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Effects of non-coding RNAs and
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mitochondrial dysfunction in
diabetic cardiomyopathy
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Vascular complications are the main cause of diabetes mellitus-associated
morbidity and mortality. Oxidative stress and metabolic dysfunction underly
injury to the vascular endothelium and myocardium, resulting in diabetic
angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to
play an important role in cardiomyopathic disruptions of key cellular functions,
including energy metabolism and oxidative balance. Both non-coding RNAs and
RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their
impact on mitochondrial dysfunction in the context of this disease is largely
unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins
on mitochondrial pathways in diabetic cardiomyopathy would allow further
insights into the pathophysiological mechanisms underlying diabetic vascular
complications and could facilitate the development of new therapeutic
strategies. Stem cell-based models can facilitate the study of non-coding RNAs
and RNA-binding proteins and their unique characteristics make them a
promising tool to improve our understanding of mitochondrial dysfunction and
vascular complications in diabetes.
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1. Background

Diabetes mellitus (DM) and its complications are a major global health burden, affecting

millions of patients worldwide (1). Amongst the various macro- and microvascular

complications of DM, diabetic cardiomyopathy (DCM) is a critical cause of

DM-associated morbidity and mortality. DCM is characterized by cardiac dysfunction and

heart failure in the absence of hypertension, coronary artery disease or other cardiac

pathologies (2, 3). This dysfunction is driven by the molecular changes seen in DM,

including hyperglycemia, increased fatty acid metabolism, inflammation and fibrosis,

which collectively contribute to the pathophysiology of DCM (4). In recent years, a role

for mitochondrial dysfunction in DCM has emerged also.

Whilst mitochondria are regarded primarily for their central role in bioenergetic and

biosynthetic pathways, within the last few decades a greater recognition for the role of

mitochondria in a range of cellular processes such as regulation of ion homeostasis, cell

growth, redox status, signal transduction, immunity and cell survival has been gained
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(5–7). Accordingly, an appreciation for the role of mitochondrial

dysfunction as a major contributing factor to multiple disease

states, including neurodegenerative disorders, diabetes and

cardiovascular diseases, has emerged (8, 9). Modulated by

genetics, lifestyle and environment, mitochondrial dysfunction is

therefore now accepted to not only underlie mitochondrial

diseases through the mutation of either genes encoding

mitochondrial proteins or non-mitochondrial genes involved in

mitochondrial biology, but also a repertoire of complex disease

states. Due to the heart’s high demand for adenosine

triphosphate (ATP), mitochondria are found more abundantly

within cardiomyocytes. A study revealed between 20% and 40%

of the volume within adult cardiomyocytes to consist of

mitochondria (10). It is therefore not surprising, that

mitochondrial dysfunction, and the associated disruptions in

energy metabolism, oxidative balance, calcium handling and

apoptosis, have emerged as key drivers of cardiac dysfunction

and the pathophysiological changes in DCM (Figure 1) (3, 11, 12).

In the healthy heart, about 70% of energy is derived from the

oxidation of fatty acids. The source of the remaining 30%

comprise glucose, amino acids and other nutrients. While the

oxidation of fatty acids is not as efficient as the metabolism of

glucose or other substrates, requiring more oxygen to generate

the same amount of ATP, there exists a physiological balance

between energy need, oxygen consumption and ATP synthesis.

In the diabetic heart, however, a shift towards increased fatty

acid metabolism results in an increased oxygen demand and
FIGURE 1

Aspects of mitochondrial dysfunction seen in diabetic cardiomyopathy, includ
and mitochondrial DNA damage, impaired Ca2+ transport, increased mitocho
ROS, reactive oxygen species; MCU, mitochondrial calcium uniporter; VDAC,
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reduced cardiac efficiency (11, 13). This metabolic shift can be

already observed in the hearts of obese human subjects,

manifesting as increased oxygen consumption alongside

enhanced uptake and oxidation of fatty acids (14). Montaigne

et al. showed, however, that contractile impairment and

mitochondrial dysfunction can develop in DCM irrespective of

weight. Furthermore, they found mitochondrial dysfunction to be

directly and independently associated with hemoglobin A1c

(HbA1c) levels—highlighting the importance of hyperglycemia

and decreased glucose uptake in the development of these

metabolic changes (15). In various animal models of DCM, a

reduced mitochondrial oxidative capacity and efficiency can be

observed. Additionally, cardiomyocytes seem to be unable to

sufficiently adapt their substrate utilization in response to shifting

levels of glucose and fatty acids, resulting in increased fatty acid

metabolism and oxygen demand irrespective of substrate

availability (16–19). The peroxisome proliferator-activated

receptor ɑ (PPARɑ) plays a central role in shifting mitochondrial

metabolism towards increased fatty acid oxidation (12, 20).

PPARɑ is a member of the ligand-activated nuclear receptor

superfamily and major gene expression regulator of enzymes

involved in fatty acid β-oxidation. Increased lipid uptake induces

PPARɑ which in turn upregulates enzyme expression (21). In

mice with cardiac-specific overexpression of PPARɑ, a DCM-like

phenotype can be observed, including characteristic metabolic

shifts and cardiac dysfunction (22). Further elucidating the role

of PPARɑ in the development of DCM, Buchanan et al. found
ing reduced energy metabolic efficiency, ROS-associated oxidative stress
ndrial fission, membrane hyperpolarization and pro-apoptotic signaling.
voltage-dependent anion channel.
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increased fatty acid metabolism and the development of cardiac

dysfunction to precede PPARɑ-overexpression in obese and

diabetic mice, which indicates that there are co-existing

mechanisms driving early metabolic and phenotypic changes (23).

Alongside the reduced mitochondrial oxidative capacity and

efficiency, increased oxidative stress has been identified as a key

driver of DCM pathogenesis. During mitochondrial ATP

production through the respiratory chain, reactive oxygen species

(ROS) are produced, such as superoxide anion (O2
−). Whilst

normal amounts of ROS can be converted to more stable forms

including O2
− into hydrogen peroxide, overproduction of ROS

creates oxidative stress resulting in damage to mitochondrial

DNA via mutations, altered membrane permeability, calcium

homeostasis and mitochondrial defense systems. Moreover,

damage to mitochondrial DNA has been shown to increase ROS

and oxidative stress creating a harmful cycle of distress (24, 25).

Due to the abundance of mitochondria in cardiac tissue,

mitochondrial dysfunction and ROS production are thought to

contribute significantly to cardiac pathologies (26–29). In diabetic

mice, increased myocardial oxygen consumption and cardiac

dysfunction coincide with augmented generation of ROS as well

as lipid and protein peroxidation products (30). Similarly,

mitochondrial dysfunction and increased oxidative stress are seen

in rats with DCM (31). This increase in oxidative stress

promotes cardiac cell death (32). Insulin treatment, on the other

hand, can prevent free radical damage and reverse mitochondrial

dysfunction in diabetic hearts (33).

