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Introduction: In clinical practice, hemodynamics-based functional indices, such as
fractional flow reserve (FFR) and wall shear stress (WSS), are useful in assessing the
severity and risk of rupture of atherosclerotic lesions. Computational fluid dynamics
(CFD) is widely used to predict these indices noninvasively.
Method: In this study, uncertainty quantificationand sensitivity analysis are performed
for the computational prediction of WSS and FFR directly from 3D–0D coupled CFD
simulations on idealized stenotic coronary models. Five geometric parameters
(proximal, mid, and distal lengths of stenosis; reference lumen diameter; and
stenosis severity) and two physiological parameters (mean aortic pressure and
microcirculation resistance) are considered as uncertain input variables.
Results: When employing the true values of stenosis severity and mean aortic
pressure, a discernible reduction of 25% and 9.5% in the uncertainty of the
computed proximal WSS, respectively. In addition, degree of stenosis, reference
lumen diameter, and coronary resistance contributed the uncertainty of computed
FFR, accounting for 41.2%, 31.9%, and 24.6%, respectively.
Conclusion: This study demonstrated that accurate measurement of the degree of
stenosis and mean aortic pressure is crucial for improving the computational
prediction of WSS. In contrast, the reference lumen diameter, degree of stenosis,
and coronary resistance are the most impactful parameters for FFR.

KEYWORDS
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method, computational fluid dynamics, fractional flow reserve, wall shear stress

1. Introduction

Coronary artery disease (CAD) is the most common cause of mortality worldwide (1).

Significant narrowing of the coronary lumen owing to endothelial plaque accumulation can

interfere with the flow of oxygen-rich blood to the myocardium, thereby causing ischemic

symptoms and myocardial infarction. Traditionally, a morphology-based index, the percentage

reduction of arterial lumen diameter in coronary angiography images, has been used to define

the severity of stenosis and as a decision-making tool for revascularization. However, multiple

clinical trials have reported limited diagnostic accuracy and inferior correlation with prognostic

outcomes. This finding emphasizes the need for a physiology-based functional index (2–4).
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Pressure-wire-based fractional flow reserve (FFR) is defined as

the maximal coronary flow to the myocardium in the presence of

stenosis divided by the theoretical maximal blood flow in a

normal coronary artery, and it is currently the reference standard

for identifying hemodynamically significant stenotic lesions in

coronary circulation (5–9). This was approximated as the ratio of

the mean coronary pressure measured distal to the stenosis to

the mean aortic pressure under hyperemic conditions. To

measure FFR, an invasive pressure wire and pharmacological

agents that induce maximal vasodilation of the microcirculation

are required (10). In maximal vasodilation (hyperemia), the distal

coronary pressure is directly proportional to the maximum

vasodilated perfusion and coronary flow (7). FFR exhibits

superior diagnostic performance compared with the morphology-

based index (11, 12); however, the practical application rate of

FFR in catheterization laboratories is only approximately 10%,

possibly owing to potential risks during measurements (13).

Noninvasive computational FFR methods have been developed as

alternatives and showed promising potential with excluding the

use of additional pressure wire and hyperemic agents (14). In

this approach, FFR is computationally evaluated by solving the

Navier-Stokes equations for coronary velocity and pressure fields

using computational fluid dynamics (CFD) techniques based on

3D reconstructed vascular geometry derived from coronary CT

angiography or x-ray angiography.

In addition, the local hemodynamic force, i.e., the wall shear

stress (WSS) is widely accepted to play an important role in the

development and progression of atherosclerosis (15, 16). In

particular, high WSS is correlated with plaque rupture in severe

stenosis (>70%); at minimal CAD, low WSS is associated with

rapid plaque progression (17). Kumar et al. (18) reported that

high-risk plaque rupture is more prevalent at the proximal

segment of a stenotic lesion, which is presumed to be related to

the increased time-varying structural strain caused by a high

WSS. Furthermore, proximal WSS combined with FFR is shown

to have an incremental prognostic value in the prediction of

myocardial infarction compared with FFR alone.

