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Background: Although coronary computed tomography angiography (CCTA) is
currently utilized as the frontline test to accurately diagnose coronary artery
disease (CAD) in clinical practice, there are still debates regarding its use as a
screening tool for the asymptomatic population. Using deep learning (DL), we
sought to develop a prediction model for significant coronary artery stenosis on
CCTA and identify the individuals who would benefit from undergoing CCTA
among apparently healthy asymptomatic adults.
Methods: We retrospectively reviewed 11,180 individuals who underwent CCTA as
part of routine health check-ups between 2012 and 2019. The main outcome was
the presence of coronary artery stenosis of ≥70% on CCTA. We developed a
prediction model using machine learning (ML), including DL. Its performance
was compared with pretest probabilities, including the pooled cohort equation
(PCE), CAD consortium, and updated Diamond-Forrester (UDF) scores.
Results: In the cohort of 11,180 apparently healthy asymptomatic individuals
(mean age 56.1 years; men 69.8%), 516 (4.6%) presented with significant
coronary artery stenosis on CCTA. Among the ML methods employed, a neural
network with multi-task learning (19 selected features), one of the DL methods,
was selected due to its superior performance, with an area under the curve
(AUC) of 0.782 and a high diagnostic accuracy of 71.6%. Our DL-based model
demonstrated a better prediction than the PCE (AUC, 0.719), CAD consortium
score (AUC, 0.696), and UDF score (AUC, 0.705). Age, sex, HbA1c, and HDL
cholesterol were highly ranked features. Personal education and monthly
income levels were also included as important features of the model.
Conclusion: We successfully developed the neural network with multi-task
learning for the detection of CCTA-derived stenosis of ≥70% in asymptomatic
populations. Our findings suggest that this model may provide more precise
indications for the use of CCTA as a screening tool to identify individuals at a
higher risk, even in asymptomatic populations, in clinical practice.
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1. Introduction

Coronary heart disease (CHD) is a leading cause of morbidity

and mortality worldwide, contributing to one-third of global deaths

(1, 2). Since the treatment of CHD causes a considerable medical

and socioeconomic burden, recent clinical interests have been

focused on risk stratification, early detection, and prevention of

the disease (3, 4). Although traditional risk classification tools,

such as Pooled Cohort Equation (PCE) or Systemic Coronary

Risk Estimation, have been a priority to estimate the risk of

CHD (3, 4), these are imprecise and less practical, and may

result in unnecessary long-term therapies or loss of opportunity

for timely management (5). Recently, coronary computed

tomography angiography (CCTA) has emerged as the frontline

test to noninvasively evaluate CHD, providing excellent

diagnostic accuracy and prognostic implication (6, 7). The

SCOT-HEART investigators demonstrated that CCTA-guided

preventive therapy could bring a significant reduction in

cardiovascular death or nonfatal myocardial infarction in patients

with stable chest pain (7). Indeed, the advent of CCTA can bring

a paradigm shift in this field (8). On the other hand, there is still

debate in the screening of CHD using CCTA among apparently

healthy asymptomatic populations, because of unclear superiority

to traditional approach and lack of cost-effectiveness (4, 9). Data

from large-scale cohorts consistently reported that the prevalence

of occult coronary atherosclerosis was not negligible in the

asymptomatic populations, with approximately 5% of them

having significant stenosis (10, 11). In addition, as the prognostic

value of CCTA was well validated in this population (12, 13),

some experts state that CCTA has the potential as a good

screening tool for asymptomatic individuals (9, 14). Considering

the expansion of indications for CCTA in clinical practice, it is

required to identify which patient would be beneficial from CCTA.

The development of deep learning (DL) has recently achieved

professional-level performance in various clinical data analyses,

such as medical imaging and electronic health records, and has

attracted much attention in the field of medical diagnosis (15–17).