Besides their role in energy metabolism and oxidative balance,

mitochondria are also involved in the intracellular handling and

storage of calcium. Ca2+ is a central component of cardiomyocyte

contraction and signaling, which is why disruptions of Ca2+

homeostasis secondary to mitochondrial dysfunction contribute to

the pathophysiological features of DCM. In a reciprocal regulatory

relationship, cytosolic Ca2+ mediates both ATP production and

utilization, by influencing mitochondrial oxidation, enhancing aerobic

respiration and modulating ATPase activity (34–36). Cytosolic and

mitochondrial Ca2+ levels fluctuate throughout the cardiac

contraction cycle. Mitochondria take up Ca2+ during systole and

release it into the cytoplasm throughout diastole (37). Allowing the

flow of Ca2+ from the cytoplasm into the mitochondrial matrix is the

mitochondrial Ca2+ uniporter (MCU), which is downregulated in

diabetes. The MCU plays a vital role in intracellular Ca2+ homeostasis

and signaling. Its downregulation in diabetes leads to impaired

mitochondrial Ca2+ uptake and was found to be associated with a

decreased capacity to upregulate ATP synthesis in response to

increased workload, resulting in contractile dysfunction (38).

Upregulation of MCU in diabetic animal models restored normal

energy metabolism and mitochondrial Ca2+ handling, while

decreasing oxidative stress and cardiomyocyte apoptosis (39, 40).

Other key ion channels found to be downregulated in diabetes

include sarco-endoplasmic reticulum calcium ATPase (SERCA) and

Ryanodine Receptor 2 (RYR2), which are responsible for

sarcoplasmic Ca2+ uptake and release, respectively. Their

downregulation directly impacts cytosolic and mitochondrial Ca2+

levels, disrupting intracellular Ca2+ shifts and energy metabolism.

This impairs mitochondrial energy metabolism, increases oxidative
Frontiers in Cardiovascular Medicine 03
stress, promotes cardiomyocyte death and results in cardiac

dysfunction (3, 41–44). These disruptions in Ca2+ homeostasis

develop in response to prolonged hyperglycemia, and studies showed

that impaired mitochondrial Ca2+ handling and its pathophysiological

consequences can be reversed by insulin therapy (45, 46).

Mitochondrial morphology and DM-induced cardiomyocyte

dysfunction have a reciprocal influence on each other, with DCM

altering mitochondrial morphology, and altered morphology in turn

promoting the progression of DCM (11). Mitochondrial

morphology is controlled by a complex balance of fusion- and

fission-promoting proteins. This balance is disrupted in DM, with

downregulation of mitofusins 1 and 2 (MFN1 and MFN2) resulting

in decreased mitochondrial fusion. MFN1 expression was found to

be inversely proportional to HbA1c levels and enhancement of

MFN2 in a diabetic mouse model prevented DCM progression (15,

47). ROS are able to upregulate fission proteins such as DRP1,

further contributing to mitochondrial fragmentation (48).

Besides morphological changes, intracellular processes

responsible for mitochondrial regeneration and quality-control

were found to be impaired in DM. Mitophagy plays an

important role in the healthy heart by removing dysfunctional

mitochondria. Impaired mitophagy and mitochondrial biogenesis

lead to persistent mitochondrial dysfunction, thereby

contributing to the development and progression of DCM (49–51).

In recent years, studies have tried to elucidate the

posttranscriptional changes underlying DM and its complications.

Due to the association of mitochondrial function and regulation of

gene expression, non-coding RNAs (ncRNAs) and RNA-binding

proteins (RBPs) have emerged as key regulators of mitochondrial

health and have also been implicated in the pathophysiology of

DCM. With about 74% of transcribed DNA being non-coding,

ncRNAs play a central role in modulating cellular responses by

acting as posttranscriptional inhibitors of their target genes. While

some have been shown to be critical to cellular health, others seem

to contribute to various diseases, including DCM (52). Regulatory

ncRNAs have a vital role in cellular homeostatic and adaptive

mechanisms and are categorized according to their length: short

ncRNAs are less than 200 nucleotides long and include microRNAs

(miRNAs), RNAs comprising more than 200 nucleotides are

referred to as long ncRNAs (lncRNAs). They are important

regulators of DNA replication and transcription, as well as mRNA

translation. Similarly, RBPs use RNA-binding domains to regulate

gene expression through various posttranscriptional mechanisms,

including alternative splicing, as well as RNA degradation, and have

been shown to play a role in cardiovascular health and disease (53,

54). RBPs modulate RNA fate in a cell dependent manner to result

in a tissue-specific protein repertoire and cellular function. As such,

proper functioning of these intricate posttranscriptional

manipulations is essential to cell health, with defects in both RBPs

or RBP-regulated RNA networks showing to be central in the onset

and progression of pathological disorders. Due to the involvement

of RBPs in deciphering between health and disease states, RBPs

have emerged as key research targets to enhance our understanding

pathophysiological processes.

While their influence on mitochondrial health or dysfunction in

DCM needs to be further uncovered, ncRNAs and RBPs could prove
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critical to understanding the exact molecular mechanisms driving

DM. Here we will present the current knowledge of the roles of

ncRNAs and RBPs in mitochondrial dysfunction and DCM. We

explore how ncRNA/RBP-driven disruption of mitochondrial

dysfunction could contribute to the development and progression

of DCM, proposing key regulatory pathways and highlighting gaps

in our current understanding of these mechanisms. Finally, we

present established and emerging models of mitochondrial

dysfunction and DM-associated vascular complications, which

could provide further insights into the functions of ncRNAs and

RBPs, thereby paving the way for new therapies and improved

outcomes for patients suffering from DCM.
2. The role of ncRNAs and RBPs in
mitochondrial dysfunction

2.1. ncRNAs in mitochondrial dysfunction

ncRNAs play a vital role in mitochondrial regulation. As 99%

of mitochondrial proteins are nuclear-encoded, mitochondrial

ncRNAs—called mitoRNAs—can derive from the nucleus or the

mitochondria (55, 56). Adequate mitochondrial function and

metabolic adaptation requires constant mito-nuclear crosstalk,

which is facilitated by ncRNAs (57).

Looking at miRNAs, there are three distinct types which can

influence mitochondrial function: cytoplasmic miRNAs, nuclear-

encoded mitochondrial miRNAs (mitomiRs) and mitochondria-

encoded mitomiRs. Cytoplasmic miRNAs have been found to play a

crucial role in regulating mito-nuclear crosstalk by binding to

mitochondria-associated transcripts in the cytoplasm and have been

reviewed elsewhere (58). Briefly, they influence key aspects of

mitochondrial function, including oxidative phosphorylation and

fatty acid metabolism, as well as mitochondrial dynamics and

autophagy. Cytoplasmic miR-378, for example, plays an important

role in mitochondrial fatty acid metabolism, by regulating the effects

of PGC-1β — a transcriptional coactivator and key regulator of

mitochondrial metabolism and biogenesis. In a mouse model, miR-

378 knockout increased oxidative capacity and resulted in resistance

to high-fat diet-induced obesity (59). Similarly, miR-23a was shown

to downregulate mitofusins and promote mitochondrial dysfunction

by targeting the related transcriptional coactivator PGC-1α (60).

