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Ginsenoside Rb1 protects human
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against resistin-induced oxidative
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Resistin has been shown to play a key role in inducing vascular smooth muscle
cells (VSMCs) malfunction in the atherosclerosis progression. Ginsenoside Rb1 is
the main component of ginseng, which has been used for thousands of years
and has been reported to have a powerful vascular protective effect. The aim of
this study was to explore the protective effect of Rb1 on VSMCs dysfunction
induced by resistin. In the presence or absence of Rb1, human coronary artery
smooth muscle cells (HCASMC) were treated at different time points with or
without 40 ng/ml resistin and acetylated low-density lipoprotein (acetylated
LDL). Cell migration and proliferation were analyzed using wound healing test
and CellTiter Aqueous Cell Proliferation Assay (MTS) test, respectively.
Intracellular reactive oxygen species (ROS) (H2DCFDA as a dye probe) and
superoxide dismutase (SOD) activities were measured by a microplate reader
and the differences between groups were compared. Rb1 significantly reduced
resistin-induced HCASMC proliferation. Resistin increased HCASMC migration
time-dependently. At 20 µM, Rb1 could significantly reduce HCASMC migration.
Resistin and Act-LDL increased ROS production to a similar level in HCASMCs,
while Rb1 pretreated group reversed the effects of resistin and acetyl-LDL.
Besides, the mitochondrial SOD activity was significantly reduced by resistin but
was restored when pretreated with Rb1. We confirmed the protection of Rb1 on
HCASMC and suggested that the mechanisms involved might be related to the
reduction of ROS generation and increased activity of SOD. Our study clarified
the potential clinical applications of Rb1 in the control of resistin-related
vascular injury and in the treatment of cardiovascular disease.

KEYWORDS

ginsenoside Rb1, resistin, vascular smooth muscle cells (VMSCs), reactive oxygen species

(ROS), superoxide dismutase(SOD)

Introduction

Ginseng is a traditional herbal adaptation, which has a history of more than 5,000 years.

It is widely used in Asia and also in western medicine. At present, it is simply made into a

drink to improve physical performance and treat many chronic diseases, such as cancer and

cardiovascular, inflammatory, neuronal, and metabolic diseases (1). In the United States of

America, ginseng ranks second and fifth in use among adult best-selling natural products in

2002 and 2007, respectively (2). Ginsenoside, a sterol glycoside, is found only in ginseng,

which are divided into two groups: Rb1 group and Rg1 group. Ginsenoside Rb1 (Rb1) is
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the main active components from ginseng, the pharmacological

effects of which attract much attention in the endocrine,

cardiovascular, and immune systems in recent years (3–9).

Cardiovascular diseases (CVD) are now one of the leading

causes of disability and death in the world, especially in the

elderly population. Recently, accumulating evidence has proven

that Rb1 demonstrated its cardioprotective effect both in vitro

and in vivo. We first reported that Rb1 could block

homocysteine-induced endothelial dysfunction and superoxide

anion production effectively in porcine coronary arteries by in

vitro studies (5). It was reported that Rb1 could also protect

human endothelial cells from oxidized low-density lipoprotein

(oxLDL) (6). In vivo studies showed that pretreatment with Rb1

reduced cardiomyocyte apoptosis induced by myocardial

ischemia/reperfusion injury in diabetic rats and alleviated cardiac

dysfunction (7). In a rat model, Rb1 was proved to inhibit the

carotid intima hyperplasia induced by balloon dilation (8). Rb1

administration promoted atherosclerotic plaque stability along

with increased macrophage autophagy and M2 phenotype in the

atherosclerosis model in ApoE−/− mice (4, 9). However, few

studies examined the protective effect of Rb1 on vascular smooth

muscle cells (VSMCs), especially on human VSMCs.