As DL models consist of a large number of parameters compared

to statistical methods, this complexity enables the ability to express

complex correlations between variables and provide meaningful

insights for better medical decision-making. In particular, DL

methods have been increasingly applied in medical imaging

interpretation with reliable results (18, 19), and also in prediction

model development (17). Hence, we sought to develop a DL-based

risk prediction model for coronary artery stenosis on CCTA in

apparently healthy asymptomatic adults and identify the

beneficiaries for introducing CCTA as a screening tool.
2. Materials and methods

2.1. Study population and dataset
composition

A total of 11,753 medical records were retrospectively collected

from individuals who underwent CCTA for the purpose of health
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check-ups at the Healthcare System Gangnam Centre, Seoul

National University Hospital, between January 2012 and December

2019. The individuals chose to undergo the examinations for

health status evaluation of their own will. If an individual had

symptoms, he/she was recommended to visit the corresponding

outpatient clinic rather than a health check-up. Clinical and

laboratory information of the study participants were retrieved

from their examination results, which were performed on the same

day as the CCTA. Individuals with prior coronary revascularization

(n = 150) and those without appropriate clinical information (n =

423) were excluded from the analysis. Finally, we established an

entire dataset of 11,180 cases. We split the dataset into two subsets

to develop and validate the model. Specifically, we used 9,578

records (85.7%) collected between 2012 and 2018 as a training set

and the remaining 1,602 data (14.3%) collected in 2019 as a test

set for model evaluation (Figure 1). The study protocol conformed

to the ethical guidelines of the Declaration of Helsinki and was

approved by the Institutional Review Board of Seoul National

University Hospital (IRB No. H-2004-117-1118). Owing to the

retrospective nature of the study, the board waived the

requirement for written informed consent.
2.2. CCTA image acquisition and analysis

CCTA image acquisition, post-processing, and interpretation

were performed according to the guidelines of the Society of

Cardiovascular Computed Tomography (20). A 256-detector row

scanner (Brilliance iCT 256; Philips Medical Systems Inc.,

Cleveland, OH, USA) was used to acquire the images with proper

quality using either a retrospectively electrocardiography (ECG)-

gated or prospectively ECG-triggered protocol, as appropriate. Two

level III-equivalent experienced radiologists, who were blinded to

the clinical data, assessed, and interpreted all CCTA images. The

coronary artery calcium score was measured quantitatively by the

sum of the area of coronary calcification using the Agatston scoring

system (in units) (21). A coronary atherosclerotic plaque was

evaluated in all coronary artery segments with a diameter of

≥2 mm and defined as any distinguishable lesion of >1 mm2 within

or adjacent to the coronary arterial lumen in at least two

independent image planes. The presence, location, and severity of

coronary atherosclerotic plaques were evaluated at per-segment and

per-patient levels using the modified 15-segment criteria (22).

The presence of obstructive CHD was the main outcome of this

study, which was defined as the detection of significant coronary

artery stenosis having ≥70% maximal diameter stenosis in any of

the four major coronary arteries on CCTA. The severity of

maximal coronary stenosis was quantified by visual estimation,

with an agreement between two independent radiologists.
2.3. Coronary artery stenosis prediction
model development

The dataset consists of 11,180 individuals’ medical records

including 73 variables. The model development comprised of
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FIGURE 1

Schematic flowchart of the study population. AUC, area under the curve; ROC, receiver operating characteristic; SHAP, SHapley Additive ExPlanations.
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three steps: (1) data pre-processing, (2) model training and

evaluation, and (3) feature importance analysis. The overall

process is illustrated in Figure 1, and the key components of this

study are presented in Figure 2.
2.3.1. Data pre-processing
The raw format of each record is composed of categorical and

numerical variables of different scales with some missing values.

The rates of missing values are varied according to the variable

types. Every missing value was imputed by the average value of

its variable type. To handle with heterogeneous variables,

min-max normalization was applied to several categorical

variables, and Gaussian normalization was applied to the rest of

numerical variables. For several types of numerical variables

including age, systolic blood pressure (BP), diastolic BP were

discretized using known criteria before normalization The

stenosis values (%) were discretized into four categories as

follows: diameter stenosis of <30%, 30%–50%, 50%–70%,

and ≥70%.
Frontiers in Cardiovascular Medicine 03
2.3.2. Model training and evaluation
It is well-known that the effect of each variable on stenosis

varies. In addition, using all variables in model training may

decrease generalization ability, and is not computationally

efficient. For these reasons, a stepwise forward/backward feature

selection method was used to select more significant variables for

stenosis prediction modelling. The final 19 input variables were

determined as the sum of 15 variables collected from the feature

selection method (Supplementary Table S1) and additional 4

variables known to be clinically important [body mass index

(BMI), smoking, hypertension, and diabetes].The feature

selection was performed on 12 different randomly split train/

validation sets using different random seeds. The feature

selection criterion was based on the area under the curve (AUC)

calculated from the receiver operating characteristic (ROC) curve

of the validation set.