With remarkable advancements in computer resources,

computational modeling, and image processing techniques, CFD

has been applied to predict patient-specific intravascular

hemodynamics noninvasively. This approach requires input data,

including patient-specific clinical data and the 3D lumen

geometry of the coronary artery, which is typically reconstructed

from computed tomography and x-ray angiography. However,

owing to inevitable uncertainties associated with the inherent

variability of physiological data, and the inaccuracy of in vivo

measurements and lumen segmentation process of stenosis, the

effect of these input uncertainties on the prediction accuracy of

hemodynamics-based diagnostic indices must be quantified.

Although Monte Carlo simulation is a conventional and simple

method for the analysis of uncertainty quantification (UQ), it is not

feasible for complex problems because its convergence rate follows

the principle of large numbers, i.e., its rate is approximately 1/√N,

where N is the number of samples. Another technique developed in

the recent decades to overcome the issue of long computing time is

the polynomial chaos expansion (PCE) method (19, 20). The PCE
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approximates a random variable as a linear combination of

polynomial functions of other random variables and is faster

than the Monte Carlo method when the number of uncertain

parameters is less than 20 (21). The PCE has been used to

successfully solve various problems in fluid mechanics, including

laminar boundary layer flow on a flat plate, supersonic flow over

a convex corner, and inviscid flow around a three-dimensional

wing, as illustrated in the study conducted by Hosder et al. (22).

Eck et al. (23) previously introduced the utilization of UQ and

SA in the context of cardiovascular applications. They investigated

on the variability of FFR using a 1D model with ten uncertain

parameters: proximal length, stenosis length, distal length,

proximal radius, stenosis radius, distal radius, hyperemic blood

flow, arterial pressure, blood viscosity, and blood density.

Concurrently, they applied both the Monte Carlo (MC) method

and the Polynomial Chaos (PC) method to assess the merits and

demerits of each technique. The findings revealed that among the

uncertain inputs, stenotic radius, hyperemic flow, and arterial

pressure played pivotal roles in contributing to the variance of

FFR. Notably, the PC method demonstrated a substantial

advantage over the Monte Carlo (MC) method. The PC method

required a significantly lower number of samples—2,002 samples

compared to the MC method’s 60,000 samples. Additionally, the

distribution of FFR obtained through the PC method closely

resembled that obtained via the MC method, but at a

significantly lower computational cost.

Sankaran et al. (24) undertook a comprehensive investigation

into the influence of uncertainties of minimum lumen diameter,

lesion length, boundary conditions, and blood viscosity on blood

flow and pressure in both an idealized stenosis model and a

patient-specific model. They employed an adaptive stochastic

method integrated with a data-driven approach to analyze the

effects of these uncertainties. Their findings revealed that the

minimum lumen diameter emerged as the most influential factor

affecting hemodynamic simulations.

Gashi et al. (25) studied the effect of the model-order reduction

approach (2D, 3D, steady, and unsteady) on the computationally

predicted FFR and reported that stenosis severity is the dominant

geometric parameter for all cases.

Although these studies provide valuable information regarding

the influence of the uncertainty of geometrical and physiological

features on computed FFR, they were based only on 1D model

simulations or were limited to a systematic investigation of the

interactive contribution of uncertain input parameters to

variations in FFR output. Furthermore, information regarding the

uncertainty of stenosis WSS predictions is lacking.

In this study, an investigation was conducted to assess the

relative significance of input variables and the repercussions of

their uncertainties on computational predictions of FFR and

WSS. Utilizing uncertainty quantification (UQ) and sensitivity

analysis (SA), the nonintrusive PCE method was employed. The

analytical approach involved an unsteady 3D-0D coupled CFD

analysis, employing idealized coronary artery models rather than

a simplified 1D approach. Lumped parameter networks were

used to model the blood flow within the coronary artery, with

the assumption that the coronary resistance during hyperemia is
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a quarter of the coronary resistance in the normal state. To account

for geometric uncertainties, an eccentric stenosis case was

considered due to its prevalence in CAD. Seven prospective

uncertain inputs were considered: proximal length, middle

length, distal length, reference lumen diameter of the coronary

artery (representing the healthy diameter), degree of stenosis,

mean aortic pressure, and coronary resistance. Additionally, the

convergence of the nonintrusive PCE method was addressed by

comparing various statistical indices at different polynomial orders.
2. Materials and methods

