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Significance: Cardiovascular diseases are seen to be a primary cause of death, and
their prevalence has significantly increased across the globe in the past few years.
Several studies have shown that cell death is closely linked to the pathogenesis of
cardiovascular diseases. Furthermore, many molecular and cellular mechanisms
are involved in the pathogenesis of the cardiac cell death mechanism. One of
the factors that played a vital role in the pathogenesis of cardiac cell death
mechanisms included the early growth response-1 (Egr-1) factor.
Recent Advances: Studies have shown that abnormal Egr-1 expression is linked to
different animal and human disorders like heart failure and myocardial infarction.
The biosynthesis of Egr-1 regulates its activity. Egr-1 can be triggered by many
factors such as serum, cytokines, hormones, growth factors, endotoxins,
mechanical injury, hypoxia, and shear stress. It also displays a pro-apoptotic
effect on cardiac cells, under varying stress conditions. EGR1 mediates a broad
range of biological responses to oxidative stress and cell death by combining
the acute changes occurring in the cellular environment with sustained changes
in gene expression.
Future Directions: The primary regulatory role played by the Egr-1-targeting
DNAzymes, microRNAs, and oligonucleotide decoy strategies in cardiovascular
diseases were identified to provide a reference to identify novel therapeutic
targets for cardiovascular diseases.
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1. Introduction

Early growth response factor 1 (Egr-1) is an early gene, belonging to the EGR family that

codes for a Cys2-His2 zinc finger protein (1). It is located on human chromosome 5q23-q31

(2). EGR1, also called NGFI-A (3), AT225, ZIF268 (4), TIS8, G0S30, KROX-24, and

ZNF225, is an 80 kDa DNA-binding transcription factor with 543 residues that regulates

transcription. EGR1 contains a three Cys2-His2 subtype zinc finger structure, an activation

regulatory region, as well as a suppression regulatory region, which are located between

332 and 416 amino acids, close to the carboxyl terminus (5). It specifically identifies and

binds to the target genes, and regulates their transcription. The Egr-1 promoter includes

serum response elements, which preferentially bind to the GC-rich elements. They also

regulate the interaction between different growth factors and this sequence to initiate the

Egr-1 gene expression via different mechanisms that involved a co-activator and
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co-repressor (6). EGR1 binds to the DNA motifs [with a sequence

of 5′-GCG(T/G) GGGCG-3′] with the help of the Cys2-His2-type

zinc fingers. The C-terminal zinc finger binds to the 5′-GCG motif,

while the majority of N-terminal zinc fingers bind to the 3′-GCG
motif, and the middle zinc finger interacts with the middle TGG

motif (Figure 1). Egr-1 gets activated (rapidly and transiently) in

different human cell types in response to varying agonist and

environmental factors (7). Egr-1 is triggered by a variety of stimuli,

such as serum, cytokines, hormones, growth factors, endotoxins,

mechanical damage, hypoxia, and shear stress (8–11). The products

of the Egr-1-activated target genes play key roles in cell

proliferation, differentiation, mitosis, and cell death pathways (12).

Egr-1 expression is associated with many factors linked to

cardiovascular pathologies such as atherosclerosis, cardiac

hypertrophy, intimal thickening after acute arterial injury, and

angiogenesis (13–15). Egr-1 also plays a role in doxorubicin-

induced cardiomyopathy. Some rat model-based studies have shown

that Egr-1 gene inhibition decreases the pathological effects of acute

myocardial infarction (AMI) (16, 17). The Egr-1 phenotypes are

seen to be cell type-specific, and Egr-1 overexpression stimulates

cell apoptosis. Additionally, researchers have used catalytic and

non-catalytic nucleic acid methods such as DNAzymes,

microRNAs, and oligonucleotide decoys in animal models in
FIGURE 1

Structure diagram of Egr-1.
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conjunction with Egr-1-deficient mice to obtain novel insights into

the regulatory role played by Egr-1 in cardiovascular diseases. Thus,

Egr-1 can serve as a unique target for therapeutic intervention.
2. Egr-1 is involved in cardiac cell death

2.1. Egr-1 and apoptosis

Egr-1 regulates the expression of many genes in cardiac cells

(18). Studies have shown that Egr-1 causes cardiac cell apoptosis

through various mechanisms. In comparison to necrosis,

apoptotic cells are immediately identified and cleared by

adjoining phagocytes to prevent inflammation. Apoptosis affects

the cardiovascular system and leads to the onset and progression

of many cardiovascular disorders. It also helps in clearing the

non-myocyte components and cardiomyocytes, which cause heart

failure (19) (Table 1).