We utilized the DL model to predict the CCTA class based on

input features. Our neural network model comprised of two

parts. The first part included two locally connected layers

among the predefined input variable groups based on prior
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FIGURE 2

Schematic diagram for the prediction model development. This is a schematic diagram of a newly developed DL-based prediction model for significant
coronary artery stenosis on CCTA in 11,180 asymptomatic populations who underwent a routine health check-up. Using various parameters that
physicians can readily access in clinical practice, the DL-based model could provide more precise indications of CCTA for the purpose of screening.
CCTA, coronary computed tomography angiography; CHD, coronary heart disease; DL, deep learning.
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clinical knowledge, and the second part consisted of two fully

connected layers with 512 dimensions. The model’s

performance was evaluated based on its ability to classify

significant coronary artery stenosis with a threshold of 70%,

which was clinically defined as obstructive CHD (23). The

models were trained in 2 different settings. The first was a

multi-class classification task, where the model directly

predicted the class among four categories of diameter stenosis.

The second setting involved rearranging the single multiclass

classification task into three binary classifications based on the

criteria of 30%, 50%, and 70%, which is multi-task learning.

The initial learning rate was set to 0.05 and implemented step-

wise decay. The activation function used in the model is

sigmoid linear unit. We did not use any regularization method

in the model.

Currently, to the best of our knowledge, there was no reliable

risk prediction model of coronary artery stenosis in apparently

healthy asymptomatic populations. Therefore, the model

performance was compared with three established clinical scoring

systems: coronary artery disease (CAD) consortium scores (24)

and the updated Diamond-Forrester (UDF) method (25) as

estimates for the pretest probability of obstructive CAD in

patients with chest pain and PCE as a well-known tool to

estimate the 10-year risk of the clinically relevant endpoint of

atherosclerotic cardiovascular disease (26).
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Additionally, we implemented conventional machine learning

models, including linear regression, random forest, and eXtreme

Gradient Boosting (XGBoost), as comparison targets to verify the

prediction performance of our neural network model.

2.3.3. Feature importance analysis
Interpreting the reasons behind the model’s decision is crucial,

especially for clinical purposes. To enhance the interpretability of

the model predictions, we adopted the SHapley Additive

ExPlanations (SHAP) (27) analysis after the model training. It

enables the deep neural network to be interpretable, providing

each variable’s contribution to the model decision. Based on the

obtained SHAP values, the relative significance of each variable

to the prediction target was identified.
2.4. Clinical and laboratory evaluation

Clinical and laboratory data were collected, as published

previously (28). Anthropometric measurements were taken by a

trained nurse on the day of the health examination. BMI was

calculated as weight divided by height in meters (kg/m2), and

waist circumference (WC) was measured at the midpoint

between the lower costal margin and iliac crest. BP and heart

rate were taken as average values after 2 measurements using an
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automated BP monitor with at least 5-min interval in a seated