2.1. Geometry modeling and uncertain
input variables

To investigate the effects of uncertainty in the input variables

on FFR and WSS, coronary models were generated based on a

synthetically designed single conduit with various geometric

parameters of stenosis, as shown in Figure 1. Five uncertain

geometric features were considered: proximal, mid, and distal

lengths of stenosis; reference lumen diameter of the coronary

artery; and diameter-based stenosis severity. The eccentricity of

the stenosis was fixed at 35% in all the models. In addition, the

mean aortic pressure and normalized microcirculation resistance

were included as uncertain physiological variables because the

flow rate and cardiac pressure generally play important roles in

coronary flow dynamics. The details of the mean value and

uncertainty levels for each input variable considered in this study

are presented in Table 1. The degree of uncertainty for the input

variables was assumed based on the previous study, in which in

vivo data typically observed in patients were considered (23).

Mean values of vessel geometric parameters were determined by

analyzing approximately 400 patients’ left anterior descending

(LAD) coronary profiles from the literature (26–29). The mean
FIGURE 1

Schematic of an idealized stenotic coronary model.
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aortic pressure (Pa) of 90 mm Hg was applied. The

microcirculation resistance (R) was set to match the mean

flowrate of 1 ml/s under baseline conditions and was reduced by

four times (R/4) for the hyperemic condition (30).

An idealized stenotic coronary model with a 3.6 mm-diameter

was constructed based on the following equations for the geometric

contours.

d(z) ¼
D 1� s0sin

p

2Li
(z � z0)

� �
, z0 � z � z1

D [1� s0], z1 � z � z2

D 1� s0cos
p

2L0
(z � z2)

� �
, z2 � z � z3

8>>>><
>>>>:

, (1)

e(z) ¼

e0sin
p

2Li
(z � z0) , z0 � z � z1

e0 ¼ e0s0
D
2

� �
z1 � z � z2

e0cos
p

2Lo
(z � z2), z2 � z � z3

8>>>>><
>>>>>:

, (2)

x(z)
y(z)

� �
¼ 0

e(z)

� �
þ d(z)

2
cosu
sinu

� �
0 � u � 2p, (3)

Here, d(z) and e(z) represent the vessel diameter at the stenotic

segment and the central axis of stenosis along its length,

respectively. e0 represents the maximum off-center distance of

the stenotic segment; D is the reference lumen diameter of the

coronary artery; s0 is the degree of stenosis.

The eccentricity of stenosis ϵ0 is defined as the percentage

measure of asymmetry or off-center narrowing within the arterial

lumen. Previous studies have demonstrated a higher prevalence

of eccentric stenosis compared to concentric stenosis. Mintz et al.

(31) reported an occurrence of 795 out of 1,446 (55%) eccentric

lesions based on angiography data. Similarly, Yamagishi et al.

(32) investigated the morphological characteristics of 114
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1164345
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Descriptions of uncertain input variables of the computational
model.

Variable Description Mean Unit Uncertainty
Li Proximal length of stenosis 6.0 mm 5%

Lm Middle length of stenosis 6.0 mm 5%

Lo Distal length of stenosis 6.0 mm 5%

D Reference lumen diameter of the
coronary artery

3.6 mm 5%

s0 Degree of stenosis 50 % 5%

ε0 Eccentricity of stenosis 35 % –

Pa Mean aortic pressure 90 mmHg 10%

R Normalized value of coronary
resistance

1 – 10%

Ho et al. 10.3389/fcvm.2023.1164345
coronary plaques using intravascular ultrasound and observed that

92 (80%) cases of stenosis exhibited an eccentric pattern. However,

Seo et al. (33) reported that lesion eccentricity has no statistically

significant effect on FFR. Based on these characteristics, the

coronary model in this study considered a fixed eccentricity of

35%, which significantly reduces the CFD computation time.