EGR1 can promote apoptosis by binding and stimulating the

levels of different promoters of the apoptosis-based factors, like

BIM (Bcl-2 Like 11), BAX (BCL2 Associated X, Apoptosis

Regulator), ASPP (Apoptosis Stimulating P53 Protein), and

SIVA1 (SIVA1 Apoptosis Induced Factor). The proteins encoded
frontiersin.org
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TABLE 1 Egr-1 is involved in cardiac cell death.

Cell death
mechanisms

Cell/animal models Related pathways/genes Pathological relevance Representative
studies

Apoptosis N/A Bim, Bax, Ppp1r13b, Siva-1 Cardiomyopathy Cook et al. (20)

Zhao et al. (21)

Zins et al. (22)

LDLR–/– mini-pig model of advanced atherosclerosis,
vascular injury (carotid ligation) and inducible plaque
rupture (ligation and cuff) in mice.

ERK-ELK1- EGR1 pathway Advanced atherosclerotic
lesion

Fasolo et al. (23)

CRISPR/Cas9 strategy to introduce a homozygous
Ser26 > Ala mutation into endogenous Egr1 in human
vascular endothelial cells

ERK-1 phosphorylate the serine
residue at the 26th position in Egr-1

angiogenesis Santiago et al. (24)

Male C57BL/6 mice: I/R injury models EGR1/TLR4/TRIF pathway AMI Huang et al. (25)

Autophagy Male SD rats constructed a CME model by injecting
plastic microspheres into the left ventricle

EGR1/BIM/Beclin-1 pathway Coronary microembolization-
induced myocardial injury

Wang et al. (26)

Cardiomyocytes from newborn SD rats in an I/H
environment

EGR1/ BIM /Beclin-1 pathway Microvascular obstruction Su et al. (27, 28)

The left anterior descending artery was ligated followed
by reperfusion. cultured cardiomyocytes following H/R
injury

EGR1/mTORC1/TFEB pathway AMI Huang et al. (29)

C57BL/6 J mice: I/R injury models, in vitro H/R models MEK/ERK/ EGR1 pathway AMI Wang et al. (30)

MPOS N/A Overexpression of ANT1 activates Egr-
1 expression and induces aggresomes

Mitochondrial myopathy and
cardiomyopathy

Liu et al. (31)

Metabolic
homeostasis

MPC1fl/fl and EGR1−/− mice, ventricular
cardiomyocytes from newborn rat hearts were
transduced with Ad-Cre-GFP virus

Egr-1 negatively regulates NCX1 and
inhibits the expression of CSQ

Cardiac arrest and death Wang et al. (32)

Kasneci et al. (33)

Nemani et al. (34)

Male SD rats were used to establish diabetic model CCN1/ERK1/2/EGR1 pathway Diabetic cardiomyopathy Wang et al. (35)

Oxidative stress oxygen-glucose deprivation/reoxygenation model of
myocardial I/R injury using H9c2

Silencing of Egr-1 suppressed the
expression of TF and ICAM-1

AMI Zhao et al. (36)

Hearts were isolated from fetal rats/ H9c2, reatments
with norepinephrine and ROS inhibitors

ROS resulted in an increase in PKCϵ
promoter methylation at Egr-1 and Sp-
1 binding sites

AMI Xiong et al. (37)

Human aortic smooth muscle cells, treatment with
hemin

Egr-1 was mediated by the ROS/ERK/
Elk-1 pathway and NF-κB

Inflammatory vascular
diseases such as
atherosclerosis.

Hasan et al. (38)

Ferroptosis C57BL/6 mice were used to establish AMI models EGR1/miR-15a-5p/GPX4 axis AMI Fan et al. (39)

MPOS, mitochondrial precursor overaccumulation stress; I/R, Ischemia/reperfusion; H/R, hypoxia/reoxygenation; I/H, ischemia/hypoxia; SD, Sprague-Dawley; AMI, Acute

myocardial infarction; ROS, Reactive oxygen species; ANT1, Isoform 1 of adenine nucleotide translocase; NCX1, sodium-calcium exchanger-1; CSQ, Calsequestrin; TF,

tissue factor; MPC1, monocyte chemoattractant protein 1; ICAM-1, intercellular cell adhesion molecules 1; GPX4, Glutathione Peroxidase 4.
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by Bax and Bim genes belong to the BCL2 protein family. The

BCL2 family of proteins forms heterodimers or homodimers and

participates in a variety of cellular activities as anti-apoptotic or

pro-apoptotic regulators (40–42). On the other hand, Ppp1r13b

(protein phosphatase 1 regulatory subunit 13b) encodes for

ASPP that regulates cell death (43). Siva-1 encodes for an E3

ubiquitin ligase enzyme that regulates cell proliferation, cell cycle

progression, and apoptosis (44).

