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Computational clustering reveals
differentiated coronary artery
calcium progression at prevalent
levels of pulse wave velocity by
classifying high-risk patients
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Many studies found that increased arterial stiffness is significantly associated with
the presence and progression of Coronary Calcium Score (CCS). However, none
so far have used machine learning algorithms to improve their value. Therefore,
this study aims to evaluate the association between carotid-femoral Pulse Wave
Velocity (cfPWV) and CCS score through computational clustering. We
conducted a retrospective cross-sectional study using data from a
cardiovascular risk screening program that included 377 participants. We used
an unsupervised clustering algorithm using age, weight, height, blood pressure,
heart rate, and cfPWV as input variables. Differences between cluster groups
were analyzed through Chi-square and T-student tests. The association
between (i) cfPWV and age groups, (ii) log (CCS) and age groups, and (iii) cfPWV
and log(CCS) were addressed through linear regression analysis. Clusters were
labeled post hoc based on cardiovascular risk. A “higher-risk group” had
significantly higher left (0.76 vs. 0.70 mm, P < 0.001) and right (0.71 vs. 0.66 mm,
P=0.003) intima-media thickness, CCS (42 vs. 4 Agatston units, P= 0.012), and
ascending (3.40 vs. 3.20 cm, P < 0.001) and descending (2.60 vs. 2.37 cm, P <
0.001) aorta diameters. Association with age appeared linear for cfPWV and
exponential for log (CCS). The progression of the log (CCS) and cfPWV through
age groups was steeper in the “higher-risk group” than in the “lower-risk group”.
cfPWV strongly correlated with CCS, and CCS progression over cfPWV differed
among clusters. This finding could improve PWV as a “gate-keeper” of CCS
testing and potentially enhance cardiovascular risk stratification.
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1. Introduction

Cardiovascular disease (CVD), majorly through ischemic heart disease, remains the

leading cause of death and reduced quality of life worldwide despite enormous advances

in controlling blood pressure, diabetes, and hypercholesterolemia (1, 2). As cardiovascular

risk stratification is crucial for preventing cardiovascular disease, physicians perform a

risk assessment through calculators, such as SCORE, ACVD, WHO, and Framingham,
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based on traditional cardiovascular risk factors (CVRF) (i.e., sex,

age, blood pressure, diabetes, smoking, LDL, HDL) (3).

Although highly useful in clinical practice, these cardiovascular

risk estimates are not entirely accurate because traditional CVRFs

do not fully explain cardiovascular events. Some studies show

that approximately 50% of people do not have any CVRF but

still have CVD (4). Moreover, a study showed that about two-

thirds of patients undergoing coronary angiography to diagnose

CVD had normal coronary arteries (5). Most risk scores have

low sensitivity for detecting young individuals with increased

absolute cardiovascular risk due to the preponderant effect of age

on risk estimation (6, 7). The highest risk for inadequate

classification arises mainly in intermediate-risk groups, where

CVD prevention is crucial (8, 9).

Individuals with subclinical atherosclerosis have higher

cardiovascular events and all-cause death rates (10). In this

context, new parameters have been sought to assess

cardiovascular risk in search of the variance unexplained by

traditional CVRFs and detect subclinical vascular damage. Unlike

primary prevention, this strategy permits timely detection of

CVD, thus developing more effective and personalized strategies.

Novel CVD biomarkers are varied and include biochemical [e.g.,

C-reactive protein, homocysteine, fibrinogen, lipoprotein(a)],

imaging (e.g., coronary artery calcium, intima-media thickness),

and biomechanical parameters (e.g., pulse wave velocity, brachial/

ankle index, augmentation index) (9, 11–14).

The coronary calcium score (CCS), assessed through a CT

scan, is the non-invasive method most commonly used to

quantify coronary artery calcifications. CCS has emerged as a

robust biomarker of coronary atherosclerosis, can localize lesions,

and correlate with plaque burden and cardiovascular disease

assessed by angiography (15–18). This method is a strong

predictor of cardiovascular events (19) and is considered by

ACC/AHA and the European Society of Cardiology for risk

reclassification among patients with low to intermediate risk, i.e.,

a 10-year cardiovascular risk between 6% and 20% (20, 21).