Cytoplasmic members of the miR-30 family, on the other hand, can

prevent mitochondrial fission and apoptosis by inhibiting p53

signaling and its downstream pro-apoptotic targets (61). Other

miRNAs can regulate mitochondrial Ca2+ handling, such as miR-25,

which is known to silence the expression of MCU (62). Besides

acting on mitochondria-related transcripts in the cytoplasm, nuclear

miRNAs and Argonaute proteins, which play a key role in miRNA-

mediated gene silencing, can easily translocate into mitochondria

and influence their function through downregulation of target genes

(63). One example is cardiac miR-181c, which is transcribed in the

nucleus and later translocates together with its silencing complex

into mitochondria, where their inhibition of mitochondrial COX1

results in mitochondrial dysfunction (64). Other mitomiRs have

been associated with similar regulatory mechanisms influencing
Frontiers in Cardiovascular Medicine 04
mitochondrial transcripts, including miR-1 and miR-2392 (65, 66).

MiR-378, which regulates mito-nuclear crosstalk and energy

metabolism in the cytoplasm, is also found within mitochondria,

where it was shown to inhibit the translation of ATP synthase (67,

68). While the roles of mitomiRs in mitochondrial dysfunction

remain to be further uncovered, nuclear- and mitochondrial-encoded

miRNAs, both within the cytoplasm and mitochondria, undoubtedly

play a central role regulating mitochondrial metabolism and

dynamics and might be important drivers of regulatory

dysregulations see in mitochondrial dysfunction.

LncRNAs can promote or prevent mitochondrial dysfunction

through multiple mechanisms and have been implicated in various

cardiovascular diseases. Interestingly, Yang et al. found expression

profiles of lncRNAs, but not mRNAs or miRNAs, to characterize

various pathologies of the failing heart. Much like miRNAs,

lncRNAs can be encoded by nuclear or mitochondrial DNA and act

on mitochondria-related transcripts both in the cytoplasm and

within mitochondria (58). Some lncRNAs are known to dysregulate

mitochondrial energy metabolism, such as the lncRNA AK055347,

which controls the expression of ATP synthase in the heart (69).

Others regulate the complex balances between mitochondrial fission

and fusion as well as mitophagy and biogenesis. LncRNA HOTAIR

regulates mitoribosomal proteins and its inhibition has been shown

to result in mitochondrial dysfunction (70, 71). While lncRNA H19

reduces the expression of fusion protein MFN2 through miR675-

mediated gene silencing, lncRNA CARL sponges miR-539, thereby

suppressing mitochondrial fission and apoptosis (72, 73). Other

lncRNAs have been shown to regulate gene expression by inhibiting

miRNA-associated gene silencing, including CEROX1, which

increases expression and activity of complexes I and IV by

preventing their miR-488-3p-driven downregulation (74). Similarly,

lncRNA KCNQ1OT1sponges miR-378 and prevents its inhibition of

ATP synthase translation (67). Other lncRNAs interact with gene

promoter regions, such as TUG1, which has been shown to induce

PGC-1α and regulate mitochondrial bioenergetics (75). LncRNA

UIHTC has also been shown to improve mitochondrial function in

cardiomyocyte by enhancing PGC-1α expression (76). Though the

exact effects and underlying mechanisms of many lncRNAs remain

poorly understood, they have been found to play important

regulatory roles in mitochondrial health and dysfunction, potentially

contributing to the pathogenesis of cardiovascular and other diseases.

Other ncRNAs have been shown to play crucial roles in

mitochondrial function. Ro et al., for example, identified

mitochondrial small RNAs (mitosRNAs) which are derived from

sense transcripts of mitochondrial genes and seem to regulate

mitochondrial gene expression (77). Studies also identified

hundreds of mitochondria encoded circRNAs (mecciRNAs) (78).

Similar to lncRNAs, circRNAs are able to sponge miRNAs,

thereby increasing the translation of their target genes (79).

CircRNA 0000495, for example, is able to sponge and inhibit the

silencing action of miR-488-3p, which is known to target

electron transport chain complexes (74, 80). While circRNAs

seem to play an important physiological function and are

involved in various mitochondrial functions, their impact on

mitochondrial dysfunction in diseases such as DCM remains

unclear (81). Besides ncRNAs, other posttranscriptional
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regulators of gene expression are known to be involved in

mitochondrial dysfunction, including RBPs (Figure 2).
2.2. RBPs in mitochondrial dysfunction

Despite the involvement of RBPs in various disease states, the

effect of mitochondrial dysfunction on RBP involvement in

cardiac phenotypes has not been fully investigated. Nevertheless, a

connection between RBPs and oxidative stress has been uncovered

in the recent years, albeit with a focus on neurological diseases,

primarily Amyotrophic lateral sclerosis (ALS). Although studied

under different physiological conditions, RBPs identified to have
FIGURE 2

Examples of ncRNAs anr RBPs’ involvement in mitochondrial dysfunction. M
balance and mitochondrial dynamics. LncRNas inhibit key regulatory proteins
abnormal morphology and function. ROS, reactive oxygen species; MFN2, mi
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oxidative stress induced posttranscriptional modifications similarly

have known fundamental roles in cardiac cells also. TAR DNA

binding protein 43 (TDP-43), for example, is a versatile RNA/

DNA binding protein involved in RNA-related metabolism.

Moreover, TDP-43 is known to interact with several mitochondrial

proteins and is thought to have a role in the stabilization of

mitochondrial transcripts (82, 83). Dysfunctional TDP-43 has

therefore been linked to various mechanisms of mitochondrial

dysfunction, previously reviewed elsewhere (84). In brief,

overexpression of TDP-43 results in abnormal mitochondrial

morphology, disrupted mitochondrial dynamics and altered

mitochondrial-ER contacts (85–87). Furthermore, a recent study

identified the mitochondrial DNA release as a result of TDP-43
iRNA-mediated gene silencing contributes to the disruption of oxidative
, including mitofusin 2. RBPs disrupt mitochondrial dynamics, leading to
tofusin 2; DRP1, dynamin-related protein 1.
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expression to drive an inflammatory response mediated via the

cGAS-STING pathway (88). Knockdown, on the other hand,

reduced the number of mitochondria, mitochondrial membrane

potential as well as the expression of mitochondrial transcripts

(89). Inhibition of TDP-43 mediated dysfunction may serve as a

beneficial therapeutic approach in certain disease states (90).