Mitochondria are known to be key sites for the integration of

pro-apoptotic and anti-apoptotic proteins in cardiac cells (45).

Studies have shown that upregulated EGR1 can bind to the Bax

and Bim promoters for increasing the BAX and BIM protein

levels in cardiac cells that are stressed by injury (46–48). BAX,

BIM, and other pro-apoptotic proteins bind to the mitochondrial

membrane and interact with mitochondrial Voltage-dependent

anion channels (VDAC) to increase the channel opening rate.

This further increases membrane permeability, release of

cytochrome (Cyt) into the cytoplasm, activation of the Caspase

family and metabolic hydrolases, and finally promotes apoptosis

(49). BAX forms heterodimers with the BCL2 protein, which

inhibits apoptosis and autophagy and acts as an activator of
Frontiers in Cardiovascular Medicine 03
apoptosis. The binding and ratio of the BAX and BCL2 proteins

determine the death or survival of cells after apoptosis

stimulation (20). BAX level is regulated by Tp53/p53 (tumor

protein p53) and it is seen to participate in Tp53-mediated

apoptosis (50, 51). EGR1 is involved in the upstream

transcriptional regulation of Tp53 (52). It affects TP53 level via

the Tp53 promoter, and then TP53 activates EGR1 to form a

feedback loop (53, 54). On the other hand, Egr-1 activates the

MAPK (Mitogen-Activated Pprotein Kinase)-ELK1 (ETS

Transcription Factor ELK1)-EGR1 pathways to promote P21

(Cyclin-Dependent Kinase Inhibitor 1A) level without TP53.

Studies have shown that Tp53 primarily targets P21, which

regulates the cell cycle, promotes DNA repair, and induces

apoptosis (55, 56).

Egr-1 specifically targets ASPP, as it plays a crucial role in the

immediate up-regulation of ASPP. Additionally, it maintains the

basic expression of the Ppp1r13b gene during non-stress

conditions (21). Furthermore, Ppp1r13b stimulates EGR1 protein

levels within a positive feedback loop. Initially, EGR1 is activated

by multiple stimuli, and then, it binds to EBS, which is located

in the Ppp1r13b promoter region, thereby transactivating the
frontiersin.org
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expression of Ppp1r13b in the nucleus. Elevated ASPP level were

primarily localized in the cytoplasm, which inhibited the

proteasome-mediated degradation of EGR1 and promoted a

nuclear import of EGR1. Activated EGR1 can also promote

apoptosis by transactivating the proapoptotic targets, such as

Egr-1 itself. In an earlier study, the researchers identified a novel

EGR1/ASPP inter-regulatory loop and determined the

proapoptotic function of cytoplasmic ASPP by stabilizing EGR1

and inhibiting the autophagy promoter ATG5 (Autophagy

protein 5) -ATG12/ATG16 (57, 58). The Tp53 controls TP53 by

increasing its DNA binding and transactivation capabilities on

proapoptotic gene promoters. Ppp1r13b interacts with the Tp53

gene and plays a crucial role in regulating apoptosis.

Studies have shown that during the in vitro apoptosis induction

phase of cardiac fibroblasts, the continuous Egr-1 expression causes

the downstream transcriptional regulation of the pro-apoptotic

gene, i.e., Siva-1. Normal cardiac fibroblasts do not express the

Siva-1 (22, 59). The Siva-1 gene codes for the SIVA1 protein that

binds to the cytoplasmic tail of the members of the tumor

necrosis factor (TNF) receptor superfamily (such as CD27 and a

glucocorticoid-induced TNF receptor) that are activated by

ligands (60). This protein also contains a domain that is similar

to the death domain. It has been demonstrated that Siva-1

mediates proliferating cell nuclear antigen (PCNA) ubiquitination

in response to ultraviolet-induced DNA damage and triggers

CD27-mediated apoptosis. SIVA1 is a transcriptional target of

the Tp53 gene, and it induces the oxidative stress-induced

apoptosis process (61). Additionally, the Siva-1 gene encodes for

an E3 ubiquitin ligase that suppresses the anti-apoptotic activity

of BCL2, leads to caspase-dependent apoptosis, localizes in the

mitochondria, and regulates cell cycle progression, cell

proliferation, and apoptosis (62, 63).

Egr-1 controls the level of hundreds of proteins in cardiac cells

and implements the above-mentioned processes to bind to

different apoptosis-related factor promoters. One important

functional switch is the phosphorylation of EGR1. Santiago et al.

found that ERK1 (Mitogen-Activated Protein Kinase 3) could

phosphorylate the serine residue at the 26th position (Ser26) in

EGR1 in human vascular endothelial cells, which has a protective

effect against apoptosis. If Ser26 is mutated, endothelial cells will

undergo apoptosis (24). In one study, Fasolo et al. determined

the effect of the long non-coding RNA myocardial invasion-

associated transcript (MIAT) on advanced atherosclerotic lesions.