Coronary artery calcium scoring has superior discrimination and

risk reclassification compared with other subclinical imaging

markers or biomarkers (22). Moreover, the absence of coronary

calcifications (CCS = 0) has a high negative predictive value for

coronary stenosis and, therefore, helps identify individuals at low

risk for an event (23). Some cardiovascular risk calculators, such

as the MESA, include CCS to perform risk estimations and

obtain the vascular age of patients (24). The application of this

stratification tool is low despite international recommendations,

probably due to its cost and radiation, limiting its availability in

low-resource scenarios where cardiovascular risk reclassification

of young adults may be needed the most (25).

Pulse wave velocity (PWV) has emerged as a non-invasive,

simple, low-cost, reliable, and non-irradiating alternative for

assessing subclinical vascular damage (26–28). PWV is a

straightforward and tangible way of assessing arterial stiffness—

the stiffer the artery, the higher PWV (27). Although there are

several ways to measure PWV, carotid-femoral PWV (cfPWV) is

the gold standard for assessing large artery stiffness as it has the

most clinical evidence of predicting cardiovascular events
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(26, 27). PWV is a surrogate of CVD as it is a structural and

functional marker of cumulative damage to central arteries

(27, 29). It is a strong predictor of cardiovascular events

(mainly coronary events) independently from traditional

CVRFs in both clinical and community-based cohorts (30–33),

improving model fit and reclassifying risk for future CVD

events in models that include standard risk factors (13).

Recently, many studies have used PWV to perform vascular

age estimates and divide patients into different phenotypes of

vascular aging (34, 35). Despite the existing evidence, there is

no unique recommendation regarding PWV’s role in risk

stratification among international guidelines. In all, most

guidelines agree that arterial stiffness may serve as a valuable

marker to predict cardiovascular events, but many (especially

occidental guidelines) do not recommend systematically

measuring PWV in the general population (36).

On the other hand, we are currently witnessing a revolution

in cardiology by accumulating large volumes of data from

electronic health records, medical imaging data, clinical trials,

biobanks, and wearable devices (37). In this regard, medical

“Big Data” can nurture Machine Learning (ML, a branch of

artificial intelligence) algorithms to differentiate structural and

functional patterns embedded in multiple datasets, potentially

reduce diagnostic and therapeutic errors, and improve timing,

efficiency, and poor workflow (38, 39). Artificial intelligence

(AI) has been a late entrant in healthcare (40), although its

application has already spurred in many areas, including

imaging (37), pathology (41), dermatology (42), and others

(38). To date, there is a huge scope in ML algorithms in

predicting cardiovascular disease, and there are several AI

applications already cleared by the FDA (41).

One of the most used unsupervised learning algorithms is

clustering. This ML technique allows subjects to be segregated

into distinct groups without prior labeling. These models divide

data into groups depending on the “similarity” between data

points, which is particularly useful when there are no apparent

patterns. Likewise, clustering may contribute to identifying novel

biomarkers, disease subgroups, and predictors of clinical

outcomes (43). Some studies show clinically relevant and

practical applications of these models in cardiovascular medicine

(44, 45).

As cardiovascular imaging rapidly grows and has a major cost

counterpoint, AI may reduce the financial burden and improve

value (37). As with other imaging studies, CCS appears to be an

excellent candidate for artificial intelligence tools (46). Although

less extensively explored, ML algorithms applied to PWV have

demonstrated an improved testing value (47).

Multiple uses for ML algorithms have been proposed in

cardiovascular medicine, but none so far have been used to

evaluate the association between PWV and CCS. This approach

may identify higher-risk individuals who would benefit most

from a CCS assessment and avoid unnecessary costs and

radiation associated with CT scans in patients with a low risk of

presenting coronary disease. Therefore, this study aims to

evaluate in a community-based cohort of patients the association

between cfPWV and CCS through clustering.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1161914
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Rousseau-Portalis et al. 10.3389/fcvm.2023.1161914
2. Methods