Oxidative stress has been shown to cause the acetylation and

cysteine oxidation of TDP-43, both of which result in increased

TDP-43 aggregation as well as its phosphorylation (91–95). The

phosphorylation of TDP-43 is heavily associated with deleterious

functional changes including mis-localization, decreased turnover,

changes in solubility, and altered splicing activity, to name a few

(96). Mutations in TDP-43, including its aggregation and depletion,

is heavily associated with ALS. Studies to investigate the effect of

loss of function of TDP-43, a consequence of phosphorylation,

have also uncovered cardiovascular complications, of which further

investigation is needed. For example, a recent study investigating

the loss of TDP-43 function in mice found these mice to have

short lifespans, accredited to cardiac failure due to TDP-43

knockdown mice having enlarged hearts (97). Similarly, in

zebrafish, silencing of TDP-43 resulted in early death attributed to

severely reduced blood circulation and resulted in the mis-

patterning of blood vessels, alongside muscle degeneration (98).

Since these studies, phosphorylated TDP-43 has shown to aggregate

within cardiac muscle as well as blood vessels (99, 100). Likewise,

the RBP TAI1, has been found to undergo cysteine oxidation in

response to oxidative stress (101). TAI1 is commonly known for

regulating alternative splicing of select pre-mRNAs and promoting

the assembly of stress granules, however, roles for TAI1 in

mitochondria fission have also been identified. Moreover,
TABLE 1 Dysregulated miRNAs identified in models of diabetic cardiomyopat

Name Expression Proposed
miR-1 Down Regulation of cardiac contractility through targeting sa

miR-9 Down attenuates ELAVL1 activity and inhibits cardiomyocyt

miR-15a/b Down Suppresses fibrosis through TGFβR1 and CTGF inhibi

miR-22 Down Promotes Sirt 1 expression and attenuates oxidative st

miR-30c Down Attenuates hypertrophy and reduces autophagy throug

miR-133a Down Suppresses cardiac hypertrophy and fibrosis via decrea

miR-144 Down Inhibits Nrf-2 and promotes oxidative stress

miR-146a Down Inhibits inflammatory mediators with cardioprotective

miR-150 Down Prevents p300-mediated cardiomyocyte hypertrophy

miR-200b Down Cardioprotective through inhibition of p300 and other

miR-373 Down Suppresses hypertrophy through MEF2C inhibition

miR-1 Up Inhibits IGF-1 resulting in mitochondrial dysfunction

miR-21 Up Promotes cardiac fibrosis through DUSP8 suppression

miR-29 Up Inhibits MCL-1 resulting in cardiac structural damage

miR-30d Up Inhibits Foxo3a expression, increases caspase-1 and pr

miR-34a Up Inhibits Bcl-2 resulting in increased apoptosis

miR-141 Up Inhibits Slc25a3 and promotes mitochondrial dysfunct

miR-193-5p Up Inhibits IGF-2 and promotes angiogenesis

miR-195 Up Inhibits BCL-2 and Sirt1 expression, promoting hyper

miR-206 Up Promotes cardiomyocyte apoptosis through Hsp60

miR-301a Up Causes electrical remodeling though inhibition of volta

miR-320 Up Inhibits IGF-1 and impairs angiogenesis

miR-451 Up Promotes hypertrophy through inhibition of CAB39 a

miR-483-3p Up Inhibits IGF-1 and promotes cardiomyocyte apoptosis

miR-503 Up Inhibits Nrf-2-mediated expression of antioxidant enz
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downregulation of TAI1 results in mitochondrial elongation or

overexpression and increased abundance of proteins involved in

mitochondrial fission (102, 103). Similarly, the RBP HuD, known

to regulate MFN2, is downregulated in diabetes contributing to

mitochondrial dysfunction (104). It is widely accepted that

interruption of mitochondrial fission and fusion contributes to

cardiomyopathies, further investigation of the impact mitochondrial

dysfunction has on RBPs regulating fission/fusion could therefore

provide further insight. Likewise, as the prevalence of mitochondrial

dysfunction in cardiomyopathies is already established, as in the

case of other diseases, the evaluation of oxidative stress on RBPs in

cardiomyopathies will undoubtedly identify novel pathogenic

mechanisms and potential therapeutic targets.
3. The role of ncRNAs and RBPs in
diabetic cardiomyopathy

3.1. ncRNAs in diabetic cardiomyopathy

Multiple miRNAs have been found to be differentially

expressed in in vitro and animal models of DCM (Table 1). Diao

et al. investigated miRNA expression in streptozotocin-induced

diabetic mice and identified ten up- and six downregulated

miRNAs which were linked to genes associated with cardiac

hypertrophy and fibrosis, including TGFB3 and COL1A1 (132).

Similarly, 43 miRNAs were found to be differentially expressed

in a rat model of DCM. This model showed characteristic

features of DCM, including changes in sarcomeric and

mitochondrial structure, as well as increased oxidative stress and
hy.

role/mechanism References
rcoplasmic reticulum protein junctin (105)

e pyroptosis (106)

tion (107)

ress (108)

h inhibition of various factors including Cdc42/Pak1 and BECN1 (109, 110)

sed TGF-β1, ERK1/2 and SMAD2 signaling (111, 112)

(113)

effect (114)

(115)

mediators (116)

(117)

and apoptosis (118, 119)

and JNK/SAPK and p38 signaling pathway activation (120)

(121)

omotes pyroptosis (122)

(123)

ion (124)

(125)

trophy and apoptosis (126)

(119)

ge-gated potassium channel Kv4.2 (127)

(128)

nd suppression of the LKB1/AMPK pathway (129)

(130)

ymes (131)
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contractile dysfunction. Antioxidant treatment reversed these

pathological features and restored the levels of previously

downregulated miRNAs, including miR-1 and miR-133a (105).

MiR-1 and miR-133a are highly expressed in healthy

cardiomyocytes and have known cardioprotective properties.

Their downregulation in diabetic myocardium results in

increased cardiac autophagy and hypertrophy, which are

commonly seen in heart failure (111). Overexpression of miR-

133a, on the other hand, protects from cardiac fibrosis by

downregulating TGF-β1 and preventing the phosphorylation of

ERK1/2 and SMAD2 (112). In the same DCM rat model, miR-

21, which is known to promote high-glucose induced cardiac

fibrosis, was found to be upregulated (105, 120). Similarly, miR-

155 is known to enhance inflammatory signaling and contribute

to adverse inflammatory responses in cardiovascular diseases

(133). Therapeutic downregulation of miR-155 in ovariectomized

diabetic mice led to a reduction in cell apoptosis and restoration

of cardiac function (134). Other miRNAs are known to prevent

pyroptosis but are downregulated in DCM. miR-9 levels, for

example, are reduced in hyperglycemic cardiomyocytes. miR-9

targets ELAV-like protein 1 (ELAVL1) — a mRNA-stabilizing

protein which enhances TNF-ɑ-induced cardiac cell death. In an

in vitro model, upregulation of miR-9 prevented cardiomyocyte

pyroptosis in response to hyperglycemia (106).