They discovered that Egr-1 controlled the proliferation and death

of smooth muscle cells (SMCs). They also noted that MIAT

controlled the proliferation and apoptosis of the SMCs in the

carotid artery via the ERK- ELK1-EGR1 pathway (23). Studies

have found that during myocardial ischemia/reperfusion (I/R),

the up-regulated Egr-1 gene activates TLR4 (Toll Like Receptor

4)/TRIF (TIR Domain Containing Adaptor Molecule 1) signaling

pathway, increases neutrophil recruitment, intensifies cell

apoptosis, and further aggravates cardiac function injury (25).

Another study showed that Egr-1 could be inhibited by the JAK

(Janus Kinase)/STAT (Signal Transducer And Activator Of

Transcription) pathway, which decreased the myocardial I/R

injury (64).
Frontiers in Cardiovascular Medicine 04
2.2. Egr-1 and autophagy

Egr-1 not only contributes to apoptosis but also autophagy. The

regulation of cardiomyocyte homeostasis is enhanced by

autophagy, which is crucial for cardiac physiology (65).

Myocardial ischemia-related cell damage can be reduced by

autophagy. It has been demonstrated that inhibiting autophagy

would exacerbate heart hypertrophy in patients. In general,

autophagy promotes the survival of cells by accelerating their

metabolic cycle and allowing their adaptation to their

surroundings. However, autophagy of the majority of organelles

and cytoplasm in the phagocytes results in cell death. In patients

with heart failure, excessive autophagy results in type II cell

death, or autophagic cardiomyocyte death (66). Cardiomyocyte

death following I/R damage is correlated to impaired autophagy

flux. In an earlier study, the researchers noted an elevated EGR1

level in a coronary microembolism rat model, which led to the

conclusion that Egr-1 helps in regulating autophagy and

apoptosis (26). Cytoplasmic components, such as protein

aggregates, damaged organelles, and lipid droplets, were

encapsulated by the double-layer membrane vesicles to form

autophagosomes, which could fuse with the lysosomes to form

autophagic lysosomes, degrade the enclosed contents, and assist

their recycling (67).

MicroRNAs (miRNAs) regulate and interact with autophagy

and apoptosis. Earlier studies have shown that numerous

cardiovascular disorders are related to the regulation of EGR1 by

miRNAs (68). It was also concluded that miRNAs control EGR1

for mediating autophagy in cardiac cells. Furthermore, a few

independent studies showed that BIM suppresses autophagy

independent of its pro-apoptotic activity (69). The findings also

showed that BIM performs a dual role in suppressing autophagy

and promoting apoptosis. BIM directly interacts with the key

autophagy regulator, BCL1, to inhibit autophagy (27, 28); which

indicates that it could be involved in the pathogenesis of the

disease. When cardiac cells are triggered by different

environmental factors, the EGR1/BIM/Beclin-1 pathway is

activated, thus inhibiting myocardial autophagy and inducing cell

death. Furthermore, when an in vitro model of myocardial I/R

injury and hypoxia/reoxygenation (H/R) was studied, the

researchers noted that circRNAs influenced autophagy by

regulating EGR1. Silencing circZNF512 attenuated its ability to

bind to miR-181d-5p, and targeted 3′-UTR, thereby impairing

EGR1 production, increasing cardiomyocyte autophagy, and

inhibiting apoptosis, thus decreasing the myocardial tissue

damage. The crosstalk between circZNF512, miR-181d-5p, and

EGR1 activated the mTOR (Mechanistic Target Of Rapamycin

Kinase)C1/TFEB (Transcription Factor EB) signaling pathway

and elevated the mTORC1 level, while the TFEB level was

decreased. Furthermore, it was seen that CircZNF512-mediated

miR-181d-5p suppression restricted the cardiomyocyte autophagy

and increased the myocardial I/R damage (29), with the help of

the EGR11/mTORC1/TFEB-based mechanism. Additionally,

ERK1/2 refers to a crucial upstream signal molecule that

regulates Egr-1 expression and forms the basis for myocardial I/
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1162662
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Xie et al. 10.3389/fcvm.2023.1162662
R. Inhibiting Egr-1 expression can lessen the MEK/ERK activation-

induced myocardial I/R damage (30) (Figure 2).
2.3. Egr-1 and other mechanisms of cell
death