2.1. Participants

We conducted a retrospective cross-sectional study on

participants from a cardiovascular risk screening program that

were assessed for demographic, anthropometric, laboratory, and

hemodynamic variables related to CVD (48). Participants were

included in this study if they had at least one of the following

cardiovascular risk factors: advanced age, hypertension,

hypercholesterolemia, type two diabetes mellitus, or being a

current smoker. Participants were excluded if they lacked

assessment of subclinical CVD by cfPWV and CCS and were

also excluded those who had a known history of coronary heart

disease or stroke.
2.2. Variables

The workflow and the gathering and definitions of variables are

described in another study (48). Measurements of cfPWV (14) and

CCS (49) are also described elsewhere. The cardiovascular risk at

10 years was estimated using the Framingham (50) and SCORE

models (51) by entering age, total cholesterol, high-density

lipoprotein (HDL) cholesterol, and systolic blood pressure as

continuous variables and sex, diabetes, and current smoking as

categorical variables (presence or absence).
2.3. Clustering

Subsequently, the data underwent cluster analysis. First, the

data were normalized, allowing the variables to follow a uniform

scale. Second, the principal component analysis technique was

applied to reduce dimensionality, and third, the subjects’

similarities were calculated in terms of distance measures

between variables (Euclidean distance) using the k-means

technique. The number of clusters was determined using the

Silhouette coefficient. By this technique, we concluded that

having two clusters was the most appropriate configuration (52).

The used model requires input variables to assign individuals

into groups automatically. In this case, we chose variables

relevant for a cardiovascular assessment that could be easily

collected in a physician’s office, adding the cfPWV. Therefore,

age, weight, height, systolic and diastolic blood pressure, heart

rate, and cfPWV were included to perform cluster analysis.
2.4. Statistical analysis

Numerical variables were summarized using mean and

standard deviation for variables with a normal distribution and

median and interquartile range for variables with a non-normal

distribution. Normality was qualitatively assessed through

histograms and formally assessed through the Shapiro-Wilk test.

Categorical variables were summarized in percentages in each
Frontiers in Cardiovascular Medicine 03
category. Bivariate analysis between cluster groups regarding

categorical and numerical variables were performed using the

chi-square test and T-student test, respectively. Furthermore, we

stratified patients into age groups (<40, 40–49, 50–59, ≥60 years)

to see the differences within the variables of interest among

clusters and the entire sample and address this potential

confounder. Using the mean values of each age group, we

performed three exploratory linear regression models, including

(i) cfPWV and age groups, (ii) the log transformation of CCS

[log (CCS)] and age groups, and (iii) cfPWV and log (CCS). All

hypothesis testing involved two-tailed tests with a significance

level of α = 0.05 and a power of 1-β = 80% were performed in the

free open-source R program version 4.0.2.
2.5. Ethics

The study was conducted following the principles of the

Declaration of Helsinki, and the ethics committee of the

Bioengineering Research and Development Group of the National

Technological University of Buenos Aires, Argentina, approved this

study.
3. Results

377 individuals from the screening program were finally

included in the study. Table 1 describes the overall

characteristics of patients and their segregation into clusters.

Clusters were labeled after the clustering analysis based on their

cardiovascular risk differences through Framingham and SCORE

in a “higher-risk group” and a “lower-risk group”. Regarding

output variables only, we found that the “higher-risk group” had

significantly higher left (0.76 vs. 0.70 mm, P < 0.001) and right

(0.71 vs. 0.66 mm, P = 0.003) IMT, CCS (42 vs. 4 Agatston units,

P = 0.012), ascending (3.40 vs. 3.20 cm, P < 0.001) and

descending (2.60 vs. 2.37 cm, P < 0.001) aorta diameters, and

Framingham (P < 0.001) and SCORE (P = 0.003) 10-year risk

estimators than the “lower-risk group”.

To weigh the benefit of including arterial stiffness in the model,

we performed a sensitivity analysis without cfPWV as an input

variable. We found that the latter model underperformed the

original model regarding CCS, IMT, and cardiovascular risk

discrimination (see Supplementary Material S1).

We found a significant difference in cfPWV and CCS among

age groups, where cfPWV and CCS increased with age in the

“lower-risk group”, the “higher-risk group”, and the entire

sample (see Supplementary Material S2).

Through a linear regression, we found that the progression of

PWV and CCS over age differed significantly among clusters,

being steeper for the “higher-risk group” compared with the

“lower-risk group”. This association with age appeared as linear

for cfPWV (Figure 1A) and exponential (Figure 1B) for log

(CCS). We also found that the association between cfPWV and

CCS differed significantly between clusters, where the linear

trends in PWV and CCS progression over age change depending
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TABLE 1 General characteristics and segregation of individuals through clusteringa.