position. To collect information on smoking, alcohol intake,

education, monthly income, and personal and family medical

histories, a self-reported questionnaire was used. Laboratory data

included white blood cell (WBC) count, hemoglobin, serum total

cholesterol, high-density lipoprotein (HDL) cholesterol, fasting

glucose, glycated hemoglobin (HbA1c), serum albumin, estimated

glomerular filtration rate (eGFR), and urine albumin to

creatinine ratio levels. An automatic analyzer at the Department

of Laboratory Medicine at Seoul National University Hospital

(Toshiba 200 FR autoanalyzer; Toshiba, Tokyo, Japan) was used

to analyze all laboratory tests.
2.5. Statistical analysis

Continuous variables are described as mean ± standard

deviation or median (interquartile range) and categorical

variables as numbers (%). To compare the differences in baseline

characteristics between the study groups, Student’s t-test was

performed for continuous variables, and Pearson’s chi-square test

was applied for categorical variables as required. ROC curves

were plotted to identify the predictive power of ML-based

models, including our newly developed neural network model,

and the comparative scoring systems. The AUC value from each

curve was calculated and compared using Bootstrap method with

200 subsampling (29). All statistical analyses were performed

using the python, numpy, pandas, and seaborn package of

version 3.9, 1.22.3, 1.3.3, and 0.11.2, respectively. A value of two-

sided p < 0.05 was considered statistically significant.
3. Results

3.1. Baseline characteristics of the study
population

A total of 11,180 cases (mean age, 56.1 years; men 69.8%) were

enrolled in this study. The mean BMI and WC were 24.4 kg/m2

and 87.5 cm, respectively; approximately 37.6% of the study

population was considered obese. On the examination day,

systolic and diastolic BP were averaged as 119.7 and 78.5 mmHg,

respectively. Conventional cardiovascular risk factors, including

hypertension, diabetes, dyslipidemia, and current smoking, were

found in 24.8%, 8.5%, 17.3%, and 19.1% of the total subjects,

respectively. Approximately one-fifth (21.6%) of the study

participants had a family history of premature cardiovascular

disease, and 1,341 (12.0%) and 1,933 (17.3%) of them were on

anti-platelet agents and statins treatment, respectively. In terms

of socioeconomic status, university graduates or higher accounted

for 74.0%, and half of the total subjects earned US$8,000 or

more per month. The mean values of fasting glucose and HbA1c

were 104.9 mg/dl and 5.8%, respectively. Lipid profiles were as

follows: total cholesterol 192.5 mg/dl, HDL cholesterol 52.9 mg/

dl, LDL cholesterol 115.5 mg/dl, and triglycerides 106.0 mg/dl

(median). Subjects in the training set were likely to be older;
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current smokers; have more comorbidities including

hypertension, diabetes, and dyslipidemia; and more educated

with higher income than those in the test set. The detailed

baseline characteristics of the analyzed cases are presented in

Table 1.
3.2. Feature selection for DL-based
prediction model

Figure 3 illustrates the improvement in prediction

performance resulting from forward feature selection using all

variables collected from the validation set. Supplementary

Table S1 presents the cumulative ROC-AUC with adding

variables to model, from top to bottom. For the prediction of

significant coronary artery stenosis, age, sex, socioeconomic

status including education and monthly income level,

dyslipidemia, and several laboratory variables including eGFR,

hemoglobin, HbA1c, and HDL cholesterol were the highly

ranked features. As expected, age and sex were the top 2

predictive features of the DL-based model. Among the

conventional cardiovascular risk factors, HbA1c, HDL

cholesterol, non-HDL cholesterol, systolic BP, and a history of

dyslipidemia were sequentially important in estimating the

possibility of obstructive CHD on CCTA. In addition, WBC

count and albumin level significantly contributed to the

performance of the DL-based model. Interestingly, we observed

that personal education and monthly income levels were selected

for the DL-based model to predict obstructive CHD. As

mentioned above, 4 variables known to be cardiovascular risk

factors were added on 15 selected features from forward feature

selection method. Therefore, a total of 19 selected variables were

used in the neural network model development.
3.3. Comparison of prediction models for
coronary artery stenosis

Among all the participants, obstructive CHD was observed in

516 (4.6%; 4.2% in training set and 6.8% in test set). Individual

prediction scores were calculated in the test set, and the results

were expressed as a function of the presence of obstructive CHD,

presenting a bimodal score distribution with a higher prevalence

of obstructive CHD in subjects with higher scores (Figure 4).

When comparing the predictive power of machine learning

models, the neural network with multi-task learning produced

the better performance to predict significant coronary artery

stenosis of ≥70% [AUC 0.782, 95% confidence interval (CI)

0.749–0.820] than Random Forest (AUC 0.695, 95% CI 0.656–

0.730), XGBoost (AUC 0.732, 95% CI 0.680–0.788), and logistic

regression (AUC 0.749, 95% CI 0.708–0.795) (all p < 0.001)

(Figure 5A, Supplementary Table S2). This result supported that

the neural network-based model for predicting obstructive CHD

outperformed the conventional DL methodologies. The

sensitivity, specificity, positive predictive value, negative

predictive value, and balanced accuracy of the neural network
frontiersin.org
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TABLE 1 Baseline characteristics of study population.