Eventually, the uncertainties in the variables are propagated to

the CFD model via the Latin hypercube sampling method (33) with

a uniform distribution.
2.2. Computational fluid dynamics

3D–0D coupled CFD simulations for stenotic coronary flow

were performed (34, 35). The flow was assumed to be transient,

and the blood was an incompressible Newtonian fluid with a

density of 1,050 kg/m3 and kinematic viscosity of 3.5 × 10−6 m2/s.

The unsteady Navier–Stokes equations describing the

conservation of mass and momentum of the blood flow are as

follows.

r _ui þ rujui,j ¼ �p,i þ (ti,j), j0 (4)

ui,i ¼ 0: (5)

For the numerical calculations, these governing equations were

split into four steps for time advancement based on a fully implicit

fractional step method (36) as follows.

Step 1: r
ûi � uni
Dt

þ r
1
2
(ûjûi,j þ unj u

n
i,j) ¼ � pn,i þ

1
2
(t̂ij þ tnij),j (6)

Step 2: r
u�i �ûi
Dt

¼ pn,i , (7)

Step 3: pnþ1
,ii ¼ r

Dt
u�i,i, (8)

Step 4: r
unþ1
i � u�i
Dt

¼ � pnþ1
,i , (9)
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where Δt is the time increment; the superscript n indicates the

time level; and ûi and u�i are intermediate velocities. The second-

order implicit Crank–Nicolson scheme was employed for the

diffusion and convection terms.

To accommodate the specific time-varying pressure-flow

characteristics of coronary flow, the 0D lumped parameter

network (LPN) modeling technique for coronary

microcirculation was integrated into 3D CFD at the outlet, as

shown in Figure 2. The LPN model represents the coronary

circulatory system by combining resistance and capacitance

elements based on the similarity between the hydraulic and

electric systems. The total resistance and capacitance of the

distal coronary bed at rest (baseline) and under the

hyperemic condition, which is the maximum flow condition

achieved by minimizing microvascular resistance, were

determined based on previous studies conducted by

Sankaran (24) and Sharma et al. (37). The MPI parallel

algorithm was applied to reduce the computation time to a

simulation time within 1 h (about 20 min with 64 parallel

cores) (35).

A P2P1 finite element scheme (35) was employed with

quadratic tetrahedral elements generated using a commercial

mesh generator (ICEM-CFD, ANSYS) to achieve higher

accuracy. A mesh convergence study was performed by

comparing the stenotic pressure drop Dpstenosis in the case of

different mesh densities, shown in Figure 3. The difference of

Dpstenosis between the medium mesh (the number of nodes ∼1
million) and the densest mesh (the number of nodes ∼1.8
million) is within 0.5%; Meanwhile, the computation time

significantly increases from 1,400 s to 3,000 s with the same

computational resources (56 parallel cores, Intel Xeon E5-2630

v4). In this way, the mesh with the number of nodes of 1

million was chosen for this study.

For the inlet boundary conditions, a typical aortic pressure

waveform (39), scaled using a mean aortic pressure of 90 mmHg,

was applied. The duration of each cardiac cycle is 1.0 s and is

divided into 120 timesteps. The convergence criteria are

1� 10�6, 5� 10�6 for velocity and mass, respectively. Figure 4

illustrates the blood flow rate under resting (baseline) and

hyperemic conditions and the pressure waveforms for a cardiac

cycle.
2.3. Point-collocation nonintrusive
polynomial chaos method

In the nonintrusive polynomial chaos (NIPC) method, a

surrogate model fPC based on polynomials for output Y is

generated, as follows.

Y � fPC(X) ¼
XNP

i¼1

aiCi(X), (10)
frontiersin.org
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FIGURE 2

Schematic of a 3D–0D coupled CFD approach for an idealized stenotic coronary flow simulation.

FIGURE 3

Mesh independent test for the idealized stenotic coronary.