The key feature of vascular proliferation diseases is the

abnormal proliferation and migration of VSMC, including

atherosclerosis, restenosis after vascular injury and vascular wall

hypertrophy caused by hypertension.(10–12) Resistin is an

adipokine mainly expressed in human monocyte/macrophage

lineage cells, which is closely related to cardiovascular diseases

and adverse clinical outcomes (13). Resistin has been proved to

act in a variety of cells including VSMCs, indicating that resistin

has a certain role in atherosclerosis (14). We and others

demonstrated that resistin at a pathological concentration

promotes vascular smooth muscle cell (VSMC) proliferation and

migration, as well as reactive oxygen species (ROS) production

(15–17). We also demonstrated that inflammation was induced

in VSMCs and VSMCs dysfunction by resistin through protein

kinase C epsilon (PKCϵ)-mediated NADPH oxidase (Nox)

activation (17). However, the role of Rb1 in VSMCS dysfunction

and related mechanisms by resitin has not been investigated and

needs further confirmation. Considering the protective role of

Rb1 in cardiovascular disease, we hypothesized that Rb1 may

protect the progression of atherosclerosis by reversing resistin

induced VSMCs dysfunction and oxidative stress. To test the

hypothesis, we tested the proliferation and migration of VSMCs

induced by resistin with or without Rb1. We also validated the

related mechanism was associated with enhancing antioxidation

property of Rb1 by reducing ROS production and increasing

superoxide dismutase (SOD) activity in VSMCs.
Methods

In vitro treatment and cell culture

Experiments were performed using human coronary artery

smooth muscle cells (HCASMC) or VSMCs from Genlantis (18)
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at passage 5–7. Before each experiment, the medium was replaced

to Dulbecco’s Modified Eagle Medium (DMEM) supplemented

with 2% FBS for at least 8 h (hs) to starve the cells. In our study,

we selected a pathological resistin level (40 ng/ml) which based on

the published data of resistin in human subjects and our previous

study, indicating that this concentration leads to VSMCs

dysfunction and intimal hyperplasia (17, 19). Cells were managed

with or without resistin at 40 ng/ml in the presence or absence of

ginsenoside Rb1 (G0777-5MG, Sigma-Aldrich) for various time

points at 20 µM according to previous research (n = 5) (4).

Acetylated low-density lipoprotein (acetyl-LDL) was also used to

treat cells in proliferation and ROS experiments because it is

known to accumulate in macrophages to form foam cells and play

a critical role in the mechanism of atherosclerosis by stimulating

the proliferation of VSMCs (20).
Cell proliferation assay

The cells treated with resistin (40 ng/ml) or acetyl-LDL (20 µg/

ml) in the presence or absence of Rb1 (20 µM) for 1 h were seeded

in a 96-well plate (5,000 cells/well) and incubated for an extra 24 h.

Cell proliferation was evaluated by the usage of CellTiter 96®

AQueous One Solution Cell Proliferation Assay (MTS assay,

Promega). Briefly, 20 ml MTS was added to the cells in each well

containing the samples in 100 µl of culture medium and cultured

for 4 h at 37°C in a humidified 5% CO2 atmosphere. The cell

plate covered with tinfoil was then subjected to a plate reader to

fetch the absorbance at 490 nm. The formula of cell viability was

calculated as follows: Cell Viability = (ODsample−ODbackground)/

(ODcontrol−ODbackground) × 100%.
Cell migration assay

VSMCs migrations were evaluated by wound healing assay and

transwell assay. VSMCs were grown and converged in a 6-well

plate. A transverse scratch wound on each monolayer of VSMC

was made by using a sterilized 200 µl-tip. The scratched VSMCs

were then stimulated with or without resistin (40 ng/ml) in the

presence or absence of Rb1 (20 µM) for an additional 6, 18, and

24 h, then the transverse scratch wounds were reexamined for

cell migration. Pictures were captured with a phase-contrast

microscope, and cell migration was quantified using ImageJ

software, which was calculated as the percent of the wound

closure area relative to that at the start point (t = 0).

Transwell assay was performed in Transwell chambers (HTS

Transwell-96 Well Plate, 5 µm pore size; Corning Inc., USA).