Variables Total (n = 11,180) Train set (n = 9,578) Test set (n = 1,602) p-value

Demographic information
Age, years 56.1 ± 8.7 55.8 ± 8.7 57.8 ± 8.8 <0.001

Male sex 7,802 (69.8) 6,682 (69.8) 1,120 (69.9) 0.930

BMI, kg/m2 24.4 ± 3.1 24.4 ± 3.1 24.4 ± 3.1 0.455

WC, cm 87.5 ± 8.6 87.3 ± 8.6 89.0 ± 8.7 <0.001

Systolic BP, mmHg 119.7 ± 13.7 119.5 ± 13.7 120.8 ± 14.0 <0.001

Diastolic BP, mmHg 78.5 ± 10.0 78.4 ± 10.0 78.9 ± 10.2 0.048

Heart rate/min 67.5 ± 11.0 67.7 ± 11.1 66.2 ± 10.4 <0.001

Hypertension 2,769 (24.8) 2,282 (23.8) 487 (30.5) <0.001

Diabetes mellitus 952 (8.5) 754 (7.9) 198 (12.4) <0.001

Dyslipidaemia 1,933 (17.3) 1,461 (15.3) 472 (29.6) <0.001

FHx of hypertension 2,810 (25.2) 2,385 (24.9) 425 (26.6) 0.145

FHx of diabetes 2,151 (19.3) 1,830 (19.1) 321 (20.1) 0.348

FHx of CVD 2,413 (21.6) 2,042 (21.3) 371 (23.2) 0.091

Smoking <0.001

Never smoking 5,448 (48.9) 4,744 (49.6) 704 (45.1)

Former smoking 3,558 (32.0) 3,089 (32.3) 469 (30.2)

Current smoking 2,130 (19.1) 1,741 (18.2) 389 (24.9)

Alcohol consumption 0.030

No drinking 2,363 (22.2) 1,986 (21.8) 377 (24.8)

Moderate drinking 7,234 (68.0) 6,230 (68.4) 1,004 (66.1)

Heavy drinking 1,034 (9.7) 895 (9.8) 139 (9.1)

Education <0.001

Under middle school 233 (2.3) 209 (2.4) 24 (1.6)

Middle school 287 (2.8) 265 (3.0) 22 (1.4)

High school 1,501 (14.6) 1,292 (14.8) 209 (13.6)

College 5,007 (48.7) 4,260 (48.6) 747 (48.7)

Post-college 3,262 (31.7) 2,732 (31.2) 530 (34.6)

Monthly income, (10,000)KRW* <0.001

<300 500 (4.4) 449 (5.6) 51 (4.1)

300–500 831 (7.4) 734 (9.1) 97 (7.7)

500–800 1,116 (10.0) 960 (11.9) 156 (12.4)

800–1,000 1,210 (10.8) 1,045 (13.0) 165 (13.2)

1,000–1,500 1,977 (17.7) 1,748 (21.7) 229 (18.3)

1,500–2,000 1,219 (10.9) 1,058 (131.) 161 (12.8)

>2,000 2,469 (22.1) 2,074 (25.7) 395 (31.5)

Anti-platelets 1,341 (12.0) 1,173 (12.3) 168 (10.1) 0.050

Lipid lowering agents 1,933 (17.3) 1,461 (15.3) 472 (29.6) <0.001

Laboratory findings
CRP, mg/dl 0.2 ± 0.5 0.2 ± 0.5 0.1 ± 0.2 <0.001

WBC, /ul 5.4 ± 1.5 5.4 ± 1.5 5.5 ± 1.5 0.459

Haemoglobin, mg/dl 14.6 ± 1.3 14.7 ± 1.3 14.5 ± 1.3 <0.001

Fasting glucose, mg/dl 104.9 ± 23.2 104.7 ± 23.6 105.8 ± 21.0 0.103

HbA1c, % 5.8 ± 0.7 5.8 ± 0.8 5.9 ± 0.7 <0.001

Total cholesterol, mg/dl 192.9 ± 37.3 193.5 ± 35.9 189.3 ± 44.6 <0.001

Triglyceride, mg/dl 106.0 (75.0) 106.0 (76.0) 101.0 (71.5) 0.065

LDL cholesterol, mg/dl 115.5 ± 34.5 116.0 ± 32.9 112.5 ± 42.5 <0.001

HDL cholesterol, mg/dl 52.9 ± 13.3 52.9 ± 13.4 53.0 ± 12.3 0.810

Total-HDL cholesterol 140.1 ± 36.7 140.7 ± 35.2 136.4 ± 44.2 <0.001

Albumin, mg/dl 4.4 ± 0.3 4.4 ± 0.3 4.4 ± 0.3 0.075

eGFR, ml/min/1.73 m2 90.3 ± 15.2 91.0 ± 15.3 86.2 ± 14.0 <0.001

Urine ACR, mg/g 5.7 ± 1.4 5.7 ± 1.4 5.5 ± 1.29 <0.001

Values are presented as n (%), mean± SD, or median (interquartile range).