FIGURE 4

Aortic pressure and flow rate waveforms under resting and hyperemic
conditions of a cardiac cycle. (Aortic pressure was applied at the inlet
as a boundary condition and resting and hyperemic flow rates are
computed results under corresponding conditions).

Ho et al. 10.3389/fcvm.2023.1164345
where Ψi is the expansion or polynomial (typically orthogonal

polynomial) function in relation to the probability distribution of

inputs X; ai is a coefficient to be computed; and Np is the total

number of discretization terms.
Frontiers in Cardiovascular Medicine 05
In practice, Np is expressed by the following equation in terms

of the number of uncertain input parameters n and the order of the

polynomial p:

Np ¼ (nþ p)!
n!p!

(11)

The inputs X((Xi), i ¼ 1, 2, ::, n) are treated as uncertain

variables and hypothesized independent; therefore, the

random space of uncertain inputs X is drawn by the joint

probability distribution ρx, which is consisted of other random

variables Xi:

rX(x) ¼
Yn
i¼1

rXi
(xi) (12)

The point collocation NIPC method determines the

components ai by choosing Ns vectors

{Xj ¼ (X1, X2, . . . , Xn)j, j ¼ 1, 2::, Ns} from the random space

and subsequently evaluating the outputs of interest

{Yj, j ¼ 1, 2::, Ns} by deterministic CFD code. Corresponding

to each chosen vector there will be an output, a linear system of

equations can be established:

C1(X1) C2(X1) . . . CNP (X1)
C1(X2) C2(X2) . . . CNP (X2)

..

. ..
. . .

. ..
.

C1(XNs ) C2(XNs ) . . . CNP (XNs )

0
BBB@

1
CCCA

a1

a2

..

.

aNP

0
BBB@

1
CCCA

¼

Y1

Y2

..

.

YNs

0
BBB@

1
CCCA (13)

a ¼ argminakCa� Yk2 (14)

The number of chosen samples Ns should be equal or greater

than number of discretization terms Np; in the case of Ns . Np,

the deterministic problem becomes to over-determined

system of equations (Eq. 13), then the least squares method

can be used to solve (Eq. 14). Hosder et al. (22) suggested that

twice as many samples as the minimum (practical) are

required to better approximate the statistics at each
frontiersin.org
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polynomial degree (Ns ¼ 2Np). Here, nps is denoted as the

proportion of sample:

nps ¼ Ns

Np
(15)

To apply the NIPC method for FFR and WSS, the uncertain

input parameters are predefined with a probability distribution,

then these parameters are sampled and applied to a deterministic

solver to obtain outputs of interest (FFR and WSS); finally, the

calculation of UQ and SA was performed. In this study,

uncertain input parameters were identified as geometric

(Li, Lm, Lo, D, s0) and physiological (Pa, R) features. The

uncertain parameters were hypothesized independently

distributed and sampled with joint distribution by Latin

hypercube to select the collocation points; well-validated in-house

CFD code was used to calculate FFR and WSS (35).

The outputs of interest (here, FFR and WSS) are considered as

random variables. Practically, the probability density functions of

FFR and WSS (rFFR, and rWSS) are dependent on the uncertain

inputs (Li, Lm, Lo, D, s0, Pa, R), which are governed by the CFD

model. The characteristics of rFFR and rWSS were assessed using

uncertainty quantification (UQ) technique, and the contribution

of an uncertain input Xi to the outputs of interest was evaluated

using the sensitivity analysis (SA).

The convergence rate generally depends on both the number of

samples Ns and the order of the polynomial p. Four different

maximal polynomial orders were considered ( p ¼ 1, 2, 3 and 4),

with the proportion of sample nps ¼ 1 and 2 were used to assess

the convergence of UQ measures.