According to earlier research, mitochondrial precursor

overaccumulation stress (mPOS), which is defined as the

dangerous accumulation of unimported mitochondrial proteins

in the cytosol, kills cells by a mechanism independent of

bioenergetics (70). Liu et al. observed that the overexpression of

mitochondrial carrier proteins, notably isoform 1 of adenine

nucleotide translocase (ANT1), could lead to the development of

numerous cytoplasmic attackers that contained the unimported

mitochondrial proteins (31). Dilated cardiomyopathy was linked

to the expression of extremely unstable variants of ANT1-

induced aggregation and the overexpression of ANT1. It was

noted that the Egr-1 gene was maximally upregulated in response

to ANT1 overexpression (71–73). Therefore, different

mitochondrial stress factors could activate the nuclear

transcription factor, EGR1, via ANT1 overexpression, which
FIGURE 2

Mechanism of Egr-1 on apoptosis and autophagy. Egr-1 is activated through d
pro-apoptotic proteins such as BIM, BAX, and SIVA1 to the mitochondrial m
permeability, releases cytochrome, and activates Caspase family and met
ubiquitination of PCNA and induce CD27-mediated apoptosis. Egr-1 also t
ASPP is mainly localized in the cytoplasm and promotes the nuclear import
ATG12 and inhibits the binding of ATG5-ATG12 to ATG16 and the forma
inducing apoptosis. On the other hand, Egr-1 can activate TP53 in a feedba
can induce the P21 and promote cell apoptosis independently or dependentl
1 can inhibit Beclin-1 through activating BIM and finally inhibit autophagy of c

Frontiers in Cardiovascular Medicine 05
further increased the mPOS-related cell-killing mechanism,

thereby causing cardiomyopathy (74).

In addition to mPOS, metabolic homeostasis (especially

calcium homeostasis) can also lead to cardiomyocyte death.

Calcium is transferred outside the cardiomyocytes via the

sodium-calcium exchanger-1 (NCX1), where they bind to

calsequestrin (CSQ) and are re-stored in the sarcoendoplasmic

reticulum. In the past, researchers have reported that Egr-1

negatively regulates NCX1 level, which helps in controlling

calcium homeostasis, both in vivo and in vitro. Subsequently, it

was discovered that Egr-1 mostly inhibits CSQ level. Since CSQ

is primarily responsible for the storage and release of calcium

ions, CSQ inhibition can harm cardiomyocytes and impair

cardiac function. The researchers also found that diabetic

cardiomyopathy patients experienced issues related to calcium

balance and mitochondrial malfunction, which caused the loss of

cardiac cells. Inhibiting the production of EGR1 and controlling

mitochondrial calcium homeostasis are two mechanisms by

which the MOTS-c (Mitochondrial Open Reading Frame Of The

12S rRNA-c) can stop cardiomyocyte death. The above-

mentioned calcium homeostasis is not the only factor that

influences cardiomyocyte death; mitochondrial metabolic
ifferent signaling cascades. On one hand, Egr-1 stimulates the binding of
embrane, increases the opening of VDAC, leads to increased membrane
abolic hydrolases to promote apoptosis. SIVA1 can also mediate the
ransactivates the expression of Ppp1r13b in the nucleus. The increased
of EGR1 to promote apoptosis. At the same time, ASPP binds to ATG5-
tion of ATG16 complex, thus inhibiting cytoprotective autophagy and
ck loop to further activate EGR1 to induce apoptosis. In addition, Egr-1
y on TP53. Autophagy and apoptosis interact with one another, and Egr-
ardiac cells.
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homeostasis is also important. In cardiomyocytes, Ca2+ ions enter

the mitochondria via the mitochondrial Ca2+ (MCU), which

stimulates the tricarboxylic acid (TCA) cycle to increase ATP

production (32, 33, 35, 75–78). An Egr-1-mediated gene that

codes for MICU1 (Mitochondrial Calcium Uptake 1), the

gatekeeper of the mitochondrial calcium uniporter, is

transcriptionally upregulated by the mitochondria in response to

metabolic balance. After analyzing the MCU-mediated

mitochondrial matrix Ca (mCa) uptake during metabolic stress, it

was noted that Egr-1 regulates the Micu1 promoter, induces

MICU1 level during mitochondrial stress, inhibits basal mCa

accumulation, and lowers mitochondrial bioenergetics, thereby,

preventing mCa overload and ensuing cardiac cell death (34).

Cardiomyocyte death and oxidative stress are also closely related.

Oxidative stress negatively affects the development of ischemic heart

disease, which leads to irreversible damage and even death of

myocardial cells (79). Egr-1 is a redox-sensitive gene and is

involved in the pathophysiology of cardiovascular diseases (80–83).