ACR, albumin to creatinine ratio; BMI, body mass index; BP, blood pressure; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; FHx, family history;

HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; SD, standard deviation; WBC, white blood cells; WC, waist circumference.

*1 US dollar = 1,300 KRW.
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FIGURE 3

Increase of predictive value upon forward feature selection. Features in Y-axis are arranged by forward selection in order. The bar graph, generated from
the validation dataset, shows how performance gains when variables are added to the model, on a logarithmic scale. Error bar shows its 95% confidence
interval. Scatter dot plot shows an increase in ROC-AUC of the test dataset when using top-k features, indicating that performance saturates shortly after
adding a few variables to the model. CVD, cardiovascular disease; ECG, electrocardiography; eGFR, estimated glomerular filtration rate; HbA1, glycated
hemoglobin; HDL, high-density lipoprotein; OH, hydroxy; SBP, systolic blood pressure; WBC, white blood cells; other abbreviations as Figure 1.

Lee et al. 10.3389/fcvm.2023.1167468
with multi-task learning were 0.757, 0.675, 0.143, 0.975, and 71.6%,

respectively.

Compared with PCE (AUC 0.719, 95% CI 0.699–0.743), CAD

consortium score (AUC 0.696, 95% CI 0.677–0.717), and UDF

scores (AUC 0.705, 95% CI 0.684–0.726), our neural network

model had a significantly higher area under the ROC curves for

the prediction of obstructive CHD than the clinical scoring

systems (all p < 0.001) (Figure 5B, Supplementary Table S2).

Furthermore, we trained ML-based models without the feature

selection process. The neural network model outperformed the

others in this setting as well (Supplementary Figure S1). Notably,

the feature selection not only preserved the model’s performance

but also improved its generalization to outperform the models

trained on all features, as demonstrated by the higher ROC-AUC

value.

A further comparative analysis of model predictability was

performed, and the correlation between the predicted and
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actual stenosis ratios was calculated. Each calibration plot of

the proposed neural network, CAD consortium, and UDF was

shown in Supplementary Figure S2, respectively. The proposed

neural network provided robust and accurate predictability in

all probability regions, whereas the others showed less

correlation, suggesting a better performance in the

asymptomatic individuals.
3.4. Explainability of the neural network
model

Figure 6 depicts the SHAP value of each input feature in

predicting the probability of obstructive CHD as obtained from

the SHAP analysis. In order of SHAP value, sex, age, and HDL

cholesterol levels were the most significant factors in predicting

obstructive CHD in asymptomatic individuals.
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FIGURE 4

Outcome distribution of individuals with obstructive and non-obstructive CHD. The X-axis represents the probability of coronary artery stenosis, and the
Y-axis represents the number of individuals in the test set. The blue and orange bars indicate individuals predicted to have coronary artery stenosis of
<30% and ≥70%, respectively.

FIGURE 5

Comparison of predictive performances among a neural network-based model, other DL-based models, and clinical risk scoring models with selected
features. Both plots show the ROC-AUC of various models with selected features. (A) Our neural network-based prediction model demonstrates
significantly better performance than previously known clinical scoring systems, with ROC-AUC of 0.782, even in asymptomatic populations. (B)
Among the machine learning-based models, a neural network with multi-task shows the best performance to predict significant coronary artery
stenosis on CCTA. CAD, coronary artery disease; DL, deep learning; XGBoost, eXtreme gradient boosting; other abbreviations as Figures 1, 2.
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FIGURE 6

SHAP value of a neural network-based model. The bar graph shows how each feature contributes to the model decision in test set. As the contribution of
each input feature is described as an absolute value, the sign of the effect of each variable is not represented. Abbreviations as Figures 1, 3.

Lee et al. 10.3389/fcvm.2023.1167468
4. Discussion

In the present study including 11,180 apparently healthy

asymptomatic adults who underwent CCTA for routine health

check-ups, the main findings were as follows: (1) obstructive

CHD, defined as significant coronary artery stenosis of ≥70% on

CCTA, was found in 4.6% of this asymptomatic population; (2)

the DL-based risk prediction model for significant coronary

artery stenosis was successfully developed using a multi-task

learning with feature selection, which demonstrated superior

performance compared to the clinical pretest probabilities and

other ML-based models; (3) among the variables that were

readily assessed in routine clinical practice, age, sex, education

and monthly income level, dyslipidemia, and laboratory variables

including eGFR, hemoglobin, HbA1c, and HDL cholesterol were

the highly ranked features to predict significant coronary artery

stenosis on CCTA.