The Python package Chaospy (38) was used to generate

stochastic samples and calculate the surrogate model for the

simulation output of interest.
2.4. Uncertainty quantification and
sensitivity analysis

Characteristics of unknown distribution of Y using UQ are

described as statistical moments (e.g., mean and variance). In the

NIPC method, a surrogate model fPC consisting of orthogonal

polynomials used to replace Y; therefore, the mean of unknown

distribution of Y can be directly obtained using the coefficients

and the orthogonality property. For example, the mean and

variance of Y are given by:

m[Y] ¼ E[Y] ¼
ð
V

yr(y)dy ¼
ð
V

XNP

i¼1

aiCi(x)rX(x)dx ¼ a1 (16)

Var(Y) ¼ E[Y2]� E[Y]2 ¼
ð
V

XNP

i¼1

aiCi(x)

 !2

rX(x)dx � a2
1

¼
XNP

i¼1

a2
i

ð
V

Ci(x)
2rX(x)dx � a2

1 ¼
XNP

i¼2

a2
i

ð
V

Ci(x)
2rX(x)dx

(17)
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The contribution of the uncertain input parameters to the

variation in the output was investigated by sensitivity

analysis. The final goal is determining how the uncertainties

in the input variables contribute to the variance of the

output, either individually or through interactions with other

parameters. This is useful for modeling personalization to

determine the parameters that need to be optimized to their

true values (input prioritization) and those that can be fixed

within their uncertainty domains (input fixing). The main

and total sensitivity indices (Si and STi , respectively) (23)

were computed to represent input prioritization and input

fixing, respectively.

The main sensitivity index, also called the first-order Sobol

sensitivity index, is the variance of the conditional expectation of

output Y, given the value of input Xi, normalized by the total

variance:

Si ¼ Var[E[Y jXi]]
Var[Y]

: (18)

Here, the index i varies from 1 to the number of uncertain

input variables n, 1 � i � n.

The main sensitivity index Si represents the expected reduction

in the total variance Var[Y] when the input variable Xi is corrected

to its true value.

The total sensitivity index STi includes the sensitivity of both

the first-order effects and the interactions (covariance) between a

given parameter Xi and all other parameters:

STi ¼ 1� Var[E[YjX�i]]
Var[Y]

, (19)

where X�i is the set of all uncertain input variables except

Xi.

The convergence of the UQ measures was assessed by

evaluating the mean value obtained with different polynomial

orders p and the proportion of sample nps.
3. Results

The blood flow and pressure fields for the mean values of the

input variables in the baseline and hyperemic conditions from

the CFD simulations are shown in Figure 5. An increase of

approximately 3.3-fold in the mean flow rate was observed when

the microvascular resistance was decreased by a factor of four

relative to the baseline condition to model the hyperemic

condition. In addition, a significant difference of 2.2 mmHg and

12.7 mmHg was observed in pressure drop between baseline and

hyperemic conditions. This difference is primarily due to

increased flow separation at higher flowrates and possibly

turbulence.
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FIGURE 5

Representative blood flow and pressure fields obtained from CFD simulations for resting (baseline) and hyperemic conditions. (A) Baseline condition
(Rbase) (B) Hyperemic condition (Rhyper ¼ 0:25 � Rbase).
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3.1. UQ and SA for WSS

Slager et al. (39) reported a tendency to form high-risk plaques

localized in stenotic proximal segments with a high WSS. Herein,

UQ and SA were conducted to investigate the impact of

uncertain input variables on the uncertainty of the average

proximal WSS (AWSSprox). A surrogate model was derived from

3D CFD data using PCE.

Figure 6 shows a comparison of the total sensitivity index STi of

AWSSprox for various combinations of polynomial order p and

sample size nps. The behavior of STi exhibited a similar trend for

( p, nps) combinations higher than ( p ¼ 3, nps ¼ 2), which

suggests suitable convergence.

The degree of stenosis So and the mean aortic pressure Pa were

always in the highest-sensitivity group, with a main sensitivity

greater than 50%, whereas the other variables ranged from 10%

to 20%. In addition, the probability density distributions for each

combination of ( p, nps) were compared, as shown in Figure 7.

