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valve therapy—Realistic
perspective for clinical translation?
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Calcific aortic valve disease (CAVD) is the most frequent valvular heart disorder,
and the one with the highest impact and burden in the elderly population. While
the quality and standardization of the current aortic valve replacements has
reached unprecedented levels with the commercialization of minimally-invasive
implants and the design of procedures for valve repair, the need of
supplementary therapies able to block or retard the course of the pathology
before patients need the intervention is still awaited. In this contribution, we will
discuss the emerging opportunity to set up devices to mechanically rupture the
calcium deposits accumulating in the aortic valve and restore, at least in part,
the pliability and the mechanical function of the calcified leaflets. Starting from
the evidences gained by mechanical decalcification of coronary arteries in
interventional cardiology procedures, a practice already in the clinical setting,
we will discuss the advantages and the potential drawbacks of valve lithotripsy
devices and their potential applicability in the clinical scenario.
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1. The role of cells-depositing calcium in CAVD

Calcific aortic valve disease (CAVD) is the most frequent heart valve disorder in the

aging population, associated with increased morbidity and mortality (1). The underlying

process of CAVD is typically illustrated by a complex and multifaceted course,

characterized by endothelial dysfunction, inflammation, increased oxidative stress, sub-

endothelial lipid accumulation, valve fibrosis and, ultimately, calcification of valve leaflets

(2). The clinical evolution of the valve pathology starts with aortic sclerosis, characterized

by mild valve thickening; it evolves into symptomatic aortic stenosis (AS), characterized

by obstruction of blood flow, severe calcification preventing leaflet movement, and heart

failure (3, 4). This process occurs in a typically biphasic fashion. The sclerotic phase is

slow with mild or no symptoms, followed by severe calcification with dyspnea, angina

and myocardial decompensation (5).

Mechanistically, the deposition of calcific nodules in the aortic valve generally begins in

the fibrosa, a layer that is predominantly abundant of type I and III collagen forming

anisotropically-deposited thick fibers necessary to absorb the load generated by the blood

filling the aorta during the valve closure at diastole (6). This establishes a relationship

between the non-uniform distribution of strain forces on the leaflets and the pathologic

programming of valve-resident cells.

Calcific lesions are mainly produced from valve-resident cells, whose the most important

type are the so-called valve interstitial cells (VICs) (7). These cells are normally deputed to

the renewal of the extracellular matrix, but under specific pathophysiologic conditions, they

can differentiate into myofibroblasts (8) and finally into calcium depositing cells (9), under
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the control of genes (e.g., Bmp2, Runx2), at least in part, in

common with the canonical osteogenic pathway. Despite the

similarity with the bone calcification process, valve and vessel-

specific mineralized tissues show a different organization. Indeed,

in an interesting work, Bertazzo and colleagues, using nano-

analytical electron microscopy techniques, detected spherical

calcium phosphate particles, made of highly crystalline

hydroxyapatite and structurally different from mineralized bone (10).

They showed that, unlike tissue presenting calcific lesions that

clearly express bone-specific factors, the deposition of spherical

microparticles in the extracellular matrix precedes the

accumulation of the large calcific nodules present in the pathologic

valves (10). Interestingly, the same Authors showed that

deposition of these particles was more abundant in the fibrosa

layer in positions subjected to the maximal mechanical stress (11).

These evidences, together with experiments in vitro showing that

secretion of calcified particles by VICs is subjected to mechanical

control (12), and that these cells are sensitive to mechanical

cues (13), confirm the primary relevance of valve mechanics for

pathologic evolution, and suggest that removing the calcium

deposits by a debridement technique, could be a viable strategy to

recover a normal phenotype in valve resident cells, other than

restoring the mechanical function of the valve.

Other cell types that contribute to calcific evolution of the

aortic valves are the endothelial cells that cover the leaflet

surface, the so-called valve endothelial cells (VECs), which

similarly to the VICs can participate in the calcification of the

valve by differentiating into mesenchymal cells through

endothelial-mesenchymal transition (14). Several conditions such

as altered shear stress, inflammation and modifications in the

extracellular matrix (15–17) can favor VECs differentiation into

myofibroblasts and, subsequently into calcium-depositing cells.