Oxidative stress occurs when cellular reductases cannot protect the

cells from increased Reactive oxygen species (ROS), which induce

EGR1 protein level. This further imbalanced the redox state, which

increased DNA and protein damage. Furthermore, higher

concentrations of the oxidants can activate different signaling

pathways, which, in turn, target the promoters of “redox-sensitive”

genes. Notably, heart failure is characterized by the activation of the

sympathetic nervous system, which increases oxidative stress in the

cardiovascular system (84, 85). Protein kinase Cϵ (PKCϵ) plays an

important role in cardioprotection, where the PKCϵ gene inhibition

increases susceptibility to cardiac I/R injury (86). Egr-1 exhibits a

regulatory effect on PKCϵ (37). In their study, Xiong et al. found

that norepinephrine-induced ROS increased the methylation of the

Egr-1 and Sp-1 binding sites in the PKCϵ promoter, which led to

PKCϵ repression, finally, leading to cardiac function impairment

(87). Also, it has been noted that free heme is one of the main

causes of ROS in the cardiovascular system. Free heme is released

from hemoglobin due to bleeding or hemolysis, leading to oxidative

stress and cell death (88, 89). Hasan et al. observed that Hemin

(oxidized heme) upregulates the vascular smooth muscle cells

(VSMCs) in a redox-sensitive manner via the ROS/ERK and NF-

κB (Nuclear Factor Kappa B) pathways, which results in

thrombotic or atherosclerotic lesions (38). Also, it has been

discovered that Egr-1 inhibition can shield cardiac cells from

oxygen-glucose deprivation/reperfusion (OGD/R)-induced injury

(36). Studies also showed that dimethyl fumarate protects the

cardiac cells against myocardial I/R injury by blocking NOX-4

(NADPH oxidase 4)-mediated ROS production. A few researchers

stated that Egr-1 interacts with two additional mechanical stress-

related MAPKs, including JNKs. These JNKs, sometimes called

stress-activated protein kinases or P38 subtypes, are all activated

due to mechanical, oxidative, or environmental stress (90).

In 2012, the researchers identified ferroptosis as a novel cell death

mechanism, which was characterized by excessive intracellular lipid

peroxide concentrations (91). GPX4 (Glutathione Peroxidase 4) is

considered a major factor that inhibits ferroptosis, as it protects cell

integrity by eliminating cellular lipid peroxidation and maintaining

the balance of the intracellular redox state. Several recent studies
Frontiers in Cardiovascular Medicine 06
have demonstrated that ferroptosis plays a vital role in the

development of cardiovascular diseases, such as myocardial

infarction, cardiomyopathy, myocardial I/R injury, and heart failure

(92). A few findings revealed that GPX4 level was significantly

decreased during the early and middle myocardial infarction stages.

The researchers also noted that silencing GPX4 could induce

ferroptosis of myocardial cells (93). Ferroptosis is characterized by

intracellular redox imbalance. A few earlier reports indicated that

Egr-1 could be involved in oxidative stress injury, and it was

hypothesized that Egr-1 may be involved in the development of

ferroptosis. Studies were conducted using an in vitro ferroptosis

model, and the results indicated that patients with AMI displayed

an increased Egr-1 expression (39). Egr-1 inhibition decreased the

miR-15a-5p level and elevated the GPX4 level. It further increases

SOD (Superoxide Dismutase) activity, lowers ROS level, and

decreases MDA (malondialdehyde) levels and cardiac cell death

rates. These findings imply that miR-15a-5p expression is regulated

by Egr-1 downregulation, which inhibits ferroptosis.
3. Egr-1 plays a vital role in the
pathogenesis of cardiovascular disease

Egr-1 plays a crucial role in cardiovascular biology, and its

expression is related to several aspects of cardiovascular pathology.