Briefly, 1 × 105/ml cells were seeded on the Transwell Inserts in

75 µl of serum-free medium with or without Rb1 (20 µM). The

bottom plate contained 235 µl of complete growth medium with

resistin at 40 ng/ml. Cells migrated at 37°C for 24 h. After 24 h

of culture, the non-migrated cells on the membrane top surface

were removed with a cotton swab. After that, the migrated cells

on the bottom side of the membrane were stained with 0.1%

crystal violet and then destained with PBS.
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Intracellular ROS evaluation

Intracellular ROS were evaluated using the fluorescent probe

2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (ab113851,

Abcam) according to the supplier’s protocol. Briefly, cells were

seeded in a 96-well plate (2.5 × 104/well) overnight, then incubated

with the probe (25 µM final concentration) for 45 min at 37°C in

a humidified, 5% CO2 atmosphere. Then the cells were washed in

PBS and treated with or without resistin or acetyl-LDL in

supplemented buffer containing 10% fetal bovine serum (FBS) for

2 h. Rb1 was added at the same time (Co-treatment group) or

24 h before the addition of resistin or acetyl-LDL (Pre-treatment

group). The pretreatment group was set because we found the

exposure time of 2 h was not enough for Rb1 to take effect. The

fluorescence of the cell homogenate was measured on a

fluorescence plate reader at Ex/Em= 485/535 nm at the end point.

The data are expressed as the ratio of fluorescence/fluorescence of

the unstimulated control. Tert-Butyl Hydrogen Peroxide (TBHP)

was used as a positive control.
Measurement of antioxidant enzyme
activity

In order to elucidate the effects of Rb1 after resistin exposure,

SOD activities in the homogenate were measured by an enzymatic

assay using a commercial kit (706,002, Cayman Chemical)

according to the manufacturer’s instructions. In brief, cells

seeded in a 6-well plate were pretreated with Rb1 for 24 h and

then exposed to resistin for 2 h. The cells in each group were

harvested using a rubber policeman and sonicated in cold

20 mM Hepes (PH 7.2, containing 1 mM EGTA, 210 mM

mannitol, and 70 mM sucrose). Then the cell lysates were used

for assaying total SOD activity (cytosolic and mitochondrial). To

separate these two enzymes, the cell lysates were centrifugated at

10,000×g for 15 min at 4°C. The resulting 10,000×g supernatant

contained cytosolic SOD and the pellet contained mitochondrial

SOD. For SOD assay, 200 µl of radical detector and 10 µl of SOD

standard with different concentrations or 10 µl of sample were

added to each designated well. The reactions were initiated by

adding 20 µl of xanthine oxidase to all wells except the sample

background. The 96-well plate was incubated on a shaker for

30 min at room temperature. The absorbance was read at 450 nm

by a plate reader. The SOD activity of the samples was calculated

from the linear regression of the standard curve. One unit of

SOD is defined as the amount of enzyme needed to exhibit 50%

dismutation of the superoxide radical.
Statistical analysis

The numeric data are presented as mean ± SD. Differences

between groups were analyzed by one-way ANOVA or an

independent sample t-test. If the p-value is less than 0.05, the

results are considered to be statistically different.
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Results

Rb1 ameliorated resistin-stimulated
HCASMC proliferation

We first examined the effect of Rb1 on resistin-stimulated

HCASMC proliferation by MTS assay. Data on the percentage of

viable cells after treatment revealed that both resistin and acetyl-

LDL stimulated HCASMC proliferation significantly. Rb1 alone had

no effect on the proliferation of HCASMC, however, it significantly

reduced resistin-induced HCASMC proliferation (Figure 1). Rb1

also ameliorated acetyl-LDL induced proliferation of HCASMC,

although no statistical significance had been found in our data.
Rb1 suppressed resistin-induced HCASMC
migration

To elucidate the effects of Rb1 on HCASMC migration, a

wound healing assay was used. The wound healing assay revealed

resistin at 40 ng/ml treatment time dependently increased

VSMCs migration, which was attenuated significantly by Rb1 at

20 µM at 18 h and 24 h (Figure 2). A transwell migration

chamber assay was also used to further identify the chemotaxis

effect of resistin with or without Rb1. As shown in Figure 2,

resistin increased the migratory ability of HCASMCs, whereas

Rb1 inhibited the resistin-induced HCASMC migration.
Effect of Rb1 on intracellular ROS
production of HCASMC