A last relevant cell type participating in valve calcification has

been recently highlighted by the finding that somatic blood cell-

derived clones bearing somatic mutations in DNMT3A or TET2

loci predominate in the peripheral blood of patients with an

increased mortality rate following TAVI implantation. This

expansion, named “clonal hematopoiesis of indeterminate

potential” (CHIP) is supposed to create a proinflammatory

environment characterized by increased pro-inflammatory

leukocyte subsets and a pro-inflammatory T-cell polarization

likely favoring rapid progression of aortic stenosis and its

complications (18–20).
2. Use of shockwaves in treatment of
cardiovascular diseases

2.1. Intravascular lithotripsy

The term lithotripsy refers originally to a technique that

employs sonic pressure waves—or shockwaves—to disintegrate

and remove hard deposits such as renal and ureteral calculi or

gallstones, whose remnants are later washed out by urinary or

biliary secretion (21–23). Shockwaves are in use also in

cardiovascular therapy. However, opposite to the original
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that of removing the calcium from the tissues, but to reduce the

size of the deposits with the aim at facilitating interventional

cardiology procedures in heavily calcified coronary arteries

(24–31), or to create easier vascular access for minimally-invasive

procedures in case of calcifications in the iliac arteries (32–34).

Given that the final aim of the treatment is to restore the

softness of the tissue, in these applications, the calcium deposits

remain in situ and are not expected to be washed-out by the

blood giving rise to thromboembolic events. The delivery of

shockwaves to the vessels is named “intravascular lithotripsy”

(IVL). It is performed exploiting the minimally-invasive

procedure and setup available in the interventional cardiology

room contextually with the revascularization (35). Technically,

the shockwaves are generated by piezoelectric lithotripters

inserted into balloon catheters connected to a generator

producing adjustable doses and intensities to optimize the

treatment of the arteries for each specific patient (25). The sonic

waves are transmitted from the balloon-based catheter to the

vascular wall by physical contact to reach the media of the

vessels, where they break more superficial or deeper calcium

deposits, allowing optimal artery expansion and stent

implantation. In the clinical practice, IVL has been successfully

employed in balloon angioplasty and plaque ablation and as an

adjuvant to prevent post-procedure complications, such as

accelerated restenosis, damage of the arterial wall, or catheter

overstretching and rupture (36–39). In a trial by Tepe et al., the

authors tested the efficiency of IVL on percutaneous transluminal

angioplasty (PTA) in two cohorts of patients with

femoropopliteal artery calcification (40). Data reported a greater

success in the patient group who received IVL before PTA

compared to the PTA-only group, thus confirming IVL as an

effective vessel preparation method facilitating endovascular

treatment (40). In another trial, Hill and colleagues showed the

safety and effectiveness of IVL to allow stent implantation in

431 patients with calcified coronary lesions (30). The percentage

of procedural success was 92.4%, with no adverse events (e.g.,

myocardial infarction, cardiac death). The IVL safety was also

evaluated in stents under-expansion and in-stent restenosis in

60 patients who underwent percutaneous coronary intervention

with intravascular lithotripsy system for severe calcified lesions

(41). This analysis showed that the IVL balloon easily reached

the lesion, and the application of the treatment was feasible in

92.3% of cases, with high angiographic success and no

differences in complications or major cardiac adverse events at

30-days, confirming IVL as a safe strategy to adjuvate stent

expansion (41, 42).
2.2. Shockwave treatment in
minimally-invasive aortic valve replacement

Similarly to the use in coronary revascularization, setups for

IVL have been successfully employed to facilitate the

intravascular access to the aortic valve for easier insertion of

large-dimension sheaths in TAVI procedures (43–46).
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Shockwaves are delivered by a piezoelectric device to the iliac artery

or the aortic wall to break up the calcifications hardening the

tissue, allowing the insertion of the catheters for TAVI

implantation and reducing the risks of arterial wall damage to

optimize TAVI deployment (46). For example, in two studies in

patients aged 75–89 years with AS and presenting more than

one lesion that required pre-procedural intervention, IVL

simplified the femoral access and TAVI implantation (47, 48).