Egr-1 can promote or reduce the synthesis of many pro-

inflammatory and anti-inflammatory protein mediators that bind to

the complimentary motifs on the DNA of the gene of interest, and

are involved in the cell death mechanisms. These mediators

primarily regulate angiogenesis, which helps in the healing and

regeneration of injured tissues under physiological conditions. It was

reported that these mediators actively promote tissue destruction

under pathological conditions. According to earlier findings, the Egr-

1 was involved in the pathogenesis of atherosclerosis, from the

development of foam cells to the onset of acute cardiovascular and

cerebrovascular ischemia events. Egr-1 is also believed to be a

possible aggregator of other heterogeneous atherosclerotic risk

factors, including hyperlipidemia, aberrant hemorheology (observed

in hypertension), and other infectious factors. Egr-1 is overexpressed

during AMI, which reduces cardiomyocyte energy loss and mass

cardiomyocyte death. Targeting Egr-1 can decrease the degenerative

effects of AMI in rats. Egr-1 also mediates doxorubicin-induced

cardiomyopathy. Therefore, it is important to understand the Egr-1

regulation mechanism, as it could help in the future treatment of

cardiovascular diseases.
3.1. MiRNAs regulation of Egr-1 mRNA

MiRNAs are small non-coding RNAs that are involved in gene

regulation. Recent studies have revealed that many miRNAs regulate

vascular homeostasis and play unique regulatory roles in

cardiovascular diseases (94–96). The analysis of dysregulated gene

expression in miR-208a mutant mice revealed higher EGR1 and

FOS (Fos Proto-Oncogene) levels in the heart. This finding suggests

that miR-208 regulates the Egr-1 gene response to cardiac stress.
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MiR-499 was significantly enriched in the human heart ventricles

during microRNA screening (97). Also, substantial changes were

noted in miR-499 levels in heart samples collected from aortic

stenosis patients with heart failure and pressure overload (98).

Furthermore, miR-499 transgenic mice experienced or were

susceptible to cardiac dysfunction. Egr-1 is a critical component of

the transcriptional response hierarchy to cardiac stress (99), which

may explain why miR-499 levels significantly affect the Egr-1 gene

response. Recent research has demonstrated that the Egr-1-mediated

miR-99 could be regarded as a critical factor in AKT1 (AKT Serine/

Threonine Kinase 1) level, which, in turn, controls important cell

death pathways involved in the transformation of normal

hypertrophy into pathological hypertrophy (100). EGR1 is a key

transcriptional activator in the pathological hypertrophy process that

might promote PTEN (Phosphatase And Tensin Homolog), which is

a negative regulator of AKT (101, 102). EGR1 regulates AKT via

two mechanisms: post-transcriptionally via the miR-99 family and

post-translationally via PTEN. Egr-1 knockdown converts

pathological hypertrophy to physiological hypertrophy by activating

the AKT pathway. The miR-99 family regulates Akt/mTOR/IGF1

(Insulin Like Growth Factor 1) via Egr-1-mediated expression, which

governs both pathological and healthy hypertrophy (103). AKT1

silencing reduces EGR1 phosphorylation, which decreases miR-99

transcription, resulting in lower apoptosis and cytotoxicity levels.

Plasma cholesterol influences a variety of cardiovascular diseases,

including atherosclerosis and coronary artery disease (104). Since

miR-27a regulates the cholesterol production pathway, it could be

hypothesized that a putative EGR1 binding site existed near the

miR-27a promoter region. Computational and experimental studies

have demonstrated that Egr-1 regulates miR-27a at basal and high

cholesterol levels (105). Overexpression of miR-15a-5p promotes

ferroptosis in cardiomyocytes, which, in turn, exacerbates hypoxic

injury. In the case of AMI, suppressing Egr-1 can limit miR-15a-5p

levels, boost GPX4 protein level, and decrease ferroptosis and

myocardial damage (39). Recent evidence suggests that miR-146a

inhibits Egr-1 transcription and expression, in vivo and in vitro, and

attenuates AMI-induced myocardial injury through the TLR4/NF-κB

pathway (106).
3.2. DNAzymes target Egr-1 mRNA in
cardiovascular diseases

DNAzymes are a new generation of catalytic

oligodeoxynucleotides that can be used as an effective gene-

silencing strategy. They can be used for overcoming the

disadvantages of oligonucleotides and ribozymes and present an

effective in vivo gene targeting technique (107). These agents break

phosphodiester linkages between specific purines and pyrimidines

by precisely base-pairing and de-esterifying the DNAzymes with the

target mRNA. Studies have shown that DNAzymes that target Egr-

1 are biologically effective in treating AMI and other cardiovascular

conditions (108). The proliferation of Endothelial cells (ECs) and

VSMCs, in addition to the neointimal formation, is inhibited by

Egr-1-targeting DNAzymes (109). Egr-1 also plays a significant role

in the injury responses displayed by other cells related to the
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cardiovascular system (110). ED5 was the first DNAzyme that was

successfully tested using an animal model (111). It was noted that

ED5 inhibited the EGR1 level and regulated the cardiovascular

diseases caused by intimal thickening after permanent carotid artery

ligation in rats. The data indicated that ED5-mediated Egr-1

downregulates EGR1 after myocardial I/R and attenuates the level

of the myocardial intercellular cell adhesion molecules (ICAM) -1

and neutrophil adhesion during myocardial injury and oxidative

stress in cardiomyocytes. ED5 also mediates Egr-1-related inhibition

of cyclin D1, monocyte chemoattractant protein (MCP) -1, tissue

factor (TF), cyclin-dependent kinase 4 (CDK4), macrophage

inflammatory protein (MIP) -2, and Plasminogen activator

inhibitor (PAI)-1 (112). Inhibition of these downstream targets can

decrease the cell death rate caused by myocardial ischemia (11).