It has been well-documented that high expressed ROS could lead

to destructive impact on both differentiated EC and VSMC (21). Since

ROS generations are key instigators in the pathophysiology of resistin-

associated VSMC dysfunction and intimal hyperplasia (14), we

determined whether Rb1 was able to inhibit resistin-induced ROS

production in HCASMC by DCF-DA fluorescence assay. We found

that both resistin and acetyl-LDL could increase ROS production in

HCASMC to a similar level, and while pretreated with Rb1, ROS

production induced by resistin and acetyl-LDL were reduced

significantly (Figure 3). In addition, we proved that both Rb1 and

resistin have dose-dependent effects on ROS production in

HCASMC, suggesting Rb1 at a concentration of 20 µM could

significantly reduce resistin (40 ng/ml) induced cytosolic ROS in

VSMCs (Figure 4). It was interesting to find that Rb1 pretreatment

was more effective than co-treatment in restoring ROS levels

induced by resistin in HCASMC (Figure 3).
Rb1 attenuated resistin-induced
suppression of mitochondrial SOD activity
in HCASMC

In order to clarify the pathogenesis of the antioxidation of Rb1

in HCASMC exposed to resistin, the catalytic activity of SOD was
frontiersin.org
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FIGURE 1

Resistin-induced human coronary artery smooth muscle cells (HCASMC) proliferation was ameliorated by Rb1. HCASMC proliferation, evaluated by MTS
assay, was significantly increased by resistin and acetyl-LDL, which could be restored by Rb1. Note that Rb1 alone had no effect on proliferation of
HCASMC. Cell Viability = (ODs−ODb)/(ODc−ODb) × 100%. ODs, the OD value of the samples; ODb, the OD value of the background; ODc, the OD
value of the negative control. Values were means and SD (n= 5). *P < 0.05.

Lu et al. 10.3389/fcvm.2023.1164547
analyzed by the measurement of dismutation of superoxide radical

in HCASMC that had been treated with Rb1 for 24 h followed by

40 ng/ml of resistin for additional 2 h. Resistin reduced the total

SOD activity in HCASMC which was shown in Figure 5;

however, pretreatment with Rb1 (20 µM) significantly attenuated

the resistin-induced suppression of the total SOD activity. Rb1

alone was capable to exert its antioxidation by increasing the

SOD activity in HCASMC. To further target the specific part of

HCASMC on which resistin and Rb1 took effect, we analyzed the

cytosolic and mitochondrial SOD activity within HCASMC. Our

data revealed that the mitochondrial SOD activity was

significantly reduced by resistin but was significantly increased

when pretreated by Rb1 (P < 0.01). This suggested resistin might

increase ROS production of HCASMC partially through reducing

the mitochondrial SOD activity, which could be significantly

reversed by Rb1.
Discussion

Dysfunction of VSMCs and macrophages are the main causes

of atherosclerotic plaque progression. Recent studies suggest that

the crosstalk between VSMC and monocytes/ macrophages

represents a great role for the atherosclerosis and leads to up-

regulation of resistin in monocytes (18, 22). Resistin is a type of

cytokine produced by monocytes/macrophages in human

atheroma, and a grow number of clinical evidence indicates that

resistin may independently predict major adverse cardiovascular
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events (18, 23). Additionally, resistin has been demonstrated to

play a critical role in inflammation and intracellular ROS

production of VSMCS that are closely relevant in the

pathogenesis of cardiovascular disease (17, 18). However, the

relevant mechanism and new therapeutic strategies remain

uncertain. Our study represents a new potential treatment option

by demonstrating that resistin and acetyl-LDL induced

HCASMCs migration and proliferation could be significantly

attenuated by Rb1, which was related to the reduction of ROS

and the increase of SOD activity in HCASMCs. Our data

suggested ginsenoside Rb1 has the potential of protecting against

resistin-induced pathophysiological changes of atherosclerosis.