Variables General characteristics
(N = 377)

Cluster groupsb P-value

“Lower-risk group”
(N = 214)

“Higher-risk group”
(N = 163)

Demographics and anthropometrics
Age (years) 56.5 ± 9.11 54.3 ± 8.61 59.3 ± 9.00 <0.001

Female sex—n (%) 115 (30.5) 74 (34.6) 41 (25.2) 0.063

Body mass index (kg/m2) 26.1 ± 4.27 25.1 ± 4.07 27.4 ± 4.20 <0.001

Medical history
Arterial hypertension—n (%) 185 (49.1) 67 (31.3) 118 (72.4) <0.001

Hypercholesterolemia—n (%) 307 (81.4) 174 (81.3) 133 (81.6) 1

Diabetes—n (%) 24 (6.4) 11 (5.1) 13 (8.0) 0.366

Smoking—n (%) 83 (21.5) 50 (23.4) 30 (18.4) 0.298

Presence of carotid plaque—n (%) 199 (52.8) 108 (50.5) 91 (55.8) 0.353

Presence of femoral plaque—n (%) 250 (66.3) 134 (62.6) 116 (71.2) 0.103

Hemodynamics
Systolic blood pressure (mmHg) 124 ± 13.3 116 ± 8.25 135 ± 10.8 <0.001

Diastolic blood pressure (mmHg) 73.3 ± 9.43 68.5 ± 7.29 79.6 ± 8.14 <0.001

Heart rate (bpm) 65.5 ± 9.99 63.5 ± 9.62 68.1 ± 9.89 <0.001

IMT from right carotid artery (mm) 0.68 ± 0.13 0.66 ± 0.13 0.71 ± 0.13 0.003

IMT from left carotid artery (mm) 0.72 ± 0.147 0.70 ± 0.13 0.76 ± 0.16 <0.001

cfPWV (m/s) 10.6 ± 2.70 9.46 ± 1.77 12.2 ± 2.92 <0.001

CCS (Agatston units) 14.0 [0, 131] 4.50 [0, 80.8] 42.0 [0, 209] 0.012

Ascending aorta diameter (cm) 3.29 ± 0.39 3.20 ± 0.37 3.40 ± 0.39 <0.001

Descending aorta diameter (cm) 2.47 ± 0.26 2.37 ± 0.24 2.60 ± 0.22 <0.001

Cardiovascular risk

Framingham—n (%)
<10% 143 (37.9) 116 (54.2) 27 (16.6) <0.001

10%–20% 159 (42.2) 83 (38.8) 76 (46.6)

>20% 75 (19.9) 15 (7.0) 60 (36.8)

SCORE—n (%)
0% 233 (61.8) 147 (68.7) 86 (52.8) 0.004

1% 105 (27.9) 51 (23.8) 54 (33.1)

2% 21 (5.6) 11 (5.1) 10 (6.1)

3%–4% 15 (4.0) 3 (1.4) 12 (7.4)

5%–9% 3 (0.8) 2 (0.9) 1 (0.6)

CCS is expressed as median and interquartile range, following a non-normal distribution. P < 0.05 was considered statistically significant. Hb1Ac, glycolized hemoglobin;

HDL, high-density lipoprotein; LDL, high-density lipoprotein; IMT, intima-media thickness; cfPWV, carotid-femoral pulse wave velocity; CCS, coronary calcium score.
aPlus-minus values are mean ± standard deviation.
bCluster groups were labeled after the clustering analysis.
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on the assigned cluster group. The progression of the log (CCS)

and cfPWV through age groups was steeper in the “higher-risk

group” than in the “lower-risk group”. Moreover, we found that

the cfPWV of the cluster centroid belonging to the “higher-risk

group” was 12 m/s compared to 9.5 m/s from the centroid

belonging to the “lower-risk group” (Figure 1C).
4. Discussion

In a sample of adults included in a cardiovascular screening

program, we found that a clustering algorithm—only using age,

weight, height, systolic and diastolic blood pressure, heart rate,

and cfPWV as input variables—separated the cohort into two

differentiated groups, in terms of traditional cardiovascular risk

factor scores (i.e., Framingham, SCORE) and subclinical
Frontiers in Cardiovascular Medicine 04
cardiovascular disease parameters. Basically, one group showed