Other miRNAs modulate cellular metabolism and promote or

prevent the shifts in molecular mechanisms underlying DCM

pathogenesis. As described, PPARα signaling facilitates the

increase in fatty acid metabolism and contributes to lipotoxicity

in diabetic cardiomyocytes. PGC-1β induces PPARα and is

targeted by miR-30c. Overexpression of miR-30c resulted in

reduced transcriptional activity of PPARα and reversed the

metabolic shift towards increased uptake and use of fatty acids

(135). Conversely, miR-503 might contribute to DCM

development through inhibiting Nrf-2 mediated expression of

antioxidant enzymes. In a diabetic rat model, cardiomyocytes

exhibited low levels of Nrf2 and increased expression of miR-503

(131). MiR-451 is also upregulated in response to high fatty

acid levels in the hearts of Type 2 diabetic mice. Knockout of

miR-451 in this model reduced lipotoxicity and improved
TABLE 2 Dysregulated lncRNAs identified in models of diabetic cardiomyopa

Name Expression Propo
GAS5 Down Prevents inflammasome-mediated pyroptosis th

H19 Down Inhibits autophagy and apoptosis through DIR

HOTAIR Down Increases SIRT1 expression though sponging of

AK081284 Up Increases collagen and TGF-β1 expression

ANRIL Up Regulates the expression of extracellular matrix

CRNDE Up Attenuates cardiac fibrosis through inhibition o

DCRF Up Induces autophagy by preventing miR-551b-5p

KCNQ1OT1 Up Induces pyroptosis through miR-214-3p/caspas

MALAT1 Up Induces inflammation through increased inflam

MEG3 Up Suppresses miR-145 and promotes cardiomyoc

MIAT Up Induces apoptosis through miR-22-3p sponging

NEAT1 Up Promotes apoptosis through miR-140e5p spong

NONRATT007560.2 Up Increases ROS production and apoptosis

TUG1 Up Promotes hypertrophy and diastolic dysfunctio
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features of DCM, including cardiac hypertrophy (129). Similarly,

miR-195 is increased in mouse models of Type 1 and Type 2

DM and its knockdown was shown to improve cardiac function

while reducing oxidative stress and hypertrophy (126). Decreased

expression of miR-30c in DCM, on the other hand, results in

increased hypertrophy (109). Other miRNAs, such as miR-143,

are regulating insulin action and may contribute to insulin

resistance seen in Type 2 DM (136).

Similar to miRNAs, lncRNAs have been shown to

posttranscriptionally regulate key cellular mechanisms, including

energy metabolism as well as inflammation, and have been found

to be implicated in the pathophysiological changes seen in DCM

(Table 2, Figure 3). In a diabetic mouse model, DCM

development was accompanied by significant changes in lncRNA

expression. Differentially expressed lncRNAs were found to be

associated with myofilament development and motion, as well as

inflammation, immunity and apoptosis (152). The lncRNA H19

is a precursor of miR-675, which targets VDAC1—a voltage-

gated ion channel and critical component of mitochondria-

mediated apoptosis. H19 regulates cardiomyocyte apoptosis

through VDAC1 inhibition. In DCM, however, it is found to be

downregulated, leading to increased apoptosis, which eventually

results in cardiac dysfunction. H19 overexpression was found to

reduce oxidative stress, inflammation and apoptosis, as well as

improve left ventricular function (138, 139). Similarly, DCM-

associated upregulation of lncRNA MALAT1 results in increased

cardiomyocyte apoptosis. Downregulation of MALAT1 in a

DCM rat model improved cardiac function by attenuating

apoptosis (146). Other lncRNA are modulating cardiac fibroblast-

to-myofibroblast differentiation and are involved in the fibrotic

response seen in DCM. The expression of lncRNA CRNDE

negatively correlates with profibrotic genes, for example, and its

overexpression has been shown to reduce cardiac fibrosis and

improve contractile function in DCM mice (143).

Adding another layer of posttranscriptional regulation of gene

expression, some lncRNAs are inhibiting gene silencing by

sponging miRNAs. HOTAIR lncRNAs acts by sponging miR-34a,

thereby inhibiting inflammation and apoptosis. Its expression is

downregulated in DCM and overexpression in a diabetic animal
thy.

sed role/mechanism References
rough sponging of miR-34b-3p (137)

AS3/mTOR and miR-675/VDAC1 signaling regulation (138, 139)

miR-34a resulting in decreased oxidative stress and inflammation (140)

(141)

proteins (142)

f Smad3-mediated cardiac myofibroblast differentiation (143)

-mediated PCDH17 suppression (144)

e-1 signaling (145)

matory cytokine expression (146)

yte apoptosis (147)

and increased DAPK2 expression (148)

ing (149)

(150)

n through inhibition of miR-499-5p (151)
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FIGURE 3

Aspects of ncRNAs and RBPs’ involvement in diabetic cardiomyopathy.
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model has been shown to reduce cardiac inflammation, oxidative

injury and cardiomyocyte apoptosis (140). Other lncRNAs are

upregulated in DCM, leading to increased miRNA-sponging and

reduced silencing of target genes. MIAT lncRNA was found to

sponge miR-22-3p in a DM rat model, and its upregulation in

DCM promoted excessive cardiomyocyte apoptosis (148).

Similarly, overexpression of lncRNA KCNQ1OT1 in DCM
TABLE 3 Dysregulated circRNAs identified in models of diabetic cardiomyop

Name Expression Propo
circDICAR Down Prevents cardiomyocyte pyrop

circCACR Up Promotes pyroptosis through

circHIPK3 Up Suppresses miR-29b-3p result

circ_000203 Up Suppression of miR-26b-5p in

circ_0071269 Up Sponges miR-145 resulting in

circ_010567 Up Suppresses miR-141-mediated
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inhibits the miR-214-3p-regulated silencing of caspase-1,

resulting in increased inflammatory signaling and pyroptosis (145).

Other ncRNAs, such as circRNAs are known to be involved in

the posttranscriptional signaling shifts seen in DM and its

complications, including DCM (Table 3) (153, 154). Several

circRNAs which are upregulated in DCM are known to promote

myocardial fibrosis by regulating miRNAs and their downstream
athy.

sed role/mechanism References
tosis, hypertrophy and fibrosis (155)

miR-214-3p sponging and caspase-1 activation (156)

ing in increased collagen expression and fibrosis (157)

creases CTGF and collagen expression (158)

inflammation and pyroptosis (159)

TGF-β1 inhibition, leading to fibrosis (160)
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targets. Sponging of miRNAs by these circRNAs results in

upregulation of associated miRNA target genes, including TGF-

β1 and collagen (157, 160, 161). Similarly, circRNA CACR,

which is upregulated in high-glucose-treated cardiomyocytes and

in the serum of DM patients, promotes pyroptosis by sponging

miR-214-3p, leading to an increase in caspase-1 activity (156).

Conversely, circRNA DICAR can alleviate pyroptosis and other

hallmarks of DCM. However, DICAR was found to be reduced

in both diabetic mouse hearts and the blood of DM patients (155).