Recently, the positive effects of ginsenosides on CVD were

confirmed including their ability of controlling ROS, production

of nitric oxide (NO), and the activation of various receptors in

endothelial cells (24). We first reported ginsenoside Rb1 could

cut off superoxide anion production, endothelial dysfunction and

eNOS down-regulation of porcine coronary arteries by

homocysteine (5). Other studies also suggested that Rb1

protected human aortic and umbilical vein endothelial cells of

human through the production and release of nitric oxide in the

endothelium via PI3K/Akt activation and PKC inhibition

(25, 26). Zhang et al. proved that Rb1 restricted the

inflammatory response and promoted M2 macrophage

polarization, which further helps to stabilize atherosclerosis

progression in ApoE−/− mice (4). These reports, however, are

limited mostly to data of endothelial cells, with few studies

examining the protective effect of Rb1 on VSMCs. Li et al. found
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FIGURE 2

Rb1 inhibited resistin-induced HCASMC migration. (A) Transwell migration chamber assay and wound healing assay showed resistin-induced HCASMC
migration was inhibited by Rb1. (B) Cell migration was calculated as the fold change of wound closure relative to controls (T = 0). Resistin (40 ng/ml)
treatment time dependently increased HCASMC migration, which could be significantly attenuated by Rb1 (20 µM) at 18 h and 24 h (B). Values were
means and SD (n= 5). * P < 0.05.
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Rb1 could inhibit TNF-α-evoked inflammatory responses and FBS-

induced proliferation in vitro experiment of rats (28). In a rat

model, Zhang demonstrated that Rb1 could inhibited neointimal

hyperplasia after balloon dilation by inhibition of VSMC

proliferation (8). However, the aforementioned studies are confined

to the level of rat VSMCs. In the present study, the protective

effect of Rb1 on HCASMCs dysfunction induced by resistin and

acetyl-LDL was demonstrated by wound healing assay and MTS

assay. As far as we know, this is the first study to evaluate the role

of Rb1 in human VSMC dysfunction induced by resistin.

It is worth noting that the protective effect of Rb1 was related

to the ROS reduction within VSMCs as shown in our study. ROS
Frontiers in Cardiovascular Medicine 05
are key signaling molecules that regulate vascular function and

structure under physiological conditions. However, excessive ROS

expression may be associated with the progression of several

adverse cardiovascular diseases, such as VSMC proliferation and

vascular remodeling caused by inflammatory reaction (21). At

the intracellular level, the activation of mitogen activated protein

kinases (MAPKs) in ROS-dependent signaling pathways in

VSMCs involves p38, extracellular signal-regulated kinases

(ERK1/2), c-Jun N-terminal kinases and the serine/threonine

kinase Akt/protein kinase, which play a critical role in cell

proliferation and migration and pathological remodeling (21, 28).

We previously have proved that resistin-related intimal
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FIGURE 3

Rb1 pretreatment reduced resistin-induced ROS production in HCASMC. HCASMC ROS production was detected by DCF-DA fluorescence assay. After
treated with resistin (40 ng/ml) or acetyl-LDL (20 µg/ml) for 2 h, the intracellular ROS were significantly increased to a similar level. Rb1 pretreatment
(24 h) significantly reduced HCASMC ROS generation induced by resistin and acetyl-LDL, while Rb1 co-treatment (2 h) had no such effect. Values
were means and SD (n= 5). *P < 0.05.

FIGURE 4

Rb1 pretreatment dose dependently inhibited resistin-induced HCASMC ROS generation. Resistin dose dependently increased ROS generation in
HCASMC, which could be significantly inhibited by Rb1 (>20 µM) in a dose-dependent manner. Values were means and SD (n= 5). *P < 0.05, #P < 0.01.

Lu et al. 10.3389/fcvm.2023.1164547
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FIGURE 5

Rb1 attenuated resistin-induced suppression of HCASMC SOD activity. (A) The SOD activity of the samples was calculated from the linear regression of the
standard curve. One unit of SOD is defined as the amount of enzyme needed to exhibit 50% dismutation of superoxide radical. (B) The mitochondrial SOD
activity was significantly reduced by resistin. In contrast, Rb1 significantly increased both cytosolic and mitochondrial SOD activity in HCASMC, which
attenuated resistin-induced reduction of mitochondrial SOD activity. Values were means and SD (n= 5). *P < 0.05, #P < 0.01.