higher cardiovascular risk, greater intima-media thickness, higher

CCS score, greater aorta diameter, and, as expected, higher

cfPWV (consequently named “higher-risk group”). Moreover,

CCS progression over cfPWV differed among clusters. The

“higher-risk group” had a steeper trend in the progression of

cfPWV and CCS over age and cfPWV over CCS compared to

the cluster named “lower-risk group” (Figure 1C). We also

found that the cfPWV of the cluster centroid belonging to the

“higher-risk group” was 12 m/s compared to 9.5 m/s from

the centroid belonging to the “lower-risk group”. Concerning the

latter, it is interesting to point out that the Korean (53) and

Japanese (54) guidelines consider a cfPWV >10 m/s as an

indicator of subclinical organ damage.

Our first finding is that cfPWV correlated well with CCS. Kim

et al. (26) have broadly reviewed in their paper on “Pulse Wave
frontiersin.org
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FIGURE 1

Dynamics of pulse wave velocity vs. coronary artery calcium curves
through clustering among age groups. (A) Correlation between Pulse
Wave Velocity and age groups. (B) Correlation between Coronary
Calcium Score and age groups. (C) Correlation between Pulse Wave
Velocity and Coronary Calcium Score. Green curves correspond to
the analysis of the entire population, and blue and orange curves
correspond to the lower-risk and higher-risk groups, respectively.
Values are shown as the mean (dots) and 95% confidence interval
(bars). A, Agatston units; m/s, meters per second; yr, years; LR cluster,
lower-risk cluster; HR cluster, higher-risk cluster.

Rousseau-Portalis et al. 10.3389/fcvm.2023.1161914
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Velocity in Atherosclerosis” the body of evidence exploring the

association between PWV and CCS as a surrogate of coronary

atherosclerosis. Studies found that increased arterial stiffness is

significantly associated with both the presence and progression of

CCS. This association has been replicated in community-based

cohorts undergoing health check-ups (55–59), patients with type

two diabetes (60, 61), and with suspected coronary artery disease

undergoing coronary angiography (62). Despite cfPWV being the

gold standard, most studies have used baPWV, probably due to

the preponderance of Asian evidence, where baPWV is most

commonly used (63). Regardless of demonstrating causality—

which is challenging due to scarce longitudinal studies (26, 55)—

the proxy for this finding is identifying individuals with

increased arterial stiffness and thereby increased likelihood of

presenting coronary calcifications. In this way, PWV may be a

“gate-keeper” for CCS testing and reduce the costs and radiation

associated with CCS measurement (27). Our results align with

current evidence concerning the strong association between PWV

and coronary atherosclerosis. However, our novel approach

suggests that running the data through clustering reveals two

different laws in the association of PWV and CCS.

Arterial stiffness is one of the earliest markers of atherosclerosis

and vascular aging (29, 64) and can be accelerated by other

cardiovascular risk factors (65). From a physiopathology

standpoint, atherosclerosis and arteriosclerosis appear to be the

underlying processes behind CCS and PWV changes,

respectively. There are common risk factors (e.g., hypertension,

dyslipidemia, diabetes, smoking) among them, and their

pathologic mechanisms appear to overlap (66). Arterial stiffness

involves changes in the extracellular matrix, including elastin

degradation and collagen deposition, leading to atherosclerosis

(65). Vascular remodeling in the presence of increased stiffness

could predispose to calcification of the intima and media layer

(67) and increased wall shear stress and afterload hence

triggering a pathophysiological cascade leading to atherosclerosis

and plaque rupture (68) and cardiac remodeling (27, 55).

Moreover, arterial stiffness reduces the buffering in the aortic

trunk that helps maintain coronary flow during diastole, further

limiting coronary perfusion in an occluded lumen (69). In turn,

atherosclerosis generates endothelial dysfunction and structural

wall changes, increasing arterial stiffness (70).

We are currently seeing a paradigm shift from population-

based care into the precision medicine era (39). AI, through ML

methods, could help achieve a “personalized” medicine by

summarizing enormous quantities of medical information rather

than a rigidly defined “one-size-fits-all” algorithm commonly

seen in everyday physician practice (38). The advantages of AI

tools include freedom from statistical assumptions, exploring

multiple hidden patterns, and learning independently (71, 72).

These features could revolutionize healthcare and offer the

potential for earlier detection of disease, improved diagnostic

accuracy, and more accurate prognosis and disease severity

prediction to guide optimal management (73, 74).