Altogether, these results show that while many ncRNAs have

been implicated in DCM, their complex mechanistic interactions

and modes of regulation remain to be further studied and better

understood.
3.2. RBPs in diabetic cardiomyopathy

Numerous proteomic studies have demonstrated the depth of

RBP involvement in cardiac health and disease through isolating

hundreds of cardiomyocyte-specific RBPs (162, 163). Moreover,

assessment of RBP splicing patterns within adult hearts has been

heavily linked to cardiomyocyte function. Specifically, the

expression of crucial splicing factors SF1, ZRSR2, SRSF4, and

SRSF5 is downregulated in dysfunctional cardiomyocytes. Within

the heart, binding of RBP CIRP to mature RNAs has been

shown to enhance the translation of KCND2 and KCND3,

inhibition of which results in reduced voltage-gated potassium

channel function and defective bioelectric activity (164). Likewise,

RBP MBLN1 was shown to regulate the expression of voltage-

gated sodium channel SCN5A (165). Moreover, RBP PCBP2 was

found to promote GPR56 mRNA degradation in cardiomyocytes,

inhibiting angiotensin II-induced hypertrophy (166).

Although the function for the majority of cardiac specific RBPs

remains unknown, several studies have revealed dysfunctional

RBPs to contribute to cardiomyopathies, in particular diabetic

cardiomyopathy (Table 4). Whilst this review focuses on critical

RBPs which in the recent years have been heavily implicated in

diabetic cardiomyopathy, it is noteworthy to mention a role for

RBPs within the blood vascular system and cardiovascular

disease onset and progression has also been established and

previously reviewed elsewhere (54). Human genetic studies have

revealed polymorphisms and mutations in RBPs to be linked

with diabetes, as such the role of RBPs in diabetic

cardiomyopathy has been a recent topic of interest. Assessment

of diabetic hearts revealed the RBP CUG-BP, also referred to as

CELF1, a highly conserved RBP that regulates alternative

splicing, polyadenylation, mRNA stability, and translation, for

instance, to be upregulated (169). Moreover, in mice,
TABLE 4 Dysregulated RBPs identified in models of diabetic cardiomyopathy

Name Expression Propos
LIN28a Down Protects against DCM by inh

CUG-BP Up Alternative splicing of target

ELAVL1 Up Induces pyroptosis via NLRP

RBFOX2 Up Alternative splicing of target
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overexpression of CUG-BP caused dilated cardiomyopathy and

heart failure and interestingly a reactivation of embryonic

splicing patterns (169–172). Accordingly, numerous studies have

also isolated fetal specific RBPs in adult heart failure tissues,

indicating that during heart failure fetal specific RBPs are

reactivated and suggesting a role for fetal RBPs in cardiac disease

development, including in DM (173). Thus, suggesting a role for

fetal RBPs in cardiac disease development, including in diabetes.

Moreover, within diabetic endothelial cells, overexpression of

CUG-BP enhances the expression of the alternatively spliced

isoform QKI-7, orchestrating endothelial cell dysfunction (174).

QKI-7 belongs to the Signal Transduction and Activation of

RNA (STAR) RBP Quaking family, alternative splicing of which

generates three major isoforms known as QKI-5, QKI-6 and

QKI-7. Both major isoforms QKI-5 and QKI-6 were shown to

have pivotal roles in regulating and maintaining cardiovascular

health, deficiency of which triggers embryonic lethality (175). In

addition, studies have demonstrated both QKI-5 and QKI-6 to be

anti-apoptotic in cardiomyocytes, favoring cell survival via the

elevation of pro-apoptotic factors during cardiac injury (176).

Furthermore, QKI-5 was recently shown to be integral to the

regulation of cardiac myofibrillogenesis and its deficiency

promotes apoptosis and atrophy in cardiomyocytes (177, 178).

Another RBP known to regulate many genes involved in

cardiac function via alternative splicing is RBFOX2. In multiple

animal models, a downregulation of RBFOX2 has been shown to

lower heart rate, cause myofibrillar disarray and result in heart

failure (179, 180). Moreover, in individuals with cardiac disease,

mutations in RBFOX2 have been identified (181). Unsurprisingly,

a role for RBFOX2 has also been identified in diabetic

cardiomyopathies. Although studies have shown RBFOX2 levels

to be high in diabetic hearts, its alternative splicing activity is

low (169, 170). Like the alternative splicing of the QKI family,

analysis of RBFOX2 in the diabetic heart revealed diabetic hearts

to express a dominant negative alternatively spliced isoform of

RBFOX2 responsible for blocking RBFOX2-mediated alternative

splicing (170). Further analysis of the mis-spliced transcripts in

diabetic hearts revealed 73% to have RBFOX2-binding sites,

including genes associated with the expression of cytoskeleton

and intracellular calcium handling (170). Accordingly, RBFOX2

dysregulation contributes to diabetic complications in the heart.

A reduction of LIN28, an RBP predominantly known for its roles

in promoting pluripotency, in cardiomyocytes has shown to

decrease contractile function and cell death (167). LIN28 was

found to be significantly reduced in diabetic hearts and

exacerbate cardiac symptoms observed through a decrease in left

ventricular ejection fraction, increased apoptotic index and

mitochondrial dysfunction (167, 182). Overexpression of LIN28,
.

ed role/mechanism References
ibiting Mst1 and PKA/ROCK2 signaling (167, 168)

genes might contribute to DCM pathogenesis (169)

3, caspase-1 and IL-1β signaling (106)

genes might contribute to DCM pathogenesis (169, 170)
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however, prevented cardiomyopathy in diabetic mice,

demonstrating its protective role in cardiac function (167, 168).

Comparably, knockdown of the RBP ELAVL1, a known major

contributor to diabetic complications, which has also been found

to be upregulated in diabetic hearts and correspond with

cardiomyocyte death, resulted in smaller infarct size and fibrosis

area following a myocardial infarction (106, 183). Extensive

evidence therefore demonstrates a primary role for RBPs and

their dysregulation in the development and progression of

diabetic cardiomyopathies; revelations of such roles may aid the

development of novel therapeutic interventions.
4. Discussion

Mitochondrial dysfunction has emerged as a key driver of

cardiovascular diseases, including DCM. While mitochondria are

mainly known for their metabolic roles and properties, they are

integral to other important cellular processes, including oxidative

balance, Ca2+ handling and apoptosis. Hence, mitochondrial

dysfunction goes far beyond alterations of energy metabolism and

manifests in disruptions of both intra- and extramitochondrial

cellular mechanisms. Mitochondrial dysfunction has been

thoroughly studied and implicated in DCM pathogenesis, its

hallmarks including a shift towards increased fatty acid uptake

and oxidation leading to decreased cardiac efficiency, increased

oxidative stress causing mitochondrial damage, disruption of Ca2+

homeostasis resulting in contractile dysfunction as well as

imbalance in fission and fusion giving rise to mitochondrial

fragmentation (3, 11, 12).