Lu et al. 10.3389/fcvm.2023.1164547
hyperplasia and VSMC dysfunction were associated with ROS

generation and PKCϵ-dependent Nox activation (17). In the

present study, we further demonstrated resistin-induced ROS

production, which was partially through suppression of SOD

activity, could be reversed by Rb1 pretreatment. Interestingly, we

found that Rb1 pretreatment was more effective in reversing this

disorder than co-treatment. In the co-treatment group of ROS

experiment, the exposure time of 2 h was not long enough for
Frontiers in Cardiovascular Medicine 07
Rb1 to take effect on VSMCs but was sufficient for resistin to

generate a large amount of ROS, which resulted in the

dysfunction of VSMCs afterwards. This suggested Rb1 requires a

relatively long period of time (more than 2 h) to exert its

antioxidative effect on VSMCs.

Besides NADPH oxidase, it is generally believed that ROS in

living cells including vascular cells mainly comes from

mitochondria (29). In the present study, we observed that resistin
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significantly triggered ROS generation by targeting the

mitochondrion SOD activity and causing an imbalance of

oxidative stress within VSMCs, which could be reversed by Rb1.

The mitochondrion SOD is comprised of three isoforms:

cytosolic Cu/Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2)

and extracellular EC-SOD (SOD3) (21). The regulation of Rb1 on

mitochondrial ROS involves the regulation of oxidase and

antioxidant enzymes to inhibit the excessive production and

accumulation of ROS. As previously mentioned, after treatment

with Rb1, through activation of the PI3K/Akt/Nrf2 signaling

pathway, serum or tissue level of SOD were increased in spinal

cord injury and intestinal ischemia/reperfusion model rats

(30–32). In vitro study, Rb1 could markedly increase intracellular

SOD activity in ritonavir-treated human endothelial cells and

inhibit the production of intracellular ROS (34). Thus, in

consistent with this, our results showed Rb1 effectively exerted

antioxidation by regulating SOD activity to relieve resistin-

induced mitochondrial damage in VSMCs.

There are some limitations in our study. Although we

confirmed the protection of Rb1 on VSMCs was related to the

increase of SOD activity, the dynamic equilibrium of ROS

production and elimination is far more complicated and needs to

be further elucidated. For example, the elimination of superoxide

anions is the consequence of coaction of several antioxidant

enzymes. SOD catalyzes the dismutation of superoxide anions

into H2O2 and oxygen, and H2O2 can be metabolized rapidly to

water and oxygen by enzyme-linked reactions (34, 35). Whether

Rb1 has a positive effect on other antioxidant enzymes, such as

catalase, remains to be investigated. Secondly, the exact molecular

mechanism for the protective effect of Rb1 has not been fully

revealed in the present study. Numerous studies have identified

that Rb1 exhibits antioxidant effects by activating the PI3K/Akt

pathway with subsequent Nrf2 nuclear translocation and

induction of antioxidant enzymes (30–32, 36–38). Since we have

shown the protective effect of Rb1 was related to the

antioxidation of SOD, which is one of the downstream

productions of Nrf2 gene, we speculated that the part of the

mechanism underlying the beneficial effects of Rb1 on resistin-

induced VSMC dysfunction might be related to ROS dependent

PI3K/Akt/Nrf2 signaling pathway. However, further studies will

be required to examine this hypothesis.
Conclusion

This study provides new evidence supporting the hypothesis

that ginsenoside Rb1can inhibit resistin-induced proliferation and

migration in HCASMCs. Furthermore, we showed that the

mechanisms involved in these effects exerted by Rb1 might be

related to the reduction of ROS generation and increased activity

of SOD. However, the molecular mechanism for the protective

effect of Rb1 is far more complicated and needs to be further

elucidated. The findings presented here also highlight the

potential clinical applications of Rb1 in controlling resistin-

associated vascular injury and the possible therapeutic use in

cardiovascular disease.
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