS activates NADPH oxidases which

provides a positive feedback loop of exacerbated ROS formation

upon hypoxia (57). Our results revealed that hypoxia increases

ROS formation in VICs. Phosphate-induced calcification of

VICs was abrogated by the glutathione-precursor NAC under

both hypoxic and normoxic conditions, suggesting a causative

role of ROS in the phosphate-induced calcification process

(Figure 6).

Activation of the HIF pathways takes place through

stabilization of the HIF α subunits. Normally, HIF α subunits are

hydroxylated at specific proline residues by prolyl hydroxylase

domain proteins (PHDs) and eliminated via the ubiquitin-

proteasome degradation pathway (58). Here we showed that non-

hypoxic activation of the HIF pathway by PHD inhibitors, cobalt

chloride, DFO, and DPD promoted OM-induced calcification of

VICs under normoxic condition (Figure 7). In agreement with

this result we and others previously showed enhancement of Pi-

induced calcification by DPD and Roxadustat in VSMCs under

normoxic conditions (31, 59).

CKD is frequently associated with other chronic diseases such

as anemia (60). Anemia of patients with advanced CKD was treated

with recombinant erythropoietin or erythropoiesis-stimulating

agents (ESAs) (61). Unfortunately, safety concerns of ESAs’ use

have lately been emerged, because studies showed that ESAs

increase the risks for major cardiovascular events and accelerate

disease progression (61–64).

In this study we used DPD to investigate the effect of HIF-1

pathway activation on valve calcification in the adenine-induced

CKD model. The basis of our choice of the experimental model

was that DPD is a new-generation drug and approved in Japan

since 2020 for the treatment of patients with CKD-associated

anemia (65, 66). Here we showed that DPD corrected anemia,

but promoted CKD-induced aortic VC in vivo (Figure 8).

Previously we found similar effect of DPD on aorta calcification

(31). Although the clinical relevance of this model is clear, the

conclusions are limited to DPD-driven HIF-1 activation.

Therefore further studies are needed to investigate the effect of

functional hypoxia and other hypoxia mimetic drugs on vascular

and aortic valve calcification.

Besides that, our study has further limitations. In our in vitro

model we used VICs derived from healthy donors and as we do

not have access to diseased human valves we could not compare

the responses of healthy and calcifying VICs. Additionally, we

were not able to obtain VICs from the heart of CKD mice or

perform more complete histological analysis of hypoxia response

due to the limitation of tissue samples.
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Recent phase 3 trials compared the effect of DPD and an

injectable ESA in anemic (Hb: 8.0–11.5 g/dl) dialyzed and non-

dialyzed patients with CKD (67, 68). These two trials concluded

that DPD was non-inferior to ESA with respect to the increase in

the Hb level from baseline in both dialysis-dependent and

dialysis-independent CKD patients (67, 68). Additionally, they

found that the percentages of patients with adverse

cardiovascular events were similar in the DPD and ESA groups

among CKD patients regardless of dialysis status (67, 68).

In conclusion, here we showed that hypoxic or

pharmacological activation of the HIF pathway accelerates

phosphate-induced calcification of VICs, in a HIF-1α, HIF-2α

and ROS-dependent manner. The new generation PHD inhibitor

DPD increased aortic VC in vivo in the adenine-induced murine

model of CKD with high plasma phosphate level. Further studies

are needed to investigate the potential involvement of this

mechanism to the occurrence of major cardiovascular events

which was reported to happen in 25.2% of hemodialysis-

dependent CKD patients on DPD treatment during a 2.5-year

follow-up period, and in 19.5% of non-dialyzed CKD patients on

DPD treatment during a 1.9-year follow-up period (67, 68).
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