In recent years, ncRNAs and RBPs were studied in many

diseases and have been implicated in both mitochondrial

dysfunction and DCM. Some seem to serve physiological or

protective functions and their downregulation is found to be
TABLE 5 ncRNAs and RBPs involved in mitochondrial health/dysfunction and

Type Name Target Mechanism in mito

miRNA miR-1 IGF-1 Prevents IGF-1-mediated restoration of mitoch
cytochrome-c

miR-9 BCL2L11 Prevents apoptosis through BCL2L11 inhibitio

miR-22 SIRT1 Promotes mitochondrial damage through SIRT

miR-34a SIRT1 Promotes apoptosis through SIRT1 inhibition

miR-141 SLC25A3 Suppresses SLC25A3, modulating ATP produc

miR-195 MFN2 Disrupts mitochondrial morphology and funct

lncRNA ANRIL BCL2 Promotes cytochrome-c release and apoptosis

GAS5 BCL2 Promotes apoptosis through BCL2L4/BCL2L7

H19 miR-675 Prevents BCL2/VDAC1-mediated apoptosis th

HOTAIR UQCRQ, MICU1 Maintains mitochondrial function through UQ
apoptosis

MEG3 BCL2 Promotes cytochrome-c release and apoptosis

MIAT TSPO Promotes TSPO-mediated apoptosis

TUG1 PGC-1α Improves mitochondrial bioenergetics through

RBP CUG-BP BCL2L4/8, JUND Prevents apoptosis through mediating the dec

ELAVL1 DRP1 Promotes mitochondrial fragmentation throug

LIN28a LARS2 Promotes mitochondrial dysfunction by inhibi

RBFOX2 SLC25A4 Contributes to mitochondrial health through m
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associated with various disease states. Conversely, others

contribute to the disruption of mitochondrial function and

pathophysiological changes seen in DCM (58, 81, 82, 132, 152,

163). This review aimed to collect and newly synthesize current

insights into ncRNA and RBP involvement in mitochondrial

dysfunction in the context of DCM.

Many ncRNAs and RBPs which are known to play a key role in

mitochondrial health and dysfunction, have also been implicated in

DCM (Table 5). For the majority of these, their impact on

mitochondrial health or dysfunction has been assessed in

diseases other than DCM—most studies using cancer-related in

vitro models—and their specific function in DCM remains to be

uncovered. Only for few ncRNAs, including miR-1 and miR-141,

a specific role and associated mechanistic pathway impacting on

mitochondrial dysregulation in the context of DCM has been

determined (118, 124).

Overall, there have been few studies looking at unifying

pathways that would link ncRNA/RBP-associated dysregulation

of mitochondrial function to DCM development and progression.

While this fascinating link remains to be uncovered, the required

research is complicated by the complex mechanisms and

interactions underlying ncRNA/RBP-driven posttranscriptional

regulation of gene expression. The associated processes are

multifaceted and comprise different layers of regulation,

impacting every stage of gene expression, including transcription,

splicing and translation.

MiRNAs, such as miR-675, can regulate mitochondrial

function through inhibition of multiple key regulators, including

the fusion protein MFN2 and the anion channel VDAC1 (138,

197). MiR-675’s potential role in DCM highlights the complex

and sometimes contradicting mechanisms that need to be

understood in order to fully appreciate the underlying regulatory

pathways. Studies observed downregulation of miR-675 in the

context of hyperglycemia which led to increased cardiomyocyte
found to be differentially expressed in DCM.

chondrial dysfunction Expression
in DCM

References

ondrial membrane potential resulting in release of Down/Up (118)

n Down (184)

1/PGC-1α inhibition Down (185)

Up (186)

tion and ATP synthase activity Up (124)

ion through targeting MFN2 Up (187)

through BCL2 inhibition Up (188)

signaling Down (189)

rough miR-675 induction Down (138)

CRQ regulation and prevents MICU1-mediated Down (71, 190)

through BCL2 inhibition Up (191)

Up (192)

PGC-1α enhancement Up (75)

ay of BCL2L4, BCL2L8 and JunD Up (193)

h regulation of fission protein DRP1 Up (194)

ting LARS2/PGC-1α/Nrf2 signaling Down (195)

itochondrial gene expression regulation Up (196)
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apoptosis. While excessive cardiomyocyte apoptosis can be seen in

cardiomyopathies, miR-675 downregulation also results in

increased expression of MFN2, which is contrary to what many

studies observed in DM. This not only highlights the complexity

of one protein, such as MFN2, being targeted by multiple

posttranscriptional regulators, but might also exemplify the

difficulty of deciphering the exact role of each player in the

coexisting health-protecting and disease-promoting processes.

While some expression changes might actively promote DCM

development and progression, others might be a protective

response aimed at maintaining cellular homeostasis and function.

Additionally, effects of molecular expression changes might differ

in the acute and chronic setting, as seen in other cardiovascular

diseases (198). Some protective responses in the context of acute

hyperglycemia might become pathological if maintained for too

long. With multiple targets, both within and outside of

mitochondria, miRNAs can be involved in mitochondrial and

extra-mitochondrial processes, such as miR-214, which targets

MFN2, but also the tumor suppressor protein PTEN and various

other genes (199, 200). Furthermore, lncRNAs and other

ncRNAs can influence and modulate miRNA action. MiR-214,

for example is known to be inhibited by lncR KCNQ1OT1,

which promotes cardiomyocyte pyroptosis and is upregulated in

DM (145). However, the role of KCNQ1OT1 and many other

miRNA-regulating ncRNAs in mitochondrial dysfunction has

never been explicitly investigated. Considering that gene

expression changes are not dependent on a single mediator, but

are influenced by the complex, interconnected relationships of

various posttranscriptional regulators, it is not surprising that the

exact role of individual ncRNAs or RBPs in mitochondrial

dysfunction and DCM is difficult to ascertain. Nevertheless, the

emerging evidence linking ncRNAs and RBPs with mitochondrial

dysfunction and DCM independently, justifies further studies

into unifying pathways and mechanisms that could underly

mitochondrial dysfunction in DCM.

Looking beyond these complex regulatory mechanisms, certain

genes seem to emerge as particularly prominent targets. These

include regulators of mitochondrial metabolism, ion channels,

and mitochondrial fusion/fission proteins. PGC-1α/β, for

example, seem to be targeted by various ncRNAs associated with

both mitochondrial dysfunction and DCM (60, 135, 201). Given

their central role in mediating the uptake and use of fatty acid,

their crucial role in DCM-associated metabolic shifts appear

plausible. Additionally, they have been shown to impact on

proinflammatory and prooxidant signaling, further highlighting

their potential importance for the development of mitochondrial

dysfunction in the context of DCM (198, 202). Similarly,

mitofusins appear to be targeted by various ncRNAs and RBPs

implicated in DCM, linking DM-associated pathophysiological

changes to disrupted mitochondrial dynamics.