The probability density distribution by ( p ¼ 3, nps ¼ 2)

combination exhibits nearly the same asymmetric shape as the
FIGURE 6

Trend of total sensitivity indices of AWSSprox for each combination of
polynomial order and sample size (p, nps).
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one by ( p ¼ 4, nps ¼ 2) combination with only minor difference

of the mean and standard deviation, which indicates the results

with the number of polynomials p ¼ 3 and p ¼ 4 approach the

convergence, particularly, when oversampled as nps ¼ 2.

However, it is clearly exhibited that the proportion of sample,

nps ¼ 1 is not sufficient for the approximation of the statistics,

even though high polynomial order p ¼ 4 is applied.

The mean of AWSSprox obtained with different combinations

of ( p, nps) are given in Figure 8, showing that the obtained

mean value tends to converge (relative error < 7.8%) as the

polynomial order increases.

Table 2 lists the required number of samples (3D CFD

realizations) and the corresponding computing times associated

with each combination ( p, nps). Based on this observation, the

combination ( p ¼ 3, nps ¼ 2) is optimal in terms of the

computational cost and prediction accuracy.

As shown in Figure 9, the stenosis severity s0 exhibited the

highest main sensitivity index, followed by the mean aortic

pressure Pa, whereas the remaining variables exhibited only a

minor effect (� 5 %). More precisely, these sensitivity indices

indicate that if so and Pa are changed to their true values, the

uncertainty in AWSSprox prediction is reduced by 25% and 9.5%,

respectively. The total sensitivity index exhibited a trend similar

to that of the main sensitivity index, that is, the greatest

influence was from stenosis severity s0 and mean aortic pressure

Pa. However, the difference between the main and total

sensitivity indices was considerably large. This indicates that the

interaction of the input variables in the computational model for

WSS prediction is significant; thus, multivariate uncertainty

analysis is crucial.
3.2. UQ and SA for FFR

For FFR computations, the same conditions for uncertain input

variables were applied, except for microvascular resistance, which

was decreased by a factor of 4 relative to the baseline condition,

to ensure a hyperemic condition. The FFR was evaluated 20 mm

downstream of the stenosis in the pressure fields from the CFD

simulations.
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FIGURE 7

Probability density of AWSSprox for each combination of polynomial order and sample size (p, nps).

FIGURE 8

Mean of AWSSprox for each combination of polynomial order and
sample size (p, nps).

TABLE 2 Number of samples (computing time; hours) for each
combination of (p, nps).

p

nps
1 2 3 4

1 8 (2.7) 36 (12) 120 (40) 330 (110)

2 16 (5.3) 72 (24) 240 (80) 660 (220)

FIGURE 9

Sensitivity indices for computed AWSSprox.

FIGURE 10

Probability density of computed FFR.

Ho et al. 10.3389/fcvm.2023.1164345
Figure 10 shows the statistical characteristics of the probability

density of the FFR due to the uncertainty of the input parameters,

including the expected values, standard deviation, and 95%

prediction interval. Evidently, the distribution is asymmetric and

left-skewed toward lower FFR values, unlike AWSSprox which is

right-skewed toward higher FFR values.
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FIGURE 11

Sensitivity indices for computed FFR.

Ho et al. 10.3389/fcvm.2023.1164345
Figure 11 shows that only the coronary reference diameter D,

stenosis severity s0, and microvascular resistance R significantly

affected the uncertainty in the FFR prediction. However, the

influence of the mean aortic pressure was <0.05. The difference

between the main and total sensitivity indices was nearly zero,

thus indicating a negligible interaction of the input variables that

are independent in the computational model for FFR prediction.
4. Discussion

Herein, UQ and SA were performed for the computational

prediction of the WSS and FFR directly from 3D–0D coupled

CFD simulations of idealized stenotic coronary models. The

mean degree of stenosis was 50% based on diameter reduction.

Five geometric parameters for the coronary stenosis model
FIGURE 12

Comparison of computed FFR with different stenosis lengths (9 mm and 18 m
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(proximal, mid, and distal lengths of stenosis; reference lumen

diameter; and diameter-based stenosis severity) and two

physiological parameters (mean aortic pressure and normalized

microcirculation resistance) were considered as uncertain input

variables for the CFD simulations. Although viscosity and

density may be additional blood characteristics that influence the

WSS and FFR values, they were not included in this study

because the uncertainty of the parameters is not significant.