Although this is the first time cfPWV and CCS association

using ML algorithms has been evaluated, there are applications

already used for these parameters individually. Automatic and
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semi-automatic AI-based methods correlate robustly with

traditional CCS computation methods but consume less time and

resources (75). For example, Motwani et al. developed an ML

model that outperformed the Framingham risk score and

computed tomography coronary calcification angiography

(CTCA) severity risk scores to predict 5-year all-cause mortality

in patients who underwent CTCA (76). Also, “Zebra Medical

Vision” has recently acquired an FDA clearance for an AI-based

tool to assess cardiovascular risk in patients based on coronary

artery calcium (77, 78). As for PWV, Vallée et al. found the

PWV index as the main factor for predicting coronary heart

disease through decision tree models (79). Also, they created

artificial neural network models, which included the PWV index

that accurately predicted coronary heart disease (80).

By having access to the machine learning algorithm used in this

study and cfPWV assessment, one could automatically determine

the patient cluster assignment. However, for cases where

individual patients are not included in the algorithm, the

complementary method for clinical use is proposed:

Physicians could manually determine cluster assignment using

patients’ cfPWV and cfPWV vs. age curves generated by the system

(Figure 1A). Given the patient’s age and cfPWV values, we can fix

—as in a nomogram—where the point falls and thus graphically

assign a cluster without necessarily including the patient in the

system. If cfPWV value falls below the curve corresponding to

the general population (blue area), the patient could be assigned

to the “lower-risk group”, and if it falls upwards (red area), it

could be assigned to the “higher-risk group”. Subsequently, we

could estimate the patients’ PWV progression based on the

assigned cluster and graphically estimate patients’ coronary

calcium based on the assigned cluster and on the log (CCS) vs.

age curves (Figure 1B). Thus, considering the patient’s

comorbidities, lifestyle, and measurement of cfPWV, physicians

can use CCS prediction curves and—depending on the clustering

group assignment—evaluate the necessity of ratifying calcium

values through a CT scan. Through this clustering algorithm, we

could generate new curves every year by analyzing different

populations with cfPWV and CCS measurements to improve

stratification.

The proposed method may enhance the usefulness of

subclinical vascular damage screening tools and aid the

commonly challenging decision of starting pharmacological

therapy (i.e., statins). It should be mentioned that the

cardiovascular risk assessment carried out in this study does not

aim to replace traditional risk scores, but instead be a

complement in scenarios where PVW and (eventually) CCS

might be available. Therefore, mid-age patients who have already

been evaluated by multivariate risk models such as SCORE or

Framingham and have borderline 10-year cardiovascular risk (81)

or young individuals where risk scores underestimate

cardiovascular risk and need direct subclinical disease assessment

might benefit from this proposal (82).

Despite our study findings, we must acknowledge its

limitations. First, inclusion criteria and clustering models were

generated using retrospective data from a single center, limiting

the external validity of results to other areas. Secondly, machine
Frontiers in Cardiovascular Medicine 06
learning algorithms nurture themselves from Big Data and most

often need an enormous quantity of info to take advantage of its

usefulness. In this study, we only had a small quantity of data in

terms of model generation, which increases the uncertainty of

the trends shown. Third, clustering algorithms are dependent on

the initial cluster pattern. Therefore, the method should be

reproduced in other cohorts to address this potential bias to

archive robust conclusions about this methodology (83).

Applying this ML tool may extend the usage of PWV and CCS

in clinical practice and help reduce the global burden of CVD.

Nevertheless, these preliminary findings warrant validation by

more extensive and heterogeneous patient cohorts to elucidate

the benefit of clustering and explore the benefits of other ML

algorithms in PWV and CCS association.
5. Conclusions

This paper sought to illustrate the state-of-the-art of two

subclinical vascular damage parameters and how their use may

be enhanced through ML goggles. We found that a clustering

algorithm segregated CCS progression over cfPWV into two

groups of patients with divergent subclinical vascular disease. By

these findings, we intend to identify a higher-risk cluster with a

higher probability of detecting coronary artery disease by CCS

and saving cost and radiation in patients belonging to a lower-

risk cluster. In all, this finding could improve PWV as a “gate-

keeper” of CCS testing and potentially enhance patient

stratification.
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