Since ncRNAs and RBPs are secreted into the systemic

circulation and their blood concentrations have been shown to

differ in patients compared to heathy controls, they have been

proposed as circulating biomarkers for various diseases. For

instance, a large number of cardiac and non-cardiac miRNAs,

including miRs 1 and 133a, have shown biomarker potential due
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to their differential serum concentrations in cardiovascular disease

(203). Various ncRNAs have also been proposed as biomarkers for

Type 2 DM and its complications, such as diabetic retinopathy

(204–206). In the context of DCM, lncRNA serum levels were

found to be directly associated with diastolic dysfunction and

cardiac remodelling in patients with Type 2 DM (207).

Furthermore, some circulating ncRNAs have been shown to

correlate with commonly used clinical markers, such as serum

glucose and HbA1c, in patients with Type 1 and 2 DM (208, 209).

However, there is an ongoing need for prospective studies which

track the expression levels of ncRNAs or RBPs and correlate those

with DCM severity and progression in order to adequately assess the

potential of these mediators as diagnostic or prognostic biomarkers.

Therapies trying to build upon these insights, might focus on

posttranscriptional regulators, including ncRNAs and RBPs, or

their targets, such as PGC-1α/β or MFN1/2. Deciding on the

most promising or effective therapeutic target is made difficult by

the fact that each regulator has multiple targets, and each target

has multiple regulators. Potential RNA-based therapies can either

use ncRNAs as therapeutic agents to re-establish physiological

expression levels of key genes, or directly target ncRNAs known

to be involved in pathogenic processes. While multiple such

agents have been approved or are currently undergoing clinical

trials, there remain challenges in therapeutically using or

targeting ncRNAs and other transcriptional regulators, which

include agent immunogenicity, target specificity, and effective

delivery (210). To improve our understanding and allow

therapeutic application of new insights, further studies need to

uncover the exact mechanisms and identify key drivers

underlying mitochondrial dysfunction in the context of DCM.
5. Future work

While in vivo animal models, such as obese (ob/ob) or diabetic

(db/db) mice, are a great source of insight into the

pathophysiological manifestations of DCM and the effect of

interventions, such as the administration of insulin, the further

investigation and thorough understanding of the underlying

molecular mechanisms require adequate and reliable in vitro

models. Such models should display key features of DCM,

including insulin resistance, increased fatty acid metabolism and

oxidative stress, as well as disrupted Ca2+ handling and contractile

dysfunction (211). In recent years, stem cell models have emerged

as a promising tool for studying DM and its vascular complications.

Other in vitromodels have been frequently used in the past, each,

however, with its own challenges. While H9C2 rat cardiac cells or

HL-1 immortalized mouse cardiomyocytes are easy to culture and

study, their applicability in the context of DCM is limited due to

significant differences in their expression of key cardiac genes and

phenotypic features. Primary adult cardiomyocytes, on the other

hand, are difficult to culture and while neonatal cells are easier to

maintain, their phenotype remains immature (212, 213).

Induced pluripotent stem cells (iPSCs)-derived cardiomyocytes

have been used to study various cardiovascular diseases, including

myocardial hypertrophy, arrythmias and cardiomyopathies, with
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some of their features, such as being of human origin as well as the

possibility of generating patient-specific models, making them a

particularly useful model system (214, 215). The use of models

comprising a single cell type, such as cardiomyocytes, offers a

chance to study cell specific mechanisms, but cannot capture the

complex interactions of different cells types seen in vivo. Therefore,

organoids and other three-dimensional models using multiple cell

types, are an interesting and rapidly developing resource for future

studies into the mechanisms underlying vascular complications in

DM (216). While iPSC-derived cardiomyocytes have been used as

models of DCM and offer fascinating insights into disease- and

patient-specific molecular changes, further validation and

characterization of differentiation protocols are needed to ensure

adequate reproducibility and applicability (214, 217).

iPSCs have also been widely used to model mitochondrial

diseases, since their metabolic profile allows for manipulation of

mitochondrial function while preserving cell viability (218).

Assessing key mitochondrial properties, such as oxidative

capacity, Ca2+ handling and fission/fusion, in these cells provide

further insights into the mitochondrial changes resulting from

and possibly contributing to disease development and

progression. Li et al., for instance, investigated mitochondrial

dysfunction in hypertrophic cardiomyopathy using iPSC-derived

cardiomyocytes. Measuring mitochondrial morphology,

mitochondrial membrane potentials and Ca2+ flux, they were

able to correlate mitochondrial functional disruptions with

pathophysiological changes, including electrophysiological

abnormalities (219).

Similar iPSC-models could provide valuable insights when

investigating the role of ncRNAs and RBPs in regulating

mitochondrial health and dysfunction in DCM. Their unique

features, including the patient-specific genetic profile, make

iPSC-based models suitable to study aspects of DCM which

have been challenging to determine using other in vitro models,

such as the importance of ncRNA/RBP expression differences

in type 1 and type 2 DM-associated DCM and their potential

contribution to variabilities in underlying pathological

mechanisms. Building on the current understanding of key

regulators and their associated targets, future in vitro studies

should further characterize the complex changes to

posttranscriptional mechanisms contributing to mitochondrial

dysfunction and driving DCM pathogenesis. Continuously

expanding analytic capabilities, such as the transcriptomic and

proteomic analysis of organoids used in the context of

neurodevelopment and precision medicine, could be applied to

DCM to further characterize pathological changes in ncRNA-

and RBP-mediated posttranscriptional regulation (220, 221).

While available evidence clearly highlights the crucial role of

mitochondrial dysfunction in DCM and indicates the

importance of ncRNA/RBP-mediated posttranscriptional

regulation of gene expression in both mitochondrial

dysfunction and DCM, future studies will need to bring

together these insights and further define the underlying

mechanisms and pathways. Identifying key posttranscriptional

regulators and their targets would not only improve our

understanding of the complex drivers of DCM pathogenesis but
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would also allow the study of new therapies which could prove

effective in treating DCM and other DM-associated

cardiovascular complications by modulating these complex

regulatory mechanisms.
6. Conclusion

In summary, mitochondrial dysfunction has been shown to be

a key driver of DCM, by disrupting cellular mechanisms in

cardiomyocytes, including energy metabolism, Ca2+ homeostasis

and autophagy. ncRNAs and RBPs are implicated in

mitochondrial health and disease and have been shown to be

significantly dysregulated in DCM. Synthesizing the evidence

from studies looking at ncRNAs and RBPs in DCM and other

diseases, we provide an overview of key regulators and targets,

but also highlight the lack of evidence regarding the impact of

ncRNAs and RBPs on mitochondrial dysfunction in the context

of DCM. Future studies will need to investigate the role of

individual ncRNAs and RBPs and their impact on gene

expression of important cardiac proteins, such as mitochondrial

enzymes and ion channels. iPSC-derived cardiomyocytes emerge

as a promising in vitro model allowing the study of disease- and

patient-specific cells of human origin. Gaining further insights

into the exact posttranscriptional mechanisms driving

mitochondrial dysfunction in DCM could identify promising

drug targets, thereby contributing to the vital search for new

therapies to improve clinical outcomes for patients suffering from

DCM and other DM-associated complications.
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