Although clinicians have bent their best efforts to appropriately

manage CHD and improve the prognosis for decades, the global

burden of CHD, in terms of disabilities and deaths, continued to

increase (1, 30). Early detection and prevention are the most

effective ways to reduce the impact of CHD, given the limited

healthcare resources (31). A conventional approach in clinical

practice is to start validated clinical risk scoring systems, such as

PCE or SCORE, and direct downstream testing (3, 4). However,

since these probabilistic risk scores were developed in older

populations and mainly validated in symptomatic patients for the

purpose of predicting major cardiovascular events, including

myocardial infarction, stroke, or cardiovascular death, the risk in
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younger, healthy, and asymptomatic populations is likely to be

underestimated and inaccurate (32, 33). The advent of CCTA has

provided a paradigm shift to assess cardiovascular risk,

particularly in low-risk asymptomatic populations. Many

previous studies using CCTA have reported a higher prevalence

of silent coronary atherosclerosis in the asymptomatic

populations than expected, and further, individuals with

obstructive CHD were not uncommon (10, 11). In the SCAPIS

cohort, approximately 1 of 3 men and 1 of 4 women were found

to have coronary atherosclerosis in the subgroup classified as low

risk by PCE or SCORE from the general population (11). In

addition, Choi et al. demonstrated that 5% and 2% of

asymptomatic adults with a mean age of 50 years had CCTA-

derived coronary artery stenosis of ≥50% and ≥75%, respectively
(10). However, currently, no reliable prediction model is proven

to detect coronary artery stenosis in apparently healthy

asymptomatic populations. Hence, there is a need for a clinical

method to easily screen obstructive CHD candidates from low-

risk asymptomatic groups that would be missed under the

traditional approach.

In this study, given the insufficient clinical methodology for

predicting risk in the asymptomatic population, we utilized the

DL-based method and successfully developed the risk prediction

neural network model to detect significant coronary artery

stenosis of ≥70% on CCTA in the self-referred apparently

healthy asymptomatic population. Our model provided balanced

accuracy of 71.6% and achieved an AUC value of 0.782 for the

test set, demonstrating good performance and reproducibility.

Obviously, ML or DL-based risk prediction models with excellent
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performance in various study populations have been presented

before (17, 34–38). However, previous studies have mainly used

ML or DL to predict the prognosis in patients with symptomatic

or established cardiovascular disease, such as those with

suspected or known CAD, those with acute coronary syndrome,

and those who underwent coronary angiography or coronary

artery bypass grafting (CABG). In the CONFIRM registry, an

ML-based model including clinical parameters and CACS

estimated the risk of obstructive CAD on CCTA in suspected

CAD patients (17). More recently, the risk of post-CABG

mortality was successfully estimated with acceptable performance

using various ML models, in 16,850 patients who underwent

isolated CABG (36). Although a few studies were performed in

the asymptomatic healthy populations, they used only CACS, a

simpler tool for estimating total atherosclerotic burden (39, 40).

The current study successfully developed the DL-based model in

predicting those who are likely to have significant coronary

artery stenosis on CCTA, using clinical parameters that are

obtained from routine health check-ups among the

asymptomatic, apparently healthy individuals. Indeed, this allows

the potential to detect CAD early and improve prognosis,

considering that CCTA is emerging as a frontline test for the

diagnosis of CAD.

Our DL-based risk prediction model included conventional

risk factors such as age, sex, systolic BP, HbA1c, and lipid-

related variables as well as unfamiliar risk factors such as

serum albumin level, WBC count, and socioeconomic status.

These are variables that clinicians rarely pay attention to when

evaluating whether an individual has obstructive CHD.

However, considering that WBC count (41) and serum

albumin level (42) were once noted for a close link with CHD,

our results were able to bring about a re-perception of solid

but overlooked risk factors using the DL method. This is quite

consistent with the previous study (43) in that our model was

developed using the clinical features that can be readily found

in electronic health records in clinical practice. In addition,

recent studies have demonstrated that the integration of

socioeconomic status into traditional risk factors can allow

better risk stratification and prognosis for individuals at risk

(44). More noticeably, our DL-based model provided better

predictive power than the CAD consortium score, UDF, and

other well-known probabilistic risk scores, indicating that the

group-specific risk prediction model should be newly

established in the low-risk asymptomatic population.