Another use of lithotripsy for facilitating valve replacement was

described by Sharma and colleagues, who performed

transcatheter aortic valve lithotripsy directly in the valve before

TAVI implantation to decrease the risk of paravalvular aortic

regurgitation and annular rupture. The results showed that the

procedure did not affect the motion of the leaflets in the

prosthetic valve and favored the expansion of the TAVI stent

(49). Similarly, a post TAVI dilatation lithotripsy was

performed in a patient carrying a previously implanted TAVI to

allow a new expansion of the TAVI stent in order to reduce the

risk of stroke or annular rupture (50). Results showed an

effectively post-dilated valve and a more symmetric expansion

of the supporting stent.
2.3. Shockwaves delivery for direct calcium
disruption in human calcified leaflets

A new application of shockwaves delivery, as an adjuvant or

even a stand-alone treatment, for aortic valve disease concerns

the disintegration of the calcific deposits reducing the

pliability and the motion of the leaflets in terminally calcified

stenotic valves. This interesting possibility was prospected in a

report from our group (51), in which we described the

feasibility of treating aortic valve leaflets using an ad-hoc

device that was specifically designed to deliver shockwaves in a

very localized and concentrated fashion, by direct physical

contact with the leaflet of a tricuspid valve. Conceived to be

part of an all-in one “trans-catheter debridement device”

(TDD), to treat the valves with low-intensity ultrasound

shockwaves with alternate 100 kHz/3 MHz pulses with a

minimally-invasive trans-catheter approach, we showed the

efficiency of the emitted waves in reducing the dimensions of

the calcific nodules in pathologic human leaflets ex vivo, and

the safety of the shockwaves administration to the aortic

valves in living pigs (51). The absence of major histologically

detectable damages witnessed that for their extreme

focalization to penetrate the large calcium deposits from the

aortic leaflets, the shockwaves did not cause large ruptures

maintaining the integrity of the tissue (51, 52). For the whole

duration of the procedure, the animals remained with one of

the valve leaflets immobilized by the piezoelectric transducer,

even if the motion of the other leaflets during the procedure,

as well as of the treated leaflet after the procedure were not

compromised, suggesting an overall clinical feasibility of the

procedure. The biological safety of the procedure was finally

confirmed in another report in which the same device was

employed to treat an in vitro reconstituted valve tissue, where
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(53). At the moment, it is not known whether the delivery of

shockwaves to the leaflets results into an induction of inflammation

and/or cellular apoptosis (54) and the permanence of smaller

deposits resulting from the fragmentation of the large calcific

nodules causes long-term effects on mechanical performance of the

valve. Another important aspect of this potentially new treatment

will probably be the necessity to employ, concomitantly to

shockwaves delivery, embolic protection devices able to filter out

from the blood the debris deriving from the calcium deposits

fragmentation. In this respect, several types of these devices have

been designed to capture debris that embolizes distally during

vascular surgeries in specific vascular districts particularly critical

such as, for example, carotid stenting (55).
3. Conclusion

The growing interest for minimally-invasive procedures to

reduce the extent of calcification in vessels and valves, and to

increase the efficiency of vessel reperfusion and valve

substitution, is prompting the design of a new class of devices

that will be employed in the future to minimize the clinical

consequences of cardiovascular aging. Prompted by pioneering

studies on isolated cases or small trials, delivery of shockwaves is

progressing in preclinical testing in preparation for possible large

human translation. Before the release of a regulatory-compliant

procedure to debride the large calcific nodules present in the

natural valves, or even in implanted biological valves, this

technology should be validated for safety in terms of long-term

biological effects and should be designed according to quality

criteria. In addition, the risks should be minimized, for example,

by combining the new shockwaves delivery system with distal

protection devices able to collect eventual debris originating from

the calcium disintegration activity.
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