Furthermore, Sankanran et al. (24) reported that viscosity and

density have negligible effects on the uncertainty of the

computed FFR.

Eck et al. (23) demonstrated that the stenotic radius, hyperemic

flow rate, and arterial pressure contributed the most to the

uncertainty in the FFR using 1D model-based simulation data.

This finding is consistent with the results of the present study.

Herein, the reference vessel diameter, stenosis severity, and

microvascular resistance were found to exhibit the greatest

impact on FFR prediction. Microvascular resistance under

hyperemic conditions primarily determines the coronary

hyperemic flow rate. In clinical practice, the FFR value is

measured under the assumption of zero microvascular resistance

after inducing a hyperemic condition with a drug; in reality, the

value is decreased by three–five times owing to the resistance,

which varies among patients. In the present study, arterial

pressure influenced the uncertainty of FFR prediction; however,

the relative sensitivity was low.

Sankaran et al. (24) showed that the minimum lumen diameter

and outlet boundary resistance are the most important factors

contributing to the variance of the computed FFR, and that their

influence is independent and not interactive. Evidently, similar

results were observed herein because the combined reference

diameter and degree of stenosis were directly associated with the

minimum lumen diameter. The interactive effect of input

uncertainty on the FFR was also negligible.
m) (A) s0 ¼ 50 % (B) s0 ¼ 60 %.
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For the average proximal WSS (AWSSprox), the mean aortic

pressure had the greatest impact on the prediction uncertainty.

This is because the WSS was calculated in the baseline flow

condition, and we expect that aortic pressure has a greater effect

on the baseline flow rate with higher outlet resistance than in a

hyperemic condition. In addition, because WSS is inversely

proportional to the third power of the lumen radius, stenosis

severity has a large impact on the uncertainty of AWSSprox .

Although the uncertainty of segmental lengths of a stenosis,

such as Li, Lm, and Lo, appears to have a negligible influence on

the uncertainty of the computed FFR (indicating that precise

measurements of the stenosis length in the imaging and

reconstruction processes are not crucial), they exhibited relatively

higher sensitivity to the variation of the computed AWSSprox . In

particular, the total sensitivity index of the proximal length of

stenosis Li was approximately the same as that of microvascular

resistance in the computed AWSSprox . This implies strong

interactions between the length of the stenosis and other input

parameters, which should not be excluded from the distinctive

input parameters in the computational prediction of WSS.

Moreover, the wide inter-lesion variations in patients may

produce a discernible difference in FFR. As depicted in Figure 12

as a representative case, doubling the stenosis length of a stenotic

vessel while preserving the other input parameters produced a

notably large pressure drop and in turn a lower FFR. This

suggests that the stenosis length, with appreciation of the

presence of wide interlesion variations, plays a crucial role in the

determination of FFR and can be considered an independent

geometric factor.
5. Conclusion

In this study, UQ and SA were performed to quantify the effect

of uncertainty of the geometric and physiological input parameters

including proximal, mid, and distal lengths of stenosis, reference

lumen diameter, stenosis severity, mean aortic pressure and

microcirculation resistance, on the computational prediction of

the WSS and FFR with an idealized stenotic coronary model.

The degree of stenosis and the mean aortic pressure exhibited

highest sensitivity to variations in the computed WSS. When

employing the true values of stenosis severity and mean aortic

pressure, a discernible reduction of 25% and 9.5% in the

uncertainty of the computed proximal WSS, respectively. In

addition, degree of stenosis, reference lumen diameter, and

coronary resistance are the primary contributors to the
Frontiers in Cardiovascular Medicine 10
uncertainty of computed FFR, accounting for 41.2%, 31.9%, and

24.6%, respectively. In particular, the interactive effect of the

input variables on the uncertainty of the computed WSS is

significantly higher than that on the uncertainty of the computed

FFR.
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