Among the various ML methods available, we chose a DL-

based approach to develop our risk prediction model. DL-based

methods offer several advantages over conventional approaches

in terms of flexibility and generality (45). Traditional statistical

methods such as simple linear regression assume that dependent

variables should be normally distributed and independent of each

other with homoscedasticity (46). Furthermore, the errors

obtained from regression analysis should be uncorrelated and

constant (47). These constraints raise the practical issues when

analyzing heterogeneous real-world data. However, DL-based

methods are relatively free of these constraints regarding the

distribution of variables. Owing to their applicability, DL-based
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methods have shown prominent outcomes in various real-world

clinical studies in recent times.

In order to improve the interpretability of the proposed risk

prediction model, we introduced two additional methods. First,

we implemented a forward/backward feature selection during the

model training, which resulted in the exclusion of several

variables that had relatively less contribution to prediction of

significant coronary artery stenosis, thus ensuring the

generalization of the model. Second, we conducted SHAP

analysis on the prediction results of the test set to analyze the

relative significance of each variable. Our findings revealed that

sex and age were the most significant factors affecting the degree

of coronary artery stenosis on CCTA, which is in accordance

with previous studies (12, 24, 25, 27). As previously mentioned,

the dataset utilized in this study was collected from the general

population and contained both categorical and numerical

features. Our neural network outperformed other conventional

methods, verifying the superiority and robustness of DL-based

methods for analyzing complex data distributions in the real

world. In addition, SHAP analysis allows clinicians to identify

the specific features of patient data that the model considers to

be crucial in the prediction of stenosis. Finally, our model

exhibited superior prediction performance on both the test and

training sets compared to previous models. Based on these

observations, our neural network could alleviate two common

limitations of DL-based methods: the lack of explainability

(black-box) and loss of generality (overfitting) (48).

This study has some limitations noteworthy to mention.

First, this was a single-center single-ethnicity retrospective

observational cohort study comprising apparently healthy self-

referred asymptomatic individuals. Thus, it may cause selection

and referral bias that limits the generalizability of the model.

However, we demonstrated that the prevalence of CCTA-

derived obstructive CHD was not trivial even in the lower-risk

asymptomatic group by applying the DL-based model

composed of familiar clinical variables. It is possible to help

identify who could benefit from the use of CCTA as a

screening tool and prevent the overuse of diagnostic imaging

modalities. Obviously, our DL-based risk prediction model is

an aspect of tailored medicine that is expected to improve an

individual’s prognosis. Further multi-ethnic prospective studies

are required to validate our results. Second, the study endpoint

was the presence of obstructive CHD, defined as ≥70%
maximal diameter stenosis in coronary arteries on CCTA,

which was assessed by visual estimation. Accordingly, the

percentage of stenosis may be overestimated, especially in cases

with severe coronary artery calcification or motion artifacts. To

minimize this limitation, all CCTA images were independently

analyzed by two level-III experienced radiologists blinded to

the clinical information, with full agreement. Additional

validation using volumetric measurements is required in future

studies. Third, this study used the full routine health check-up

dataset, including many clinical, laboratory, and imaging

variables. External validation was not performed, because it

was difficult to find other large-scale independent cohorts

involving a full dataset, which might have led to overfitting.
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Further studies in other populations should be considered to

validate the current model and extend the indications. Lastly,

as shown in Table 1, the mean values of several variables were

significantly different between the train and test datasets. This

situation could be problematic because it may lead to poor

generalizability of the model. However, despite the different

characteristics, our model overcame the gap and achieved

robust performances on both sets.
5. Conclusions

In conclusion, in a cohort comprising 11,180 apparently

healthy asymptomatic adults, we successfully developed a DL-

based risk prediction model for detecting CCTA-derived

obstructive CHD with acceptable accuracy. Our novel model

showed better predictive performance than previous well-known

risk scoring systems, suggesting more precise indications for

CCTA as a screening tool for further risk stratification in

asymptomatic populations. Therefore, the utilization of this DL-

based model may help clinicians make medical decisions in

terms of early diagnosis and primary prevention, and promote

the cardiovascular health of individuals.
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