Thus, intracoronary inhibition of Egr-1 by targeted DNAzymes may

reduce the size of the infarct by modulating the downstream

effector molecules (113, 114). Human pulmonary arterial

hypertension (PAH) is associated with elevated Platelet-derived

growth factor (PDGF)-BB and Transforming growth factor (TGF)-

b1 levels (115). These factors also promote the proliferation of

VSMCs and ECs. In vivo studies showed that intravenous

DNAzymes suppressed pulmonary vasculature remodeling, such as

the development of occlusive neointimal lesions, and decreased

PAH progression by downregulating EGR1 and lowering PDGF-BB

and TGF-b1 level. Thus, Egr-1-targeting DNAzymes are involved in

the initiation and progression of pulmonary vascular remodeling in

flow-related pulmonary hypertension and could serve as a potential

target for PAH therapy in the future (116).
3.3. Oligonucleotide decoys target the
EGR1 protein

Synthetic double-stranded decoy oligonucleotides (ODNs) have

also been used to target EGR1 at the protein level. In this

technique, ODNs containing the DNA-binding component of the

transcription factor bind to the DNA and inhibit the function of

the transcription factor. ODNs have been utilized to prevent the

expression of some genes. ODNs target particular regions of

selected mRNAs and impede translation through base-pair

hybridization, thus preventing the synthesis of a particular protein

(117, 118). Studies have investigated the increasing effect of the

sense and antisense oligodeoxynucleotides on the agonist-induced

Egr-1 mRNA and proteins. ODNs block the induction of VSMCs

by PDGF-BB and angiotensin II. In one study, the carotid arteries

in rabbits were damaged with a balloon, and the results showed

that there was a decrease in vascular inflammation and neointimal

hyperplasia. They also showed that elevated expression of the

EGR1-dependent genes was suppressed by transfection of decoy

ODNs targeting EGR1 (119). In another study, EGR1 decoy

ODNs were designed and synthesized. They were then transfected

into balloon-damaged carotid arteries and primary cultures of rat

VSMCs, and their ability to bind to Egr-1 was assessed. The

competitive binding of Egr-1 decoy ODNs to EGR1 lowered EGR1

level, which was mediated via cell proliferation-related genes such

as cyclin D1, CDK4, and PCNA. This further inhibited neointimal
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FIGURE 3

Schematic diagram that describes the progression of cardiovascular disease occurring due to the induction of Egr-1 expression by numerous stimuli.
Since Egr-1 plays a major regulatory function in cardiovascular disease, it could be anticipated that Egr-1 targeting DNAzymes, miRNAs, and ODNs
decoy strategies could emerge as new therapeutic targets.
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hyperplasia and lowered the formation of VSMCs in rats with

balloon-damaged arteries (120). Additional research has

demonstrated that decoy strategies are quite efficient in the

treatment of AMI and cardiac rejection (121, 122). Studies that

were conducted using the pig and rat models indicated that NF-

κB decoy ODNs effectively suppressed neointimal development

following arterial balloon injury. In an earlier study, the

researchers could successfully transfect the NF-κB decoy ODNs at

the site of coronary stent placement. Their findings showed that

these NF-κB decoy ODNs exhibited a safe and beneficial effect on

preventing restenosis after percutaneous coronary treatment since

they prevented the apoptosis of ECs under hypoxia (121). To

summarize, the use of EGR1 decoy ODNs as a novel therapy tool

is critical for the prevention and treatment of coronary heart

disease and restenosis after angioplasty (123, 124) (Figure 3).
4. Concluding remarks

In conclusion, studies conducted using in vitro tests, transgenic

animal models, and human diseases revealed that cardiovascular

diseases were caused by a variety of cellular and molecular

pathways that affected the cell death processes in cardiac cells. Egr-1

is an essential component of the cardiac cell death signaling

pathways related to apoptosis, autophagy, mPOS, and ferroptosis.

Egr-1 is also involved in preserving heart homeostasis and assists in

the development of cardiovascular disorders. The development of
Frontiers in Cardiovascular Medicine 08
new signaling pathways and mediators in cardiovascular disease, as

well as their role in tissue damage, has aided in the development of

strategies for their specific targeting. Catalytic and non-catalytic

nucleic acid approaches, such as DNAzymes, miRNAs, and ODNs

decoys, have been used to investigate the primary regulatory role of

Egr-1 in cardiovascular diseases, using animal models and Egr-1-

deficient mice. In conclusion, Egr-1 can be regarded as a potential

therapeutic target for cardiovascular